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Abstract
This article describes the emergence of formal methods in theory of partial differential
equations (PDE) in the French school of mathematics through Janet’s work in the
period 1913–1930. In his thesis and in a series of articles published during this period,
Janet introduced an original formal approach to dealwith the solvability of the problem
of initial conditions for finite linear PDE systems. His constructions implicitly used an
interpretation of a monomial PDE system as a generating family of a multiplicative set
of monomials. He introduced an algorithmic method onmultiplicative sets to compute
compatibility conditions, and to study the problem of the existence and the uniqueness
of a solution to a linear PDE system with given initial conditions. The compatibility
conditions are formulated using a refinement of the division operation on monomials
defined with respect to a partition of the set of variables into multiplicative and non-
multiplicative variables. Janet was a pioneer in the development of these algorithmic
methods, and the completion procedure that he introduced on polynomials was the
first one in a long and rich series of works on completion methods which appeared
independently throughout the twentieth-century in various algebraic contexts.
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1 Introduction

This article presents the emergence of formal methods in the theory of partial differen-
tial equations, PDE for short, in the French school of mathematics through the works
of the French mathematicianMaurice Janet in the period from 1913 to 1930. Janet was
a very singular mathematician, who had been able to bring out original algebraic and
algorithmic methods for the analysis of linear PDE systems. This original contribution
of Janet is certainly due to his open-mindedness, as is made clear by his scientific visits
to Germany, during a very complex political context in Europe with the events around
the First World War. In particular, this relationship with the Göttingen school led him
to appropriate Hilbert’s constructive ideas from Hilbert (1890) in the algebraic anal-
ysis of polynomial systems. In the continuation of the works of Charles Riquier and
Étienne Delassus, he defended a Doctorat és Sciences Mathématiques (Janet 1920a)
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Maurice Janet’s algorithms on systems of linear partial… 45

in 1920, where he introduced an original formal approach to deal with the solvability
of the problem of initial conditions for finite linear PDE systems.

In this article, we briefly survey the historical background of the contribution of
Janet and we present its precursory ideas on the algebraic formulation of completion
methods for polynomial systems applied to the problem of analytic solvability of PDE
systems. Certainly influenced by the work of Hilbert (1890), its construction implicitly
used an interpretation of a monomial PDE system as a generating family of a mul-
tiplicative set of monomials. He introduced an algorithmic method on multiplicative
sets to compute compatibility conditions, and to study the problem on the existence
and the uniqueness of a solution of a linear PDE system with an initial condition. The
compatibility conditions are formulated using a refinement of the division operation
on monomials defined with respect to a partition of the set of variables into multiplica-
tive and non-multiplicative variables. We will explain how Janet’s constructions were
formulated in terms of polynomial systems, but without the modern language of ideals
introduced simultaneously by Noether (1921). Janet was a pioneer in the development
of these algorithmic methods, and the completion procedure that he introduced on
polynomials was the first in a long and rich series of works on completion methods
which appeared independently throughout the twentieth-century in various algebraic
contexts. In this article, we do not present the theory developed by other pioneers on
the formal approaches in the analysis of linear PDE systems, in particular the work of
Thomas (1937).

1.1 Mathematical context in Europe after firstWorldWar

In an early stage of his career, Janet developed his mathematical project in the context
of the first World War, which caused a complicated political period in Europe. This
war, which in particular involved France and Germany, had profoundly affected the
European mathematical community. We refer the reader to Aubin et al. (2014) and
Aubin and Goldstein (2014) for an exposition of the impact of this war on the activ-
ities of the mathematical community in Paris. This wartime followed a very active
period for mathematics in Paris and destroyed the dynamism of the French mathemat-
ical school. Indeed, many mathematicians were mobilized and the communications
between France and other countries became difficult, especially between France and
Germany, its main enemy. We refer the reader to Mazliak (2013) which presents an
edition of private notes written by Janet in the autumn of 1912 during his visit to Göt-
tingen. In these notes, Janet revealed his views on the very complex political situation
in Europe during this period.

The wartime created a very special situation for scientific collaborations between
France and Germany. Indeed, some scientists expressed suspicions about the work of
the enemy country’s scientists. In particular, Charles Émile Picard, whose family was
very badly affected by the war due to the death of three of his five children, published
a very critical text on German science in 1916 (Picard 1916). He wrote (Picard 1916,
P.36).

C’est une tendance de la science allemande de poser a priori des notions et des
concepts, et d’en suivre indéfiniment les conséquences, sans se soucier de leur
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accord avec le réel, et même en prenant plaisir à s’éloigner du sens commun.
Que de travaux sur les géométries les plus bizarres et les symbolismes les plus
étranges pourraient être cités ; ce sont des exercices de logique formelle, où
n’apparaît aucun souci de distinguer ce qui pourra être utile au développement
ultérieur de la science mathématique.

It is a tendency of German science to introduce notions and concepts, and to
follow their consequences indefinitely, without worrying about their agreement
with reality, and even taking pleasure in departing from common sense. How
many works on the strangest geometries and the strangest symbolisms could be
cited; they are exercises in formal logic, where there is no concern to distinguish
what may be useful for the further developments of mathematical science?

During this period, Picard had a significant influence on the French school of analysis.
Consquently, such a strong position toward German scientists reflects the atmosphere
of the period during which Janet was conducting his thesis work. Nevertheless, having
visited Germany, Janet had privileged relations with the German mathematical com-
munity. Janet’s visit to Göttingen was described with details in Mazliak (2013). His
work on formal methods for the solvability of linear PDE systems was influenced by
the algebraic formalism developed during that period in Germany to deal with finite-
ness problems in polynomial rings. Indeed, since Hilbert’s seminal article (Hilbert
1890), these questions have been at the center of many works in Germany. It was in
1921 that the algebraic structure of ideals emerged, and the Noetherian property was
clearly formulated. This was after a long series of works carried out by the German
school, with the major contributions by Hilbert (1890), Richard Dedekind, and finally
Emmy Noether.

In France, the formalist approach was not as well developed as in Germany and the
reference text-books in algebra remained the great classics of the nineteenth-century
on the analysis of algebraic equation systems. In the 1920s, the main references were
the book ofCamille Jordan onwhat he called substitution groups of algebraic equations
(Jordan 1989), and the lectures on higher algebra by Serret (1849). The book of J.-A.
Serret had a great influence and was re-edited many times until 1928 (Serret 1928).

1.2 Maurice Léopold René Janet

Janet was born on the 24th of October 1888 in Grenoble. He was raised in a family
of six children that belonged to the French intellectual bourgeoisie. He entered the
science section of the École normale supérieure in Paris in 1907. Jean-Gaston Dar-
boux, Édouard Goursat, É. Picard and Jacques Hadamard were among his teachers.
In September 1912, he made a trip to Göttingen in Germany for a few months. This
stay in Göttingen was thought to have been of great importance in the mathemati-
cal training of Janet. We refer the reader to Mazliak (2013) for more details on his
travels to the University of Göttingen. He found a very rich intellectual community
there and had many exchanges, both with foreign students visiting Göttingen like him:
George Pólya, Lucien Godeaux, Marcel Riesz), and with prestigious teachers, Con-
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stantin Carathéodory, Richard Courant, Edmund Landau, D. Hilbert and Felix Klein
(Mazliak 2013). He also met Max Noether and E. Noether (Mazliak 2013).

The first two publications (Janet 1913a, b) of Janet appeared in Comptes-rendus
de l’Académie des sciences in 1913 and deal with the analysis of PDE systems. The
second publication (Janet 1913b) concerns a generalization of Cauchy–Kowalevsky
theoremunder the formulation given byCh. Riquier in Riquier (1910).While a lecturer
at the University of Grenoble, he defended his thesis on the analysis of PDE systems,
entitled «Sur les systèmes d’équations aux dérivées partielles», on June 26, 1920 at
the Sorbonne in Paris (Janet 1920a). The jury was composed of Gabriel Xavier Paul
Koenigs, É. Goursat, Élie Cartan and J. Hadamard. In the preamble of his thesis
dissertation, he payed a respectful tribute (Hommage respectueux et reconnaissant)
to Édouard Goursat and J. Hadamard. Some results of his thesis were published in
Journal de mathématiques pures et appliquées in 1920 (Janet 1920b).

Janet was promoted to Professor in 1920 in Nancy, then in Rennes in 1921. He
became a Professor in Caen in 1924 when Ch. Riquier retired from the University and
became Professor Emeritus. Finally, he became a Professor at the Sorbonne in Paris
in 1945. He was an invited speaker at the International Congress of Mathematicians
on three occasions: Toronto in 1924 (Janet 1928), Zürich in 1932 (Janet 1932) and
Oslo in 1935 (Janet 1936). He was President of the Société Mathématiques de France
in 1948. He died in 1983.

1.3 Formal methods in commutative algebras throughout the twentieth-century

Most of the formal computational methods in commutative algebra and algebraic
geometry developed throughout the twentieth century were founded on extensive
works in elimination theory in the period 1880–1915. As early as 1882, Kronecker
(1882) introduced multivariate resultants providing complete elimination methods for
systems of polynomial equations. Elimination theory culminated with the works of
Julius König (König 1903), and of Macaulay (1903, 1913, 1916). For an overview of
the works of this period, the reader may consult an important book on algebra (van
der Waerden 1930) written by Bartel Leendert van der Waerden based on lectures by
E. Noether and E. Artin.

Independently, a computational approach to elimination in commutative algebra
that consists to define a polynomial ideal throughout a generating family satisfying
nice computational properties stated with respect to a monomial order appeared in
different forms and in various contexts from the early twentieth century. The first alge-
braic constructions using such a computational method appeared in Dickson (1913),
Gunther (1941), Macaulay (1916). Fifty years later, the notion of generating set of an
ideal satisfying computational properties with respect to a monomial order appeared
in the terminology of standard bases in Hironaka (1964a, b) for power series rings by
Hironaka. In the same period, Bruno Buchberger developed algorithmic approaches
for commutative polynomial algebras, with effective constructions and a completion
algorithm for calculating Gröbner bases (Buchberger 2006). Similar approaches were
developed for non-commutative algebras in Shirshov (1962), Bergman (1978). There-
after, developments of the theory of Gröbner bases have mainly been motivated by
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algorithmic problems such as computations with ideals, manipulating algebraic equa-
tions, computing linear bases for algebras, Hilbert series and homological invariants.

Forty years before the work of B. Buchberger, Janet introduced algorithmic
approaches to the completion of a generating family of a polynomial ideal into a
generating family satisfying computational properties quite similar to Gröbner bases.
As we explain in the following sections, the completion methods constitute the essen-
tial part of the theory developed by Janet. He introduced a procedure to compute a
family of generators of an ideal having the involutive property, and called involutive
bases in the modern language. This property is used to obtain a normal form of a linear
partial differential equation system.

Janet’s procedure of computation of involutive bases used a refinement of the
classical polynomial division, called involutive division, which is appropriate to the
reduction in linear PDE systems. The completion procedure that he introduced is quite
similar to the one defined with respect to classical division by Buchberger (2006) to
produce Gröbner bases. Subsequently, another approach to the reduction in linear PDE
systems by involutive divisions was introduced by Thomas (1937). The terminology
involutive first appeared in Gerdt (1997). We refer the reader to Mansfield (1996) for
a discussion on relation between this notion and that of involutivity in the work of É.
Cartan. We refer also to Seiler (2010) for a complete account of algebraic involutivity
theory. Finally, note that the work of Janet was forgotten for about a half-century and
was rediscovered by Schwarz (1992).

1.4 Conventions and notations

In order to facilitate the reading of the different mathematical constructions extracted
from the publications of Janet, we have chosen to use modern mathematical formula-
tions. We provide here, a dictionary between the terminology used by Janet and the
terminology used nowadays in the theory of partial differential equations. (∗) Janet did

Janet terminology (in French) Modern terminology Subsection in the article

Module de monômes Multiplicative cone 5.1
Forme Homogeneous polynomial 4.4
Module de formes Polynomial ideal 4.4
Famille de monômes de type fini∗ Noetherian property 4.3
Système de cotes Monomial order 3.2, 7.2
Postulation Coefficients of Hilbert’s series 4.4

not use any specific terminology, but formulated the notion as follows (Janet 1929,
pp. 11):
Théorème. - Une suite de monomes M1, M2, . . . telle que chacun d’eux n’est multiple
d’aucun des précédents ne comprend qu’un nombre fini de monomes.

Theorem A sequence of monomials M1, M2, . . . such that each monomial is not a
multiple of any preceding one contains only a finite number of monomials.
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The following notations will be used in this article. The set of non-negative integers
is denoted by N. The polynomial ring on the variables x1, . . . , xn over a field K of
characteristic zero is denoted by K[x1, . . . , xn]. A polynomial is either zero or it
can be written as a sum of a finite number of nonzero terms, each term being the
product of a scalar in K and a monomial. We will denote byM(x1, . . . , xn) the set of
monomials in the ringK[x1, . . . , xn]. For a subset I of {x1, . . . , xn}, we will denote by
M(I ) the set of monomials in M(x1, . . . , xn) whose variables lie in I . A monomial
u in M(x1, . . . , xn) is written as u = xα1

1 . . . xαn
n , where the αi are non-negative

integers. The integer αi is called the degree of the variable xi in u, it will be also
denoted by degi (u). For α = (α1, . . . , αn) in N

n , we denote xα = xα1
1 . . . xαn

n and
|α| = α1 + . . . + αn .

For a set U of monomials ofM(x1, . . . , xn) and 1 ≤ i ≤ n, we denote by degi (U)

the largest possible degree in the variable xi of the monomials in U , that is

degi (U) = max
(
degi (u) | u ∈ U )

.

We call the cone of the set U the set of all multiples of monomials in U , defined by

cone(U) =
⋃

u∈U
uM(x1, . . . , xn) = { uv | u ∈ U , v ∈ M(x1, . . . , xn) }.

Finally, to amonomial xα = xα1xα2 . . . xαn
n wewill associate the differential operator:

Dα = ∂ |α|

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

.

2 Historical context of Janet’s work

Janet’s contribution discussed in this article is part of a long series of works on partial
differential equation systems. In order to introduce the motivations of Janet’s results,
this section outlines the main contributions on the study of systems of partial differen-
tial equations achieved in the nineteenth century.We present the historical background
of exterior differential systems and of the questions on PDE. For a deeper discussion
of the theory of differential equations and the Pfaff problem, we refer the reader to
Forsyth (1890), Weber (1900) or Cartan (1899).

2.1 Pfaff’s problem

Motivated by problems in analytical mechanics1, Leonhard Euler and Joseph-Louis
Lagrange initiated the so-called variational calculus, cf. Lagrange (1788), which led
to the problem of solving first-order PDE. This theory serves as a guide to the Janet
contributions. In 1772, J.-L. Lagrange considered in Lagrange (1772) a PDE of the

1 We refer the reader to (Dugas 1950) concerning history of mechanical problems.

123



50 K. Iohara, P. Malbos

following form

F(x, y, ϕ, p, q) = 0 with p = ∂ϕ

∂x
and q = ∂ϕ

∂ y
, (1)

i.e., a PDE of one unknown function ϕ in two variables x and y. Lagrange’s method
to solve this PDE can be summarized in three steps as follows:

(i) Express the PDE (1) in the form

q = F1(x, y, ϕ, p) with p = ∂ϕ

∂x
and q = ∂ϕ

∂ y
. (2)

(ii) Forgetting the fact that p = ∂ϕ
∂x , we consider the following 1-form

� = dϕ − pdx − qdy = dϕ − pdx − F1(x, y, ϕ, p)dy,

by regarding p as some (not yet fixed) function of x, y and ϕ.
(iii) If there exist functions M and � in variables x, y and ϕ satisfying M� = d�,

then �(x, y, ϕ) = C for some constant C . Solving this new equation, we obtain
a solution ϕ = ψ(x, y, C) to the given Eq. (2).

In 1814–15, Pfaff (1902) treated the case of a PDE of one unknown function in n
variables, depending on the case when n is even or odd.

Recall that any PDE of any order is equivalent to a first-order PDE system, that is
involving only first partial derivatives of the unknown functions. Thus, we exclusively
consider systems of first-order PDE with m unknown functions of the form

Fk
(
x1, . . . , xn, ϕ1, . . . , ϕm,

∂ϕa

∂xi
(1 ≤ a ≤ m, 1 ≤ i ≤ n)

) = 0, for 1 ≤ k ≤ r .

Introducing the new variables pa
i , the system is defined on the space with coordinates

(xi , ϕ
a, pa

i ) and is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Fk(xi , ϕ
a, pa

i ) = 0,

dϕa −
n∑

i=1

pa
i dxi = 0,

dx1 ∧ . . . ∧ dxn �= 0.

Notice that the last conditionmeans that the variables x1, . . . , xn are independent. Such
a system is called a Pfaffian system. One is interested in whether this system admits a
solution or not, and whether or not a solution is unique under some conditions. These
questions are Pfaff’s problems. An approach using differential invariants was one of
the key ideas developed, in particular, by Lie (1884), Darboux (1882), and Frobenius
(1877), etc., before Cartan (1899). See, e.g., Forsyth (1890) and Hawkins (2005) for
historical foundations on Pfaff’s problems.
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2.2 Cauchy–Kowalevsky’s theorem

A naive approach to Pfaff’s problems, having applications to mechanics in mind, is
the question of the initial conditions. In series of articles published in 1842, Augustin
Louis Cauchy studied systems of PDE of first order in the following form:

∂ϕa

∂t
= fa(t, x1, · · · , xn) +

m∑

b=1

n∑

i=1

f i
a,b(t, x1, . . . , xn)

∂ϕb

∂xi
, for 1 ≤ a ≤ m,

(3)

where fa, f i
a,b and ϕ1, . . . , ϕm are functions of the n + 1 variables t, x1, . . . , xn . He

showed that under the hypothesis of analyticity of the coefficients, the PDE system
(3) admits a unique analytic local solution satisfying a given initial condition.

Sophie Kowalevsky in 1875 considered PDE systems of the form

∂ra ϕa

∂tra
=

m∑

b=1

ra−1∑

j=0
j+|α|≤ra

f j,α
a,b (t, x1, . . . , xn)

∂ j+|α|ϕb

∂t j∂xα
, (4)

for some ra ∈ Z>0, 1 ≤ a ≤ m, and where f j,α
a,b and ϕ1, . . . , ϕm are func-

tions of the n + 1 variables t, x1, . . . , xn , and α = (α1, · · · , αn) in (Z≥0)
n , with

∂xα = ∂xα1
1 . . . ∂xαn

n . She proved in Kowalevsky (1875) that under the hypothesis of
analyticity of the coefficients, the system (4) admits a unique analytic local solution
satisfying a given initial condition. This result is now called the Cauchy–Kowalevsky
theorem. In her article (Kowalevsky 1875), she suspected that the form she has obtained
was the normal form of any PDE system. However, she had no proof of this statement.
She wrote, (Kowalevsky 1875, pp. 24–25):

Was dagegen die zweite Bedingung angeht, so bleibt allerdings noch zu unter-
suchen, ob ein Gleichungssystem von nicht normaler Form stets durch ein
ähnliches Verfahren, wie es Jacobi bei einem System gewöhnlicher Differen-
tialgleichungen angewandt hat, auf ein normales zurückgeführt werden könne,
worauf ich aber hier nicht eingehen kann.

Regarding the second condition it remains to study the question of whether a
system of equations not in normal form may always be reduced to a normal one
by methods similar to the ones used by Jacobi for systems of ordinary differential
equations, which I cannot go into here.

In his thesis in 1891, Bourlet (1891) showed that any PDE system can be trans-
formed into an equivalent PDE system of first order and proposed a notion of canonical
form for such a system. He showed that for a completely integrable system, there is an
analytic solution. He also showed that the normal form (4) due to S. Kowalevsky is not
completely general by providing an example of a PDE systemof one unknown function
depending on the two independent variables. Thus, finding a canonical form of more
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general PDE systems became an important problem in the context of generalizing the
Cauchy–Kowalevsky theorem. In Bourlet (1891, §17), Bourlet wrote

Ceci nous prouve que le théorème de M me de Kowalewski ne démontre pas
l’existence des intégrales dans tous les cas où, dans le système à intégrer, le
nombre des équations est égal au nombre des fonctions inconnues. Dans son
Mémoire (Journal de Crelle, t. 80, pp. 25) M me de Kowalewski suppose que
cette transformation soit possible en faisant, d’ailleurs, remarquer qu’elle ne
peut assurer que cela soit toujours possible.

This shows that Mme. de Kowalewski’s theorem does not establish the existence
of the integrals in all the cases when, in the system to integrate, the number of
equations and the number of unknown functions are equal. In her article (Crelle,
vol. 80, pp. 25), Mme. de Kowalewski supposes that such a transformation is
possible, while making a remark that, in any case, she cannot ensure that this is
always possible.

The generalization of the Cauchy–Kowalevsky theorem to wider classes of linear
PDE systems was at the origin of the works of C. Méray, É. Delassus, Ch. Riquier as
explained in the next section. It was Janet who obtained a computational method to
reach normal formof linear PDE systems for a class of systems satisfying a reducibility
property recalled in Sect. 7.6.

2.3 Grassman’s differential rule

In 1844, Hermann Günther Grassmann exhibited the rules of the exterior algebra
computation in his book (Grassmann 1844) on linear algebra, that is a relation of the
type

ab = −ba.

Although this kindof relationwas implicitly used in the computation of the determinant
of a square matrix, as in a work of Carl Jacobi (cf. Jacobi 1827), this approach was
too abstract for the first half of the nineteenth century.

CesareBurali–Forti extensively applied thisGrassmann’s rule to elementaryGeom-
etry, in Burali-Forti (1897), but had not treated what are now called differential forms.
It was É. Cartan in 1899 (Cartan 1899)who introducedGrassmann’s rule in differential
calculus. This algebraic calculus allowed him to describe a PDE system by an exterior
differential system which is independent of the choice of coordinates. This led to the
so-called Cartan–Kähler theory, which is another motivation for the formal methods
introduced by Janet for analysis on linear PDE systems. We refer the reader to Katz
(1985) for the impact, in many fields of mathematics, of the introduction of Cartan’s
differential forms. See, Kähler (1934) and Cogliati (2011) for historical accounts of
the Cartan–Kähler theory and Griffiths (1983) and Bryant et al. (1991) for exposition
of this theory in modern language.
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3 Emergence of formal methods for linear PDE systems

The Cauchy–Kowalevsky theorem gives conditions for the existence of solutions of
the PDE system defined by (4) and satisfying some initial conditions. Generalizations
of this result to wider classes of linear PDE systems were investigated in France by
Charles Méray Ch. Riquier and É. Delassus during the period 1880–1900. The first
works in this direction seem to be those of a collaboration betweenMéray and Riquier
(1889, 1890). In the first of a series of three articles on the subject (Riquier 1893),
Ch. Riquier noted that a very small number of authors had, at that time, addressed
the existence of integrals in a differential system involving any number of unknown
functions and independent variables.

3.1 Principal and parametric derivatives

In the beginning of 1890s, following a collaboration with Ch. Méray, Ch. Riquier
initiated his research on finding normal forms of systems of (infinitely many) PDE for
finitely many unknown functions with finitely many independent variables. Ch.Méray
and Ch. Riquier in Méray and Riquier (1890) analyzed S. Kowalevsky’s proof in
Kowalevsky (1875) with the objective of reducing a PDE to some notion of normal
form. It may be regarded as the first algorithmic method applied to the analysis of
PDE systems. They introduced the concept of principal and parametric derivatives,
allowing them to make inductive arguments on sets of derivatives without having an
explicit total order on these sets. They formulated this notion as follows (Méray and
Riquier 1890, §2):

Dans un système d’équations différentielles partielles, il y a, relativement à
chaque fonction inconnue, une distinction essentielle à faire entre les diverses
variables indépendantes. Nous appellerons variables principales d’une fonction
inconnue déterminée celles par rapport auxquelles sont prises les dérivées de
cette fonction qui constituent dans le Tableau du système les premiers membres
des équations de la colonne correspondante. Pour la même fonction, toutes les
autres variables seront paramétriques.

In a system of partial differential equations, for each unknown function, there is,
for each unknown function, an essential distinction to make between the various
independent variables. We shall call the principal variables of an unknown
function determined with respect to which the derivatives of this function are
taken, that form the first members of the equations in the corresponding column
in the table of the system. For the same function, all of the other variables are
parametric.

Thenotions of principal and parametric derivatives as appearing inMéray–Riquier’s
work were not formally exposed inMéray and Riquier (1890). These notions would be
formalized later by Janet in the elaboration of an algorithmic process for the computa-
tion of the normal form of a linear PDE system. We will present the Janet formulation
of these derivatives in Sect. 7.
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3.2 The notion of cote

Ch. Riquier noted in Riquier (1893) that the computation of normal forms for a PDE
system requires defining a total order on the derivatives. In this direction, he introduced
the notion of cote on derivatives in Riquier (1893, pp. 66–67), the first of a series of
three articles published in a same volume of Annales Scientifiques de l’École Normale
Supérieure.

Désignant par
(1) x , y, . . .
les variables indépendantes, et par
(2) u, r , . . .
les fonctions inconnues d’un système différentiel quelconque, faisons correspon-
dre à chacune des quantités (1), (2) p entiers, positifs, nuls ou négatifs, que nous
nommerons respectivement cote première, cote seconde, ..., cote pième de cette
quantité. Considérant ensuite une dérivée quelconque de l’une des fonctions
inconnues, et désignant par q un terme pris à volonté dans la suite 1, 2, . . . , p,
nommons cote qième de la dérivée en question l’entier obtenu en ajoutant à la
cote qième de la fonction inconnue les cotes homologues de toutes les variables
de différentiation, distinctes ou non.

Denoting by
(1) x , y, . . .
the independent variables, and by
(2) u, r , . . .
the unknown functions of any differential system, we make correspond to each

of the quantities (1), (2) p integers, positive, zero or negative, that we call,
respectively, the first « cote », second « cote », . . ., p-th « cote » of this quantity.
Then, considering any derivative of an unknown function, and denoting by q
a term taken freely from the sequence 1, 2, . . . , p, call the q-th « cote » of the
derivative in question the integer obtained by adding the homologous « cote » of
all of the variables, either distinct or not, of differentiation to the q-th « cote »
of the unknown function.

However, a complete algebraic formalization of this notion of cote was not obtained
until 1929 by Janet (1929, §40), which we will recall in Sect. 7.2. Moreover, he
integrated the notions of principal and parametric derivatives into a more general
theory of orders on sets of derivatives (Janet 1929, Chapter II). The definitions for
monomial orders given by Janet clarified the same notion previously introduced by
Ch. Riquier (1893). In particular, Janet made the notion of parametric and principal
derivatives more explicit in order to distinguish the leading derivative in a polynomial
PDE. In this way, he extended his algorithms on monomial PDE systems to the case
of polynomial PDE systems. In particular, using these notions, he defined the property
of completeness for a polynomial PDE system. Namely, a polynomial PDE system
is complete if the associated set of monomials corresponding to leading derivatives
of the system is complete. Moreover, he also extended the notion of complementary
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monomials to define the notion of initial conditions for a polynomial PDE system as
in the monomial case.

Finally, let us mention that Ch. Riquier summarized known results on PDE systems
in several books: Riquier (1910) for PDE systems, Riquier (1928) for techniques of
estimation.

3.3 A finiteness result

In 1894, Arthur Tresse showed, as a preliminary result in the article (Tresse 1894) on
differential invariant theory, that PDE systems can be always reduced to systems of
finitely many PDE. This is the first finiteness result relating to a module over a ring
of differential operators. In particular, he showed in Tresse (1894, Chap. I, Thm I) the
following finiteness result:

Un système d’équations aux dérivées partielles étant défini d’une manière quel-
conque, ce système est nécessairement limité, c’est-à-dire qu’il existe un ordre
fini s, tel que, toutes les équations d’ordre supérieur à s que comprend le sys-
tème, se déduisent par de simples différentiations des équations d’ordre égal ou
inférieur à s.

As a system of PDF might be defined arbitrarily, this system is necessarily
limited, i.e., there exists a finite order, say s, such that all of the equations of
order more than s in the system can be deduced from simple differentiations of
the equations whose order is less than or equal to s.

3.4 Toward amore general normal form for PDE

Using the finiteness result of A. Tresse, in Delassus (1896) É. Delassus formalized and
simplified„ Riquier’s theory. In theseworks, one already finds an algorithmic approach
to analysing ideals of the ring K[ ∂

∂x1
, . . . , ∂

∂xn
]. É. Delassus wrote (Delassus 1896,

pp. 422–423):

La solution du problème dépend de la recherche d’une forme canonique
générale. M. Riquier, en faisant correspondre aux variables et aux inconnues des
nombres entiers qu’il appelle cotes premières, cotes secondes, etc., est conduit à
définir des systèmes orthonomes qu’il prend pour base de tous ses raisonnements.
Il montre que tout système d’équations aux dérivées partielles peut se ramener
à un système orthonome passif linéaire et du premier ordre. Dans de tels sys-
tèmes, la formation par différentiation de toutes les équations, jusque à l’ordre
infini, permet de séparer les dérivées des fonctions inconnues en deux classes, les
unes étant principales et les autres paramétriques, et M. Riquier montre qu’en
se donnant arbitrairement les valeurs initiales des dérivées paramétriques, on
peut reconstruire les développements en séries des intégrales cherchées et que
ces développements sont convergents.
Ces résultats sont établis en toute rigueur par M. Riquier, mais la démonstration,
qu’il en donne, non seulement est très compliquée, mais est bien artificielle à
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cause de l’introduction de ces cotes qui interviennent d’une façon bien bizarre
dans la question. Ceci justifierait déjà la publication de ce Travail où les résultats
de M. Riquier sont retrouvés d’une façon beaucoup plus naturelle et plus simple
en suivant une voie tout à fait différente; mais il y a plus, c’est que le Mémoire
de M. Riquier n’a pas résolu la question aussi complètement qu’il est possible
de le faire.

The solution of the problem depends on how to find a general canonical
form. By making correspond to variables and to unknown functions inte-
gers called first « cote », second « cote » etc., Mr. Riquier is led to define the
« système orthonome » which he takes as the base of his arguments. He shows
that any system of partial differential equations can be reduced to a first-ordered
passive linear « système orthonome ». In such systems, adding differentiations
of all of the equations, up to infinite order, allows one to separate the derivatives
of the unknown functions into two classes, the one being principal and the other
parametric. Mr. Riquier shows that given any initial values to the parametric
derivatives, one can reconstruct the (formal) series expansion of the integrals
we are looking for and that such series are convergent.
These results are established completely rigorously by Mr. Riquier, but the proof
is not only very complicated but is quite artificial owing to the introduction of
these « cote » which play a quite strange role in the question. This already may
justify the publication of this work where the results of Mr. Riquier are recovered
in a much more simple and natural way following a totally different path. But
there is more, that is, the article of Mr. Riquier does not resolve the question as
completely as can be done.

Ch. Riquier answered to É. Delassus in Riquier (1897, pp. 424):

Je m’étonne d’avoir été aussi peu compris. Que M. Delassus, retrouvant les
résultats que j’ai le premier obtenus, estime y être arrivé par une voie plus simple,
c’est une croyance que je m’explique chez lui, bien que je ne la partage pas, et
que ses démonstrations me paraissent tout aussi compliquées que les miennes.
Libre encore à M. Delassus de trouver «bizarre» l’attribution de cotes entières
aux variables et aux inconnues, bien que cette idée ne me semble pas, à moi, plus
singulière que celle de les ranger, comme il le fait, dans un ordre déterminé. Mais
lorsqu’il soutient, et c’est là le point important de sa critique, que je n’ai pas
résolu la question d’une manière complète, et qu’il est impossible, en suivant ma
méthode, d’apercevoir « comment on pourrait grouper les coefficients arbitraires
des développements des intégrales pour former des fonctions arbitraires, en
nombre fini, ayant avec ces dernières des relations simples », je ne puis, sans
protester, laisser passer de semblables affirmations.

I am surprised I was so little understood. Mr. Delassus, recovering the results
that I was the first to obtain, believes that he arrived at the results in a much
simpler way, this is what I believe that I understand of him, even if I don’t
really think so and his proofs seem quite as complicated as mine. M. Delassus is
free to find strange, the attribution of total « cote » to the variables and unknown
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functions, even though this idea seems to me no more singular than to order them,
as he does, in a fixed order. But when he supports (his theory), and this is the
important point in his criticism, that I did not solved the question in a complete
manner, and that, by following my method, it is impossible to see “how can one
group all of the arbitrary coefficients of the series expansion of the integrals to
form any function, in a finite number (of steps), having simple relations with
these coefficients”, I could not ignore similar affirmations without protesting.

Apart from works of Ch. Riquier and É. Delassus, there had not been significant
progress on the computation of normal forms for linear PDE systems.However, several
monographs appeared on the topic and had a great influence on the community in
the beginning of twentieth-century: Forsyth (1890), Weber (1900), Goursat (1922),
Riquier (1910). The research of new methods to compute normal forms of linear PDE
systems was taken up by Janet in the period 1920–1930.

4 Algebraisation of monomial PDE systems

The computational approach to reach normal forms for linear PDE systems in the work
of Ch. Riquier and É. Delassus was not complete. The thesis of Janet provides a major
contribution to the algebraisation of the problem considered by Ch. Riquier and É.
Delassus by introducing an algorithmicmethod to compute normal formsof linear PDE
systems. The procedure is based on a computation on a family ofmonomials associated
with the PDE system. Finiteness properties on the set of monomials guarantee the
termination of the procedure. In this section, we recall these constructions introduce
by Janet. We recall also the results known by Janet on finiteness properties on set of
monomials. In Sect. 7.3, we will show how the results on monomials can be used to
treat the general case of linear PDE systems.

4.1 Monomial partial differential equation systems

In his thesis (Janet 1920a), Janet considered monomial PDE, that is PDE of the fol-
lowing form

∂α1+α2+...+αn ϕ

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

= fα1α2...αn (x1, x2, . . . , xn), (5)

where ϕ is an unknown function and the fα1α2...αn are analytic functions in several
variables. His objectivewas to compute an analytic functionϕ which is a solution of the
system. He considered this problem, using an original algebraic approach, by seeing
the differentiation operation as a multiplication operation on monomials. Tacitly, he
used the ring isomorphism from the ring of polynomials in several variables with
coefficients in an arbitrary field K to the ring of differential operators with constant
coefficients. Note that, this isomorphism was established explicitly more than fifteen
years later by W. Gröbner (1937, pp. 128) in a modern algebraic language as follows:
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Jedem Polynom p(x) ⊂ Pn ordnen wir eineindeutig einen Differentialoperator
p

(
∂
∂x

)
zu, indem wir einfach die einzelnen Potenzprodukte xi1

1 · · · xin
n in p(x)

durch die Symbole ∂ i

∂x
i1
1 ···∂xin

n
, (i = i1 + i2 + · · · + in) ersetzen, was kurz durch

p(x) ↔ p
(

∂
∂x

)
angedeutet sei.

Ist auβerdem auch q(x) ↔ q
(

∂
∂x

)
, so folgt leicht

p(x) + q(x) ↔ p

(
∂

∂x

)
+ q

(
∂

∂x

)

p(x) · q(x) ↔ p

(
∂

∂x

)
· q

(
∂

∂x

)

Da bei dieser Zuordnung der Grundkörper K elementweise festbleibt, unter-

scheiden sich die beiden BereichePn = K [x1, · · · , xn]und Dn = K
[

∂
∂x1

, · · · , ∂
∂xn

]

nur durch die verschiedene Bezeichnung ihrer transzendenten Elemente, sind
also isomorph.

We assign each polynomial p(x) ⊂ Pn to a differential operator p
(

∂
∂x

)
, by

simply replacing a monomial xi1
1 · · · xin

n (appearing) in p(x) with the symbol
∂ i

∂x
i1
1 ···∂xin

n
, (i = i1+ i2+· · ·+ in), which is shortly expressed as p(x) ↔ p

(
∂
∂x

)
.

If there is also q(x) ↔ q
(

∂
∂x

)
, it follows easily that

p(x) + q(x) ↔ p

(
∂

∂x

)
+ q

(
∂

∂x

)

p(x) · q(x) ↔ p

(
∂

∂x

)
· q

(
∂

∂x

)

Since this assignment fixes the ground field K , the two sets Pn = K [x1, · · · , xn]
and Dn = K

[
∂

∂x1
, · · · , ∂

∂xn

]
differ only in the different names of their transcen-

dental elements, they are isomorphic.

In this article, we will denote by

� : K[x1, . . . , xn] −→ K

[
∂

∂x1
, . . . ,

∂

∂xn

]
,

the aforementioned ring isomorphism given explicitely by W. Gröbner from the ring
of polynomials with n-variables to the ring of differential operators with constant
coefficients. Janet considered monomials in the variables x1, . . . , xn and implicitly
used the isomorphism �. In this way, he associated a monomial xα1

1 xα2
2 . . . xαn

n to the
differential operator

∂α1+α2+...+αn

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

.
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In his thesis (Janet 1920a, Chapitre I), Janet considered monomial PDE systems, that
is those whose equations are of the form (5), and which have finitely many such
equations. Such a system can be written as the following family:

(	)
∂α1+α2+...+αn ϕ

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

= fα1,...,αn (x1, x2, . . . , xn), (α1, . . . , αn) ∈ I , (6)

where ϕ is an unknown function and the fα1,...,αn are analytic functions in several
variables, and indexed by a finite subset I of N

n .

4.2 Finiteness properties onmonomials

Using the ring isomorphism � defined above, Janet associated a PDE system (	) of
the form (6) to the set lm(	) of monomials defined as follows

lm(	) = { xα1
1 . . . xαn

n | (α1, . . . , αn) ∈ I }.

In his hypotheses, Janet excluded the case in which the system has an infinite number
of equations. Indeed, there are finiteness results that he stated as the Théorème général
sur certaines suites de monomes (Janet 1920b, §1):

Une suite des monomes M1, M2, . . . telle que chacun d’entre eux n’est multiple
d’aucun des précédents ne comprend qu’un nombre fini de monomes.

A sequence of monomials M1, M2, . . . such that each monomial is not a multiple
of any preceding one contains only a finite number of monomials.

He proved this theorem by induction on the number of variables constituting the
monomials. Janet considered these finiteness properties with the objective of giving
an inductive form to his constructions. Note that the finiteness result on PDE systems
was already published in 1894 by Tresse (1894) and used by É. Delassus as exposed
in Sect. 3.4. However, the finiteness assumption in this context was formulated alge-
braically for the first time by Janet. This result had already been known by Leonard
Eugene Dickson (1913, Lemma A).

Lemma A. Any set S of functions of the type

F = xe1
1 xe2

2 . . . xen
n , (ei ’s integers � 0) (1)

contains a finite number of functions F1, . . . , Fk such that each function F of
the set S can be expressed as a product Fi f , where f is of the form (1), but is
not necessarily in the set S.

This result was published in 1913 in an article on number theory in the American
journalAmerican Journal of Mathematics, but due to the FirstWorldWar, it would take
a long time before these works were accessible to French mathematical community.
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The results presented by Janet in his thesis follow those of Ch. Riquier, with an orig-
inal algebraic formulation. The new algebraic approach to this well-studied problem
in PDE systems proposed by Janet was made possible by the influence of the German
mathematical school on the academic development of Janet. In the introduction of his
thesis (Janet 1920a, Introduction §2), he presented his contribution as follows:

Le présent travail a pour objet essentiel l’exposition simple des résultats de M.
Riquier. Cette exposition nous conduira naturellement à certains résultats de
nature algébrique qui complètent la théorie des formes donnée par M. Hilbert.

The main purpose of this work is a simple presentation of the results of Mr.
Riquier. This exposition leads us naturally to certain results of algebraic nature
which complete the theory of polynomials given by Mr. Hilbert.

Here, Janet mentions the finiteness result of D. Hilbert on what we today call
the Noetherian character of the polynomial ring over a Noetherian ring, now called
Hilbert’s basis theorem and published in Hilbert (1890).

4.3 On algebraic finiteness properties

The constructions of Janet are based on some remarkable properties on monomial
ideals that he developed in his thesis (Janet 1920a) and published in Janet (1920b, c).
In particular, as explained above, he gave another formulation of Dickson’s Lemma
on the finiteness of generating sets of monomial ideals. This finiteness property is
essential for Noetherian properties on the set of monomials. Note that Janet was not
familiar with the axiomatisation of the algebraic structure of ideal and the property of
Noetherianity introduced by E. Noether at the same time in Noether (1921, 1923).

The finiteness property Théorème général sur certaines suites de monomes recalled
above was formulated by Janet by introducing the property, of a family of monomials
U , of being multiplicatively stable, which means that U is closed under multiplication
by monomials inM(x1, . . . , xn). By this finiteness property, if U is a multiplicatively
stable, then it contains only finitely many elements which are not multiples of any
other elements in U . Hence, there exists a finite subset U f of U such that for any u in
U , there exists u f in U f such that u f divides u. From the finiteness property, Janet
deduced the ascending chain condition on multiplicatively stable monomial sets that
he formulated as follows. Any ascending sequence of multiplicatively stable subsets
of M(x1, . . . , xn)

U1 ⊂ U2 ⊂ . . . ⊂ Uk ⊂ . . .

is finite. This corresponds to the Noetherian property introduced by E. Noether (1921,
§1) in the following terms

Satz I (Satz von der endlichen Kette): Ist M,M1,M2, …,Mν , …ein abzählbar
unendliches System von Idealen in 	, von denen jedes durch das folgende teilbar
ist, so sind von einem endlichen Index n an alle Ideale identisch,Mn = Mn+1 =
. . . M. a.W.: Bildet M, M1, M2, …, Mν , …eine einfach geordnete Kette von
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Idealen derart, daβ jedes Ideal ein echter Teiler des unmittelbar vorangehenden
ist, so bricht die Kette im EndIichen ab.

Theorem I (theorem of finite chain): Let M, M1, M2, …, Mν , …be a system
of countably infinite ideals in 	, each of which is divisible by the next ideal.
Then, there exists a finite index n from which all of the ideals are identical,
Mn = Mn+1 = . . . In other words, let us form M, M1, M2, …, Mν , …a
simply ordered chain of ideals as above so that each ideal is divisible by the next
ideal, then the chain stops after a finite number of steps.

4.4 On the notion of module

Throughout his work on the analysis of PDE and until his monograph (Janet 1929)
appeared in 1929, Janet developed computational methods to deal with monomials
and polynomials over a field. Nowadays, these methods are known and developed in
the language of ideals. The use of a formal definition of the notion of ideal appeared
progressively in the series of Janet’s works on formal analysis of linear PDE systems
(Janet 1920a, 1921, 1925). Note that, at this time, Janet knew only the structure of
ideal of the ring of integers of number field. The first formulation of the structure of
ideal appeared in the series of articles by Dedekind (1877), see also Lejeune-Dirichlet
(1894, §177). Hilbert investigated in a systematic way the notion of ideal of a ring
of commutative polynomials of several variables in a seminal paper (Hilbert 1890)
under the terminology of algebraic forms. In particular, he proved such results as the
ring of polynomials over a field is Noetherian, now called Hilbert’s basis theorem.
Notice that N. M. Gunther dealt with such a structure in Günther (1913). The modern
algebraic formulation of the notion of ideal over a general commutative ring was only
introduced in 1921 by Noether (1921).

In the case of monomial PDE systems, Janet explained his constructions without
using the structure of monomial ideal in the sense of an ideal generated by monomials.
Instead, his results are formulated using the notion of multiplicative cone. In his thesis
(Janet 1920b, Chapter I, §3), Janet defined the notion of module de monomes (module
of monomials) by specifying its finiteness properties.

Nous dirons qu’un système de monomes forme un module si tout multiple d’un
de ces monomes appartient au système. Un module est toujours constitué par
les multiples d’un nombre fini de monomes. Nous dirons quelquefois que ces
monomes forment une base pour le module.

We say that a system of monomials constitutes a «module» if any multiple of
one of these monomials belongs to the system. A module always consists of
the multiples of a finite number of monomials. We sometimes say that these
monomials form a base of the module.

In this note, module de monomes will be called multiplicative cone, and this notion
will be presented in the next section.

In an article published in 1924 (Janet 1924), Janet used the notion of algebraic
form, introduced by Hilbert, in his study of linear polynomial PDE systems, that is
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a PDE system where each equation is defined by a polynomial in partial differential
operators. In this polynomial situation, he used the structure of polynomial ideal as
D. Hilbert did. Indeed, following the approach developed by D. Hilbert (1890, IV.
Die charakteristische Function eines Moduls), Janet recalled in (Janet 1929, Chapter
III, §52) the definition of polynome caractéristique ou la postulation of the module of
forms of a polynomial PDE system. In modern language, this polynomial corresponds
to the coefficients of the Hilbert series of the ideal generated by a polynomial PDE
system.He used suchHilbert series to define the property of involutivity on polynomial
PDE systems in Chapter III of hismonograph. In addition to his work on the solvability
of linear PDE systems, in a series of publications (Janet 1913a, 1922, 1924), Janet
studied the notion of character and involutivity of linear PDE systems. We do not
develop the results obtained by Janet in this direction.

5 Janet’s completion procedure

We present the main algorithmic ingredient in the construction of Janet, namely the
completion procedure of a set of monomials with respect the notion of multiplicative
variable. The completeness property is formulated using the notion of multiplicative
cone and thus can be characterized using the notion of involutive division. In this
section, we recall these constructions of Janet on a set of monomials, which were
mainly introduced in the memoir of his thesis.

5.1 Multiplicative cone of a set of monomials

For a finite set U of monomials in variables x1, . . . , xn , Janet gave an inductive con-
struction of the multiplicative cone(U) generated by U , that is the set of monomials
u such that there exists u′ in U that divides u. With the objective of introducing the
involutive cone of a set of monomials as a refinement of the multiplicative cone, Janet
gave an inductive construction of cone(U) as follows. First, he defined, for every
0 ≤ αn ≤ degn(U),

[αn] = {u ∈ U | degn(u) = αn },

in such a way, that the family ([0], . . . , [degn(U)]) forms a partition of U . By setting,
for every 0 ≤ αn ≤ degn(U),

[αn] = {u ∈ M(x1, . . . , xn−1) | uxαn
n ∈ U },

he defined for every 0 ≤ i ≤ degn(U)

U ′
i =

⋃

0≤αn≤i

{u ∈ M(x1, . . . , xn−1) | there exists u′ ∈ [αn] such that u′|uxαn
n }.
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By denoting

Uk =
{

{ uxk
n | u ∈ U ′

k } if k < degn(U),

{ uxk
n | u ∈ U ′

degn(U)
} if k ≥ degn(U).

he constructed the multiplicative cone(U) as the set
⋃

k≥0
Uk .

5.2 The notion of multiplicative variable

In 1920, Janet introduced the notion of multiplicative variable, see Janet (1920b, §7)
and Janet (1920c, §1). In Janet (1920c), he wrote

Soit un système formé d’un nombre fini de monomes (M) à n variables
x1, x2, . . . , xn ; xi sera dite multiplicatrice pour M = xαn

n xαn−1
n−1 . . . xα1

1 dans
le système (M) si parmi les (M) où xn, xn−1, . . . , xi+1 ont les exposants
αn, αn−1, . . . , αi+1, il n’y en a pas où xi ait un exposant supérieur à αi ; on
dira qu’un monome provient de M s’il est le produit de M par un monome ne
contenant que des variables multiplicatrices de M .

Let (M) be a system made of a finite number of monomials of n vari-
ables x1, x2, . . . , xn ; xi will be multiplicative for M = xαn

n xαn−1
n−1 . . . xα1

1 in
the system (M) if among (M) where the exponents of xn, xn−1, . . . , xi+1 are
αn, αn−1, . . . , αi+1 there is no monomial where xi has an exponent greater than
αi ; we say that a monomial comes from M if it is the product of M with a
monomial which contains only multiplicative variables of M .

This definition can be expanded as follows. Given a finite set U of monomials in
the variables x1, . . . , xn , we define, for all 1 ≤ i ≤ n, the following subset of U :

[αi , . . . , αn] = {u ∈ U | deg j (u) = α j for all i ≤ j ≤ n}.

That is [αi , . . . , αn] contains monomials of U of the form vxαi
i . . . xαn

n , with v in
M(x1, . . . , xi−1). The sets [αi , . . . , αn], for αi , . . . , αn in N, form a partition of U .
Moreover, for all 1 ≤ i ≤ n − 1, we have [αi , αi+1, . . . , αn] ⊆ [αi+1, . . . , αn] and
the sets [αi , . . . , αn], where αi ∈ N, form a partition of [αi+1, . . . , αn].

The variable xn is said to be multiplicative for a monomial u in U , if degn(u) =
degn(U). For i ≤ n − 1, the variable xi is said to be multiplicative for u if

u ∈ [αi+1, . . . , αn] and degi (u) = degi ([αi+1, . . . , αn]).

Wewill denote byMultUJ (u) the set of multiplicative variables of u with respect to the
setU . The set of non-multiplicative variables of u with respect to the set U , denoted by
NMultUJ (u), is defined as the complementary set of MultUJ (u) in the set {x1, . . . , xn}.

The notion of multiplicative variable is local in the sense that it is defined with
respect to a subset U of the set of all monomials. A monomial u in U is said to be a
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Janet divisor of a monomialw with respect toU , ifw = uv and all variables occurring
in v are multiplicative with respect to U . In this way, we distinguish the set coneJ (U)

of monomials having a Janet divisor in U , called J -multiplicative or involutive cone
of U , from the set cone(U) of multiple of monomials in U for the classical division.
Explicitly, the involutive cone is defined by

coneJ (U) =
⋃

u∈U
{ uv | v ∈ M(MultUJ (u)) }.

5.3 Completeness of a set of monomials

Janet introduced, in Janet (1920c, §1), the notion of completeness of a set of mono-
mials:

Un monome ne peut provenir de deux monomes (M) différents. Pour que tout
multiple d’un monome du système provienne d’un de ces monomes, il faut et il
suffit qu’il en soit ainsi de tous les produits obtenus en multipliant un (M) par
une de ses variables non-multiplicatrices. Lorsque cette condition sera réalisée,
le système (M) sera dit complet.

A monomial cannot come from two different monomials in (M). Any multiple of
a monomial in the system is deduced from one of these monomials if and only if
any product of monomials obtained by multiplying a monomial in (M) with one
of its non-multiplicative variables is deduced from a monomial in (M). When
this condition is realized, the system (M) is said to be complete.

In this formulation, the meaning of «provenir» (come from) can be explained as
follows. A monomial v comes from a monomial u if v can be decomposed into a
product v = uw, where all the variables in w belong to MultUJ (u). In the above
formulation of completeness, the notion of involutive cone of a set of monomials U
appears implicitly. Janet division being a refinement of the classical division, the set
coneJ (U) is a subset of cone(U). Janet called a set of monomialsU complete precisely
when this inclusion is an equality, namely when the involutive cone is equal to the set
of all products uv of monomials such that u is in U and v is an arbitrary monomial.
He thus obtained a characterization of completeness of a finite set of monomials. He
proved, cf. Janet (1929, pp. 20), that a finite set U of monomials is complete if and
only if, for any u in U and any non-multiplicative variable x of u with respect to U ,
ux is in coneJ (U).

Using this characterization, Janet deduced in Janet (1929, pp. 21) a completion
procedure for any finite set U of monomials inM(x1, . . . , xn), whose principle con-
sists in adding monomials ux , for all u in U and x ∈ NMultUJ (u), such that ux is
not in coneJ (U) and iterating this process until the set contains no such ux with this
property.

With this constructive approach, he proved, cf. Janet (1929, pp. 21), that for any
finite set U of monomials there exists a finite complete set J (U) that contains U and
such cone(U) = cone(J (U)). Note that Janet does not give a proof of the termination
of the completion procedure.
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In order to illustrate this construction, let us recall an example from Janet (1929,
pp. 28). Consider U = { x3x22 , x33 x21 }. The following table gives the multiplicative
variables for the monomials of U :

x33 x21 x3 x2 x1
x3x22 x2 x1

The set U can then be completed as follows. The monomial (x3x22 )x3 is not in
coneJ (U); we set Ũ ← U ∪ {x23 x22 } and we compute the multiplicative variables
with respect to Ũ :

x33 x21 x3 x2 x1
x23 x22 x2 x1
x3x22 x2 x1

The monomial (x3x22 )x3 is in coneJ (Ũ), but (x23 x22 )x3 is not in coneJ (Ũ); we set
Ũ ← Ũ ∪ {x33 x22 }. The multiplicative variables of this new set of monomials are

x33 x22 x3 x2 x1
x33 x21 x3 x1
x23 x22 x2 x1
x3x22 x2 x1

The monomial (x33 x21 )x2 is not in coneJ (Ũ), the other products are in coneJ (Ũ), and
we prove that the system

Ũ = { x33 x21 , x3x22 , x23 x22 , x33 x22 , x33 x2x21 }

is complete, so J (U) = Ũ .

6 Initial value problem

Given an ideal generated by a set of monomials, Janet distinguished the family of
monomials contained in the ideal and those contained in the complement of the ideal.
The notion of multiplicative and non-multiplicative variables is used to stratify these
two families of monomials. This leads to a refinement of the classical division on
monomials. These constructions are based on the notion of complementary monomial
defined as follows.

6.1 Complementary monomials

The notion of complementary monomial appears for the first time in Janet (1920c, §1).
He wrote
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[...] étant donné un système quelconque de monomes (M), on est en posses-
sion d’un procédé régulier pour répartir respectivement : I o tous les monomes
multiples d’un M au moins ; 2o tous les autres monomes, en un nombre fini
d’ensembles sans éléments communs, les monomes d’un ensemble se déduisant
d’un monome déterminé en le multipliant par tous les monomes ne contenant
que certaines variables déterminées.

[...] given any system of monomials (M), one has a regular procedure to divide
respectively to: I o any multiple of at least one monomial in M ; 2o all of the other
monomials, to a finite number of sets without common elements, the monomials of
a set can be obtained from a given monomial by multiplying all of the monomials
containing only specific variables.

This notion wasmade explicit in Janet (1921, §2). The set of complementary mono-
mials of a set of monomials U is the set of monomials denoted by U⊥ defined by the
following disjoint union

U⊥ =
⋃

1≤i≤n

U⊥(i), (7)

where

U⊥(n) = {xβ
n | 0 ≤ β ≤ degn(U) and [β] = ∅},

and for every 1 ≤ i < n,

U⊥(i) = {
xβ

i xαi+1
i+1 . . . xαn

n

∣
∣ [αi+1, . . . , αn] �= ∅,

0 ≤ β < degi ([αi+1, . . . , αn]), [β, αi+1, . . . , αn] = ∅
}
.

For anymonomial u inU⊥, we define the set �MultU⊥
J (u) ofmultiplicative variables

for u with respect to complementary monomials in U⊥ as follows. If the monomial u
is in U⊥(n), we set

�MultU⊥(n)

J (u) = {x1, . . . , xn−1}.

For 1 ≤ i ≤ n − 1, for any monomial u in U⊥(i), there exists αi+1, . . . , αn such that
u ∈ [αi+1, . . . , αn]. Then,

�MultU⊥(i)

J (u) = {x1, . . . , xi−1} ∪ MultUJ ([αi+1, . . . , αn]).

Finally, for u in U⊥, there exists an unique 1 ≤ iu ≤ n such that u ∈ U⊥(iu). Then,
we set

�MultU⊥
J (u) = �MultU⊥(iu )

J (u).
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Wedefine the involutive cone of the complementary family of a familyU ofmonomials
as follows

cone�
J (U) =

⋃

u∈U⊥
{ uv | v ∈ M(�MultU⊥

J (u)) }.

Janet proved, cf. Janet (1929, pp. 18), that for any finite set U of monomials of
M(x1, . . . , xn), we have the following partition

M(x1, . . . , xn) = cone(U) � cone�
J (U). (8)

An other form of this equality in the case of polynomial ideals was proved by Francis
Sowerby Macaulay (1927).

6.2 The space of initial conditions

During the 1920s, Janet’s works are mainly concerned with the analysis of Cauchy’s
problems. That is, the problem of proving the existence and the uniqueness of solutions
for PDE systems under given initial conditions. In Janet (1921, 1925), he considered
the complete integrability problem of monomial PDE systems. In particular, in Janet
(1921, pp. 244) he formulated the problem as follows:

Proposons-nous de déterminer une fonction u telle que celles de ses dérivées qui
sont caractérisées par les monômes (M) d’un système complet donné soient des
fonctions données des n variables indépendantes x1, x2, . . . xn .Nous apercevons
immédiatement certaines conditions de possibilité du problème : à chacune
des identités M .xi = M .xα1

1 xα2
2 . . . xαn

n que mentionne la définition précédente
correspond une relation entre les fonctions auxquelles on cherche à égaler les
dérivées correspondant aux (M):

∂ f

∂xi
= ∂α1+α2+...+αn f

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

[conditions (I)]

(si du moins on suppose la continuité des dérivées de u que fait intervenir l’égalité
précédente).

Let us propose to determine a function u such that those of its derivatives
that are characterized by the monomials (M) of a given complete system
shall be the given functions of n independent variables x1, x2, . . . xn . We see
immediately certain conditions of possibilities of the problem: to each identity
M .xi = M .xα1

1 xα2
2 . . . xαn

n that mentions the precedent definition corresponds a
relation between the functions that we are searching for to make the equality of
the corresponding derivatives to (M):

∂ f

∂xi
= ∂α1+α2+...+αn f

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

[conditions (I)]
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(if at least we suppose the continuity of the derivatives of u that appear in above
equality).

In Janet (1925), Janet considered monomial PDE systems of the form (6), which he
supposed tobefinite using the arguments presented inSect. 4.2. InSect. 4.1,we recalled
the way in which Janet associated with each monomial xα in variables x1, . . . , xn a
differential operator Dα via the isomorphism �. In this way, to a monomial PDE
system (	) on variables x1, . . . , xn he associated a finite set lm(	) of monomials.
Using the completion procedure recalled in Sect. 5.3, he showed that any such set
lm(	) of monomials can be completed into a finite complete set J (lm(	)) having the
same multiplicative cone as lm(	).

Suppose that the set of monomials lm(	) is finite and complete. We have

cone(lm(	)) = coneJ (lm(	))

Thus, for anymonomialu of lm(	) andnon-multiplicative variable xi inNMultlm(	)

J (u),
there exists a decomposition

uxi = vw,

where v is in lm(	) andw belongs toM(Multlm(	)

J (v)). For any such decomposition,
it corresponds to a compatibility condition of the monomial PDE system (	), that is,
for u = xα , v = xβ and w = xγ with α, β and γ in N

n ,

∂ fα
∂xi

= Dγ fβ. (9)

This condition corresponds to the conditions (I) above-mentioned by Janet. Let us
denote by (C	) the set of all such compatibility conditions. Janet showed that with
the completeness hypothesis, this set of compatibility conditions is sufficient for the
monomial PDE system (	) to be integrable.

Let us consider the set lm(	)⊥ of complementary monomials of the finite complete
set lm(	). Suppose that the monomial PDE system (	) satisfies all the compatibility
conditions in (C	). Under this hypothesis, Janet associated with each monomial v =
xβ1
1 . . . xβn

n of lm(	)⊥ an analytic function

ϕβ1,...,βn (xi1 , . . . , xikv
),

where {xi1 , . . . , xikv
} =� Multlm(	)⊥

J (v). As a consequence of the decomposition (8),
the set of such analytic functions provides a compatible initial condition. In Janet
(1921, §7), he obtained the following solvability result:

Supposons que ces conditions (I) soient réalisées. Si le problème posé a une
solution, cette solution vérifie bien évidemment, en particulier, les équations
obtenues en annulant dans chacune des équations proposées les variables non
multiplicatrices du premier membre. Réciproquement, considérons une solution
des équations ainsi obtenues, je dis qu’elle est solution des équations proposées.
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Suppose that these conditions (I) are realized. If the given problem has a solu-
tion, this solution verifies evidently, in particular, the equations obtained by
eliminating, in each of the given equations, the non-multiplicative variables in
the left-hand side. Conversely, consider a solution of thus obtained equations, I
say that it is a solution of the given equations.

Using the notations above on complementary monomials, this result can be formu-
lated as follows.

Theorem 1 Let (	) be a finite monomial PDE system such that lm(	) is complete.
If (	) satisfies the compatibility conditions (C	), then it always admits a unique
solution with initial conditions given for any v = xβ1

1 . . . xβn
n in lm(	)⊥ by

∂β1+β2+...+βn ϕ

∂xβ1
1 ∂xβ2

2 . . . ∂xβn
n

∣∣∣∣∣
x j =0 ∀x j ∈�NMultlm(	)⊥

J (v)

= ϕβ1,...,βn (xi1 , . . . , xikv
),

where {xi1 , . . . , xikv
} =� Multlm(	)⊥

J (v).

6.3 An algorithmic approach to solvability for monomial PDE systems

With Theorem 1, Janet gave a solution to the Cauchy problem for a monomial PDE
system (	). To summarize Janet’s approach, the Cauchy problem for the system (	)

can be solved by the following steps.

(i) If the set lm(	) of leading monomials of (	) is complete,

– if all compatibility conditions in (C	) are satisfied, then the Cauchy problem
admits a solution,

– in the others cases, the system (	) is incompatible.

(ii) If the set lm(	) is not complete, then apply the step (i) to the completion of lm(	).

Without the completeness property, a monomial PDE system (	) may have
infinitely many compatibility conditions. With the algorithmic approach introduced
by Janet, these are reduced to a finite number of compatibility conditions of the form 9.
Indeed, it suffices to verify the conditions on a finite set that involutively generates the
set lm(	) of leading monomials of the PDE system (	).

7 Janet’s monomial order on derivatives

The main novelty in Janet’s monograph Leçons sur les systèmes d’équations aux
dérivées partielles, Janet (1929), published in 1929, is his treatment of the solvability
problem of linear PDE systems defined by polynomial equations. With the notion of
order defined with principal and parametric derivative, he gave an algebraic character-
ization of complete integrability conditions of such systems. He also used this order to
define a procedure that decides whether a given finite linear polynomial PDE system
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can be transformed into a completely integrable linear polynomial PDE system. The
solvability result presented in the previous section is based on a formulation of initial
conditions in terms of complementary monomials. In this way, the partition (8) is
essential in this approach. With a view to extending these construction to polynomial
PDE systems, Janet considered an order on derivatives defined using the notions of
principal and parametric derivative that take the partition (8) precisely into account.

7.1 Principal and parametric derivatives

In the 1929 monograph (Janet 1929), Janet extended Theorem 1 on the Cauchy prob-
lem for monomial PDE systems to polynomial PDE systems. He considered PDE
systems in analytic categories, namely those in which all unknown functions, coeffi-
cients and initial conditions are supposed to be analytic. The analyticity hypothesis
considered by Janet corresponds to the classical notion, namely a function is analytic
on a neighborhood of a point if it admits an analytic expression as a convergent series
on this neighborhood.

Janet obtained a generalization of the Cauchy–Kowalevsky theorem by defining
an order on the set of derivatives that is compatible with products. Orders with the
property of respecting the products corresponds to the notion of monomial order.
Such an order was first used by Gauss in the proof of the fundamental theorem of
symmetric polynomials with the lexicographic order. Monomial orders appeared also
in Paul Gordan’s proof of the Hilbert’s basis theorem published in Gordan (1893).
Finally, the notion of ideal with respect to lexicographic order appeared in the work
of F. S. Macaulay (1927).

As explained in Sect. 3, the notion of principal and parametric derivative emerged
in the works of Ch. Méray and Ch. Riquier in their work on solvability of linear PDE
systems in the period 1890–1910. These notions were reformulated in an appropriate
algebraic language by Janet. He presented a notion of order on derivatives in two
steps. First, he considered a lexicographic order on derivatives already defined by
É. Delassus (1896), using the terminology of anteriority and posteriority. He wrote
in Janet (1925, pp. 308–309):

Convenons de dire que si deux dérivées D, D′ de même ordre ont pour indice
respectivement α1, α2, ..., αn ; α′

1, α
′
2, . . . , α

′
n , D est postérieur ou antérieur à

D′ suivant que la première des différences α1 − α′
1, α2 − α′

2, . . . , αn − α′
n qui

n’est pas nulle est positive ou négative.

Let us say that, if two derivatives D, D′ of the same order have the indices
α1, α2, ..., αn ;α′

1, α
′
2, . . . , α

′
n , respectively, D is posterior or prior to D′ accord-

ing as the first difference α1 − α′
1, α2 − α′

2, . . . , αn − α′
n which is not zero is

positive or negative.

Note that, Janet reversed the definition of the notion of posteriority and anteriority.
Second, he defined the notion of principal derivative and parametric derivative with
respect to the lexicographic order previously defined. He wrote in Janet (1925, pp.
312):
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Considérons, pour simplifier un peu l’exposition, un système à une seule fonction
inconnue z ; convenons que si D, D′ sont deux dérivées d’ordres différents p,
p′, D est postérieure ou antérieure à D′ suivant que p est supérieur ou inférieur
à p′ ; adoptons d’autre part pour les dérivées d’un même ordre le classement
même qui a été défini plus haut. Soit (E) l’une quelconque des équations que
l’on peut déduire du système par dérivations et combinaisons ; résolvons-la
par rapport à la dernière des dérivées qui y entrent effectivement ; ce mode de
résolution distingue un certain nombre de dérivées de z, celles qui figurent dans
les premiers membres : nous les appellerons principales, toutes les autres seront
appelées paramétriques.

Let us consider, to simplify the explanation a little, a system with only one
unknown function z ; say that, if D, D′ are two different derivatives of different
order p, p′, D is posterior or prior to D′ according as p is greater than or less
than p′ ; and for the derivatives of the same order we adopt the same order as
defined above. Let (E) be any one of the equations that we can deduce from
the system by derivations and combinations; we solve it with respect to the last
derivatives contained in the equation ; this way of resolution distinguishes a
certain number of derivatives of z, those which appear in the left hand side: we
call them principal and all of the others are called parametric.

7.2 Weighted parametric and principal derivatives

The analysis of linear PDE systems is made with respect to a given order on the
set of monomials associated with derivatives. In order to specify the order to the
problem being studied, Janet generalized the order defined using the previous notion of
posteriority on derivatives by introducing some weights attached to the indeterminates
of the system. This weighted order is inspired by the notion of cote introduced by Ch.
Riquier (1893) and É. Delassus (1896), as mentioned in the historical context Sect. 2.
In his monograph, Janet first considered the degree lexicographic order (Janet 1929,
§22), formulated as follows:

(i) for |α| �= |β|, the derivative Dαϕ is called posterior (resp. anterior) to Dβϕ, if
|α| > |β| (resp. |α| < |β|),

(ii) for |α| = |β|, the derivative Dαϕ is called posterior (resp. anterior) to Dβϕ if the
first nonzero difference

αn − βn , αn−1 − βn−1 , . . . , α1 − β1,

is positive (resp. negative).

Let us consider the following equation:

Dϕ =
∑

i∈I

ai Diϕ + f , (10)
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where D and the Di are differential operators such that Diϕ is anterior to Dϕ for
all i in I . The derivative Dϕ and all its derivatives are called principal derivatives of
Eq. (10). All the other derivative of u are called parametric derivatives of Eq. (10).

Further generalization of these order relations was given by Janet by formulating
a new notion of cote, that corresponds to a parametrization of a weight order defined
as follows. Let us fix a positive integer s. We define a matrix of weight

C =
⎡

⎢
⎣

C1,1 . . . Cn,1
...

...

C1,s . . . Cn,s

⎤

⎥
⎦

that associates with each variable xi non-negative integers Ci,1, . . . , Ci,s , called the
s-weights of xi . This notion was called cote by Janet (1929, §22) following the termi-
nology introduced byRiquier (1910). For each derivative Dαϕ, with α = (α1, . . . , αn)

of an analytic function ϕ, we associate a s-weight �(C) = (�1, . . . , �s) where the �k

are defined by

�k =
n∑

i=1

αi Ci,k .

Given two monomial partial differential operators Dα and Dβ , we say that Dαϕ is
posterior (resp. anterior) to Dβϕ with respect to a weigh matrix C if

(i) |α| �= |β| and |α| > |β| (resp. |α| < |β|),
(ii) otherwise |α| = |β| and the first nonzero difference

�1 − �′
1, �2 − �′

2 , . . . , �s − �′
s,

is positive (resp. negative).

In this way, we define an order on the set of monomial partial derivatives, called
weight order. Note that, this notion generalizes the above lexicographic order defined
by Janet, that corresponds to the case Ci,k = δi+k,n+1.

7.3 Complete higher-order finite linear PDE systems

In Janet (1929, §39), Janet studied the solvability of the following PDE system of one
unknown function ϕ in which each equation is of the following form:

(	) Diϕ =
∑

j

ai, j Di, jϕ, i ∈ I , (11)

where all the functions ai, j are supposed analytic in a neighborhood of a point P in
C

n , and each equation is supposed to satisfy the following two conditions:

(i) Di, jϕ is anterior to Diϕ, for any i in I ,
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(ii) all the Di ’s for i in I are distinct.

Hedefined thenotionof principal derivative for such a systemby setting: the derivatives
Diϕ, for i in I , and all their derivatives, are called principal derivatives of the PDE
system (	) given in (11). Any other derivative of ϕ is called parametric derivative. In
this way, to the set of operators Di for i in I , he associated a set lm(	) of monomials
through the morphism � defined Sect. 4.1. The PDE system (	) is then said to be
complete if the set of monomials lm(	) is complete. Note that in Janet (1920b), Janet
introduced a completion procedure that transforms a finite linear PDE system into an
equivalent complete linear PDE system.

By definition, the set of principal derivatives corresponds to the multiplicative cone
of lm(	). Hence, when the system (	) is complete, the set of principal derivatives
corresponds to the involutive cone of lm(	). Having the partition

M(x1, . . . , xn) = cone(lm(	)) � cone�
J (lm(	)⊥),

the set of parametric derivatives of the complete system (	) corresponds to the invo-
lutive cone of the set lm(	)⊥ of complementary monomials of lm(	). To a monomial
xβ in lm(	)⊥, with β = (β1, . . . , βn) in N

n and

�Multlm(	)⊥
J (xβ) = {xi1 , . . . , xikβ

},

we associate an arbitrary analytic function ϕβ(xi1 , . . . , xikβ
). Using these functions,

Janet defined a initial condition:

(Cβ) Dβϕ
∣∣
x j =0 ∀x j ∈�NMultlm(	)⊥

J (xβ)
= ϕβ(xi1 , . . . , xikβ

).

Theorem 2 (Janet 1929, §39) If the PDE system (	) in (11) is complete, then it admits
at most one analytic solution satisfying the initial condition

{ (Cβ) | xβ ∈ lm(	)⊥ }. (12)

Note that this result does not prove the existence of a solution of the PDE system
(	). The existence of solutions is discussed in Sect. 7.5.

As we observed, the values of the parametric derivatives completely determine the
initial condition (12) That is, these derivatives parameterize the space of solutions of
the differential equation (11). This observation suggests the origin of the terminology
parametric derivative introduced by Ch. Méray and Ch. Riquier.

7.4 Linear PDE systems for several unknown functions

Janet extended the construction of initial conditions given above for one unknown
function to linear PDE systems on C

n with several unknown functions using a weight
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order. Consider a linear PDE system of m unknown analytic functions ϕ1, . . . , ϕm of
the following form

(	) Dαϕr =
∑

(β,s)∈Nn×{1,2,...,m}
ar ,s
α,β Dβϕs, α ∈ I r , (13)

for 1 ≤ r ≤ m, where I r is a finite subset of N
n and the ar ,s

α,β are analytic functions.
He defined a weight order in such a way that the system (13) can be expressed in the
form

(	) Dαϕr =
∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺wo Dαϕr

ar ,s
α,β Dβϕs, α ∈ I r , (14)

allowing him to formulate the notion of completeness of the system (	). Let
lm�wo(	, ϕr ) be the set of monomials associated with leading derivatives Dα of
all PDE in (	) such that α belongs to I r . The PDE system (	) is called complete
with respect to �wo, if for any 1 ≤ r ≤ m, lm�wo(	, ϕr ) is complete as a set of
monomials.

The question is to determine under which conditions the system (	) in (14) admits
a solution for any given initial condition. We suppose that (	) is complete, hence the
set of monomials lm�wo(	, ϕr ) = {xα | α ∈ I r }, which we will denote by Ur , is
complete for all 1 ≤ r ≤ m. The initial conditions for which the system admits at
most one solution are parametrized by the set U⊥

r of complementary monomials of
the set of monomials Ur . Explicitly, for 1 ≤ r ≤ m, to a monomial xβ in U⊥

r , with β

in N
n and �Mult

U⊥
r

J (xβ) = {xi1 , . . . , xikr
}, we associate an arbitrary analytic function

ϕβ,r (xi1 , . . . , xikr
).

Formulating initial condition as the following data:

(Cβ,r ) Dβϕr
∣
∣
x j =x0j ∀x j ∈�NMult

U⊥
r

J (xβ)
= ϕβ,r (xi1 , . . . , xikr

),

we set the initial condition of the system (	) in (13) to be the following set

⋃

1≤r≤m

{ Cβ,r | xβ ∈ U⊥
r }. (15)

Explaining that the proof is similar to the proof of Theorem 2, Janet announced the
following result.

Theorem 3 (Janet 1929, §40) If the PDE system (	) in (14) is complete with respect
to a weight order �wo, then it admits at most one analytic solution satisfying the initial
condition (15).
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7.5 Completely integrable systems

Given 1 ≤ r ≤ m and α ∈ I r , let xi be in NMultUr
J (xα) a non-multiplicative variable.

Let us differentiate the equation

Dαϕr =
∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺wo Dαϕr

ar ,s
α,β Dβϕs

by the partial derivative �(xi ) = ∂
∂xi

. We obtain the following PDE

�(xi )(Dαϕr ) =
∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺wo Dαϕr

(
∂ar ,s

α,β

∂xi
Dβϕs + ar ,s

α,β�(xi )(Dβϕs)

)

. (16)

Using the system (coneJ ,�wo(	)), we can rewrite the PDE (16) into a PDE formulated
in terms of parametric derivatives and independent variables. The set of monomials
Ur being complete, there exists α′ in N

n with xα′
in Ur and u inM(MultUr

J (xα′
)) such

that xi xα = uxα′
. Then, �(xi )Dα = �(u)Dα′

, and as a consequence we obtain the
following equation

∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺wo Dαϕr

(
∂ar ,s

α,β

∂xi
Dβϕs + ar ,s

α,β�(xi )(Dβϕs)

)

=
∑

(β ′,s)∈Nn×{1,2,...,m}
Dβ′

ϕs≺wo Dα′
ϕr

�(u)(ar ,s
α′,β ′ Dβ ′

ϕs). (17)

Using equations of the system (coneJ ,�wo(	)), we replace all principal derivatives
in Eq. (17) by parametric derivatives and independent variables. The order �wo being
well-founded, this process will terminate. Moreover, when the PDE system (	) is
complete, this reduction process is confluent in the sense that any transformation of
an Eq. (17) ends on a unique J -normal form. This set of J -normal forms is denoted
by IntCondJ ,�wo(	).

The system (	) being complete, any Eq. (17), is reduced to a unique normal form.
Such a normal form allows us to judge whether a given integrability condition is
trivial or not. Recall that the parametric derivatives correspond to the initial condi-
tions.Hence, a non-trivial relation in IntCondJ ,�wo(	) provides a non-trivial relation
among the initial conditions. In this way, we can decide whether the system (	) is
completely integrable or not. A complete linear PDE system (	) of the form (14) is
said to be completely integrable if it admits an analytic solution for any given initial
condition (15).
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Theorem 4 (Janet 1929, §42) Let (	) be a complete finite linear PDE system of the
form (14). Then, the system (	) is completely integrable if and only if any relation in
IntCondJ ,�wo(	) is a trivial identity.

A proof of this result is given in Janet (1929, §43). Note that the latter condition
is equivalent to saying that any relation (17) is an algebraic consequence of a PDE
equation of the system (coneJ ,�wo(	)).

7.6 The notion of canonical PDE system

In Janet (1929, §46), Janet introduced the notion of canonical linear PDE system. A
canonical system is a normal form with respect to a weight order on derivatives, and
satisfying some analytic conditions, allowing an extension of the Cauchy–Kowalevsky
theorem. Janet gave a procedure which transforms a finite linear PDE system with
several unknown functions into an equivalent linear PDE system that is either in
canonical form or in an incompatible system. Janet formulated its procedure as follows
(Janet 1929, §46),

Adoptons pour les variables indépendantes et les fonctions inconnues un système
de cotes tel que chacune des classes qui en résultent ne contienne qu’un élément;
[. . .]

Étant donné un système quelconque donné S, comprenant un nombre fini
d’équations, considérons la dernières �, des dérivées qui y entrent, c’est-à-
dire celle qui est postérieure à toutes les autres et résolvons par rapport à elle
une des équations du système qui la contiennent ; portons l’expression trouvée
dans les autres équations ; traitons le système obtenu qui ne contient pas �1
comme nous avons traité le système primitif, et ainsi de suite. Nous obtiendrons
finalement un système (	) d’équations résolues, chacune ne contenant dans son
second membre que des dérivées antérieures à son premier membre, les premiers
membres étant tous différents.
Formons les conditions d’intégrabilité complète (C) du système obtenu. Nous

obtiendrons des relations en nombre fini, ne contenant que les variables indépen-
dantes et les dérivées paramétriques, qui, si le système n’est pas complètement
intégrable, ne sont pas toutes des identités.
Résolvons ces relations comme nous avons résolu celles du système primi-

tivement donné S, et joignons les équations obtenues aux équations (	). Nous
obtenons un système (	′) formé encore d’équations résolues, chacune ne con-
tenant dans son second membre que des dérivées antérieures à son premier
membre, les premiers membres étant tous différents. Les premiers membres (�′)
de (	′) comprennent les premiers membres (�) de (	) et des dérivées qui ne
sont dérivées d’aucun des (�) puisque ce sont des dérivées paramétriques pour
(	). Nous traiterons 	′ comme nous avons traité 	, et ainsi de suite.
Je dis que l’opération ne peut se répéter qu’un nombre fini de fois.

For the independent variables and the unknown functions, adopt a system of
« cote » such that each class that is defined with respect to this system contains
only one element ;
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[. . .]
Given any system S, containing a finitely number of equations, consider the

last �, the derivatives contained in equations, namely, the derivatives that is
posterior to all other derivatives and solve one of the equations, containing
a derivative, with respect to the derivative ; keep the expression found in the
other equations, treat the obtained system which does not contain �1 as we
have treated the primitive system, and so on. Finally, we obtain a system (	) of
solved equations, each equation that contains in its right hand side only prior
derivatives with respect to its left hand side, the terms of the left hand sides of
all equations are different.
We form the complete integrability conditions (C) of the obtained system. We
obtain a finite number of relations, which only contain the independent variables
and the parametric derivatives, where, if the system is not completely integrable,
not all of the relations are identities.
Solve these relations as we solved for the primitively given system S, and join the
obtained equations to the equations (	). We will obtain a system (	′) formed by
solved equations, where in the second member, each equation containing only
the prior derivatives to its first member and the first members are all differ-
ent. The first members (�′) of (	′) contain the first members (�) of (	) and
the derivatives which are not derivatives of (�) because they are parametric
derivatives for (	). We will treat 	′ as we treated 	, and so on.
I claim that the operation can be repeated only finitely many times.

Let us formulate in the modern language explained in this article the notion of
canonical form so obtained by Janet. Given a fixed weight order �wo, we suppose
that each equation of a finite linear PDE system (	) can be expressed in the following
form

(	(α,r)) Dαϕr =
∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺wo Dαϕr

a(α,r)
(β,s) Dβϕs .

The support of the equation (	(α,r)) is defined by

Supp(	(α,r)) = { (β, s) | a(α,r)
(β,s) �= 0 }.

For 1 ≤ r ≤ m, consider the set of monomials lm�wo(	, ϕr ) corresponding to
leading derivatives, that is monomials xα such that (α, r) belongs to I . The system
(	) is said to be

(i) J -left-reduced with respect to �wo if for any (α, r) in I there is no (α′, r) in I and

non-trivial monomial xγ inM(Mult
lm�wo (	,ϕr )

J (xα′
)) such that xα = xγ xα′

,
(ii) J -right-reduced with respect to �wo if, for any (α, r) in I and any (β, s)

in Supp(	(α,r)), there is no (α′, s) in I and non-trivial monomial xγ in

M(Mult
lm�wo (	,ϕr )

J (xα′
)) such that xβ = xγ xα′

,
(iii) J -autoreduced with respect to �wo if it is both J -left-reduced and J -right-

reduced with respect to �wo.
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A PDE system (	) is said to be J -canonical with respect a weight order �wo if it
satisfies the following five conditions

(i) it consists of finitely many equations and each equation can be expressed in the
following form

Dαϕr =
∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺wo Dαϕr

a(α,r)
(β,s) Dβϕs,

(ii) the system (	) is J -autoreduced with respect to �wo,
(iii) the system (	) is complete,
(iv) the system (	) is completely integrable,
(v) the coefficients a(α,r)

(β,s) of the equations in (i) and the initial conditions of (	) are
analytic.

Under these assumptions, the system (	) admits a unique analytic solution satisfy-
ing appropriate initial conditions parametrized by complementary monomials. In his
monograph (Janet 1929), Janet did not mention the correctness of the procedures that
he introduced in order to reduce a finite linear PDE system to a canonical form. We
refer the reader to Iohara and Malbos (2020) for a more complete account on the Janet
procedure.
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