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Abstract We show that Dedekind, in his proof of the principle of definition by math-
ematical recursion, used implicitly both the concept of an inductive cone from an
inductive system of sets and that of the inductive limit of an inductive system of sets.
Moreover, we show that in Dedekind’s work on the foundations of mathematics one
can also find specific occurrences of various profound mathematical ideas in the fields
of universal algebra, category theory, the theory of primitive recursive mappings, and
set theory, which undoubtedly point towards the mathematics of twentieth and twenty-
first centuries.
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Es steht alles schon bei Dedekind. [Everything is already in Dedekind.]
Emmy Noether (van der Waerden 1975, p. 31)
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Permítaseme opinar aquí que la verdadera originalidad en todo saber es siempre
paradójicamente la “luz nueva” que engendra la asimilación cada vez más pro-
funda de los fundamentos, y no un amontonamiento (que empieza a sobrarnos)
de datos a la luz de lo ya conocido. [Let me here give my opinion that the real
originality in all knowledge is always paradoxically the “new light” engendered
by the increasingly profound assimilation of the foundations, and not an accu-
mulation (which begins to be more than enough) of data in the light of what is
already known.]

Juan B. Sancho Guimerá (Sancho Guimerá 1959, pp. 18–19)

Mathematical ideas do not live fully till they are presented clearly, and we never
quite achieve that ultimate clarity. Just as each generation of historians must
analyse the past again, so in the exact sciences we must in each period take up
the renewed struggle to present as clearly as we can the underlying ideas of
mathematics.

S. MacLane (MacLane 1970, p. 570)

1 Introduction

The present article aims to show that Dedekind (1888, §9) in his proof of the principle
of definition by mathematical recursion, used in an implicit way both the notion of
an inductive cone from an inductive system of sets and that of the inductive limit
of an inductive system of sets. As a consequence of this, the dictum of Noether:
“Everything is already in Dedekind” (van der Waerden 1975, p. 31), when praising
him in connection with her own innovations, would be partially confirmed once more.

In addition to the result just specified—which identifies the essential mathematical
constructs underlying the aforementioned proof—this article will also show that in
Dedekind (1888) there are also anticipations of some modern and profound mathe-
matical ideas in the fields of universal algebra, category theory, the theory of primitive
recursive mappings, and set theory.

Having described in broad terms the objectives to be attained in this article (see
below for further details), perhaps it is pertinent at this point to notice what Gray
(2000) remarks about the work done by Dedekind in his professional career and to
make a few comments connected with it.

Specifically, Gray (2000, pp. 107–108) wrote the following:

Dedekind contributedmuchmore tomathematics than his constructive definition
of the real numbers (“Dedekind’s cuts”, discovered in 1858 but only published
in Stetigkeit und irrationale Zahlen [1872]). The modern esteem in which this
work is held is entirely justified, butDedekind’s other achievements are generally
known only to specialists, not just because of their difficulty but, I fear, from an
exaggerated attention paid by historians and popularizers to the foundations of
mathematics. Dedekind did much more for mathematics than just arithmetizing
elementary analysis. He was a profound unifier of mathematics and one of the
creators of modern algebraic number theory; the concepts of ring, module, ideal,
field, and vector space are as much his contributions as anyone else’s.

123



The modernity of Dedekind’s anticipations. . . 101

Certainly, Dedekind did much more for mathematics than just arithmetizing ele-
mentary analysis by providing a set-theoretic definition of the complete ordered field
of the real numbers (in terms of the notion of “cut”, which is, ultimately, an order-
theoretical concept) which surely were, moreover, considered by Dedekind as free
creations of the human mind. Nevertheless, focusing on the program of arithmetiza-
tion of analysis, it should be mentioned that Dedekind, as well as other illustrious
proponents of the this program, by struggling against the domination of geometrical
intuition, placed the focus mainly on rigour, with regard to both the definition of the
basic mathematical concepts and the soundness of the mathematical proofs, but with-
out explicitly proposing any logical system. (Of course, this was not understood as a
harmonious relationship between two components: a proof-theoretical one, having to
do with the syntactical consequence relation, and a model-theoretical one, having to
do with the semantical consequence relation).

Actually, Dedekind was, together with Leopold Kronecker (and Ernst Kummer),
one of the builders of algebraic number theory; Dedekind used “ideals”, which have
a set-theoretic nature—and generalize the ideal numbers of Kummer—while Kro-
necker used “divisors”, which have a computational character. Along with his other
mathematical contributions (to name just a few, to Galois theory, characters of finite
Abelian groups, group determinant—essential in Georg Frobenius’s construction of
the theory of characters of nonabelian groups—lattice theory, and, in collaboration
with Heinrich Weber, to the theory of algebraic functions of a single variable), he
also provided a foundation for the natural numbers. This foundation was based, as
we would say in contemporary terminology, on the concept of Dedekind–Peano alge-
bra, or, equivalently, after the work of Lawvere (1964), on the principle of definition
by mathematical recursion.1 To this we add that, as also noted, e.g., by Gray (2000,
p. 108), Dedekind put a great deal of effort into editing Dirichlet’s lectures on the
theory of numbers (adding eleven substantial supplements), that he collaborated with
Weber in the edition of the works of Bernhard Riemann, and that he also edited some
of Gauss’s manuscripts on number theory for the edition of Gauss’s Werke.

Besides that, rephrasing what MacLane (1970, p. 570) wrote, inasmuch as a mathe-
matical idea is really profound, e.g., that of an inductive cone from an inductive system
of sets and that of the inductive limit of an inductive system of sets, it takes longer
to reach maturity and it does not live fully until it is presented clearly, and we never
quite achieve that ultimate clarity. Therefore, in mathematics in each epoch we must
take up the renewed struggle to present as clearly as we can the brilliant ideas of the
great mathematicians.

Moreover, Dedekind certainly was a profound unifier of mathematics since, para-
phrasing in this case what Sancho (1959, p. 18–19) wrote, the real originality of
Dedekind in the world of mathematics was always the “new light” engendered by
his increasingly profound assimilation of the foundations of mathematics; under the

1 We refer the reader to Sect. 3 for the equivalence between the Dedekind–Peano algebra axioms and Law-
vere’s Axiom 3 (Lawvere 1964, p. 1507). In this respect, it seems pertinent to point that the aforementioned
principle laid the groundwork, through the derived principle of primitive recursion with parameters and the
generalized composition of mappings, for Kurt Gödel to obtain, at the beginning of the 1930s, the set of all
primitive recursive mappings in his work on the incompleteness of certain mathematical theories (Gödel
1931).
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influence of Dirichlet, his underlying philosophy of mathematics and his mathemati-
cal trademark were the principles of “overcoming problems with a minimum of blind
calculation and a maximum of perceptive thought”, which were exactly the words
spoken by Minkowski (1905, p. 162–163) in a memorial lecture devoted to Dirichlet
when talking about “the other Dirichlet Principle”.

So that, although we fully agree with Gray (2000, pp. 107–108) concerning the
imbalance in favour of the research works devoted to Dedekind’s works on the
foundations of mathematics to the detriment of those devoted to Dedekind’s other
achievements, however we think that by paying some attention to Dedekind’s writing
on the foundations of arithmetic one can still, eventually, highlight somemathematical
things that have hitherto gone unnoticed.

Before proceeding to describe the contents of the ensuing sections of this article,
we recall that for Dedekind, as stated in the Preface to the First Edition of Dedekind
(1888), anyone possessing what is usually called good common sense has the mental
faculty to carry out “the long series of simple inferences corresponding to our step-by-
step understanding (Treppenverstandes)”. Moreover, Dedekind (1888) also considers,
in addition to themental faculty justmentioned, the followingmental faculties as basic.
(1) That “It very frequently happens that different things, a, b, c, …for some reason
can be considered from a common point of view, can be associated in the mind, and
we say that they form a system S …”, i.e., the power of the mind to create from given
things a new thing, their system, that is necessarily different from each of these things.
And (2) “…the ability of the mind to relate things to things, to let a thing correspond
to a thing, or to represent a thing by a thing, an ability without which no thinking is
possible. Upon this unique and therefore absolutely indispensable foundation,…must,
in my judgment, the whole science of numbers be established”. Thus, for Dedekind,
the notion of mapping between sets (≡ systems) is the foundation upon which number
theory is built.

This last basicmental faculty,we suggest,maybepointing—inamovement from the
local to the global—to the fact that mappings (between sets) will, ultimately, become
morphisms (betweenmathematical objects), which are the essential constituents of the
different mathematical universes (≡ categories) associated with the diversemathemat-
ical objects, and on which, until they be replaced by something else more fundamental
yet to be conceived, the whole science of mathematics must be established.

We now proceed to explain the contents of the subsequent sections of this article.
In Sect. 2, we recall some historical facts regarding both the concept of projective

system and that of projective limit of a projective system, which are the dual of the
concepts of inductive systemandof inductive limit of an inductive system, respectively,
and which, in addition, chronologically precede them. In this section, we just want,
in addition to recalling the aforementioned historical facts, to highlight and prove—
following the footsteps of Weil when he pointed out in Weil (1975) that Cantor’s set is
homeomorphic to a projective limit of finite discrete spaces, i.e., to a pro-object—that
a classical theorem of Cantor has a proof by means of the concept of projective limit.
And that Dedekind (1888), in the proof of one of his theorems, obtains, at a crucial
step, using the principle of definition by mathematical recursion, a countably infinite
family of injectivemappings that belongs to the projective limit of a suitable projective
system of sets. (This will be stated in Sect. 3.)
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In Sect. 3, we shall show that to some extent one can find in Dedekind’s work
specific occurrences of some modern mathematical ideas in the fields of universal
algebra, category theory, the theory of primitive recursive mappings, and set theory
which point towards the mathematics of twentieth and twenty-first centuries.

With regard to universal algebra the facts on which we rely are, essentially, the
following.
(1) The introduction by Dedekind of the mono-unary algebras, i.e., of the pairs S =
(S, ϕ)where S is a set and ϕ amapping from S to S, and his investigation of such a type
of mathematical objects, e.g., his study of SgS, the subalgebra generating operator on
S (which Dedekind denotes by (·)0 or ϕ0(·)), and of the principle of proof by algebraic
induction for mono-unary algebras.
(2) His axiomatic definition of the simply infinite systems—nowadays usually called
Dedekind–Peano algebras—which are ordered triples S = (S, ϕ, e) where S is a set,
ϕ a mapping from S to S, and e an element of S satisfying the following conditions:

1. ∀ x, y ∈ S, if x �= y, then ϕ(x) �= ϕ(y), i.e., the mapping ϕ is injective.
2. ∀ x ∈ S, e �= ϕ(x), i.e., e is not in the image of ϕ.
3. Sg(S,ϕ)({e}) = S, where Sg(S,ϕ) is the subalgebra generating operator on the reduct

(S, ϕ) of (S, ϕ, e).

And (3), his investigation of such a type of mathematical objects. For instance,
Dedekind, after stating the fundamental principle of definition by mathematical recur-
sion, shows, on the one hand, that all simply infinite systems are isomorphic to the
simply infinite system (N , sc, 1) of strictly positive natural numbers and that, there-
fore, any two simply infinite systems are isomorphic; on the other hand, that every
system isomorphic to the set N is equipped, in a natural way, with a structure of
Dedekind–Peano algebra.

On the basis of the two preceding theorems, he remarks that all simply infinite
systems form a class by putting into it all and only those algebras S = (S, ϕ, e)
that are isomorphic to a determinate simply infinite system (N , sc, 1), called the
representative of the class, and that the class is not changed by taking as represen-
tative any other simply infinite system belonging to it. In this connection, notice
that Dedekind (1888, art. 34), after defining when two systems are isomorphic (≡
similar) and taking into account several preceding theorems, makes, referred to the
systems, the following definition: “We can therefore separate all systems into classes
by putting into a determinate class all and only those systems Q, R, S, …that are
similar to a determinate system R, called the representative of the class; according
to 33 the class is not changed by taking as representative any other system belonging
to it”.

These results show the extrememodernity ofDedekind’smathematical thought, i.e.,
his category-theoretic thinking. Actually, for Dedekind it is not necessary to choose
a specific option from among a multiplicity of possible choices. Besides, for him,
one essentially knows a mathematical object exactly when one knows its relations,
by means of suitable transformations, to all other mathematical objects of the same
nature, and this is, in essence, the contents of the just-mentioned way of thinking. This,
of course, does not mean, in particular, that Dedekind absolutely forbids one to make
choices. However, for Dedekind, choices should not be made when it is not necessary.
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Furthermore, as shown by his correspondence with Lipschitz (1986), he disliked
basing anything in mathematics on arbitrary representations or expressions. He said,
in this regard, that in the exposition of ideal theory that he published in the Bulletin des
Sciences Mathématiques, that in the interest of brevity, he had marred (ich verunziere)
the theory by using explicit representations of fields in the formQ(α), whereα satisfies
an algebraic relation over Q. One can say that for Dedekind what matters about a
fundamental mathematical object—as is the case, e.g., with the complete ordered
field of real numbers or the Dedekind–Peano algebra of natural numbers—is not the
way under which it is concretely represented, but its characterization by means of a
suitable universal (or couniversal) property or, in other words, for having the property
of being the solution of a definite universal (or couniversal) problem. In this regard, it
would seem appropriate to recall what Manes (1976, p. 84) wrote about products (this
is the familiar classical result, but one which is, obviously, extensible to the remaining
limits and colimits):

Because of 1.6 [Any two products of (Ai )i∈I are isomorphic, we append], we
can think in terms of the product of (Ai )i∈I and write it as

∏
i∈I Ai . In prac-

tice, “
∏

i∈I Ai” is either any convenient choice of—or the isomorphism class
of all—I -tuples pi : A �� Ai with the universal property; for most categorical
purposes, these distinctions do not matter.

Besides, two of the pillars underpinning the monumental edifice Was sind und was
sollen die Zahlen? constructed by Dedekind are the concepts of set and mapping
(together with the identity mapping associated to every set, the composition of map-
pings, and their properties), which, when replaced by those of object and morphism,
respectively, are the building blocks of the notion of category. We note that Dedekind,
in contrast to what happens in contemporary set theory, does not reduce the concept
of mapping to that of set, exactly as in category theory, which is an essentially two-
sorted theory (with a sort for objects and another for morphisms), where the notion of
morphism is not reduced to that of object.

Moreover, Dedekind clearly anticipated the theory of primitive recursive map-
pings because from the principle of definition by mathematical recursion—which was
proved, for the first time in the history of mathematics, in Dedekind (1888)—the
parameterized operation of primitive recursion immediately follows, which, together
with the generalized composition of number-theoretic mappings, is, from a structural
standpoint, at the basis of such a theory.

Furthermore, in Sect. 3 we elucidate the exact relationship between Dedekind’s
chains and Zermelo’s chains and show that when Dedekind (1888) is carefully
studied, it becomes evident that Dedekind, besides using the relations of inclusion
and strict inclusion, and the operations of union and intersection, also employed
the power set operator, the difference of two sets (hence, in an implicit way, the
axiom schema of separation), the Cartesian product, functional sets, and even nat-
ural isomorphisms between functional sets. Moreover, he used, in an implicit way,
the axiom schema of replacement, proved, constructively, that a certain projective
limit is nonempty, and defined the underlying set of the free abelian monoid on a
set.
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In Sect. 4, after recalling the notions of inductive system of sets, of an inductive
cone from an inductive system of sets, and of the inductive limit of an inductive system
of sets, we show that Dedekind (1888) used these concepts in an implicit way.

In Sect. 5 we consider, on the one hand, the degree to which Garrett Birkhoff
was aware of the structural approach to algebra as conducted by Noether (herself
inspired by Dedekind), by Noether’s algebraic school in Göttingen, and by Emil Artin
in Hamburg in the 1930s, and, on the other hand, if Dedekind (1888) had any direct
influence on Birkhoff in his work on universal algebra.

InAppendixAwe provide, in agreement with the algebraic standpoint of Dedekind,
a new model, based on many-sorted universal algebra, of the theory of primitive
recursive mappings which will allow us to diagrammatically prove that the three
basic mathematical operations, addition, multiplication, and exponentiation, defined
by Dedekind in §§ 11–13 of Dedekind (1888), are primitive recursive.

The following notational conventions will be used throughout the article. We will
denote, as in Dedekind (1888), by N the set {1, 2, 3, . . .} of all strictly positive natural
numbers, whileNwill be reserved for the set {0, 1, 2, . . .} of all (vonNeumann) natural
numbers, and, also as in Dedekind (1888), by Zn the set {1, . . . , n}, while n will be
reserved for the set {0, . . . , n − 1}. Instead of using, as in Dedekind (1888), ≺, for the
binary relation of inclusion between sets, M, for the (unary) operation of union, G,
for the (unary) operation of intersection, and A0 or ϕ0(A), for the chain relative to ϕ

of a subset A of the underlying set S of a mono-unary algebra S = (S, ϕ), we will use,
unless otherwise specified,⊆,

⋃
,
⋂
, and SgS(A), respectively. Besides, for amapping

f : A �� B and a subset X of A, instead of using, as in Dedekind (1888), f (X) or
X ′, for the direct image of X under f , we will use f [X ]. Moreover, Im( f ), the image
of f , will stand for f [A], and f [·] will denote the mapping from Sub(A) to Sub(B),
the sets of subsets of A and B, respectively, which sends X ⊆ A to f [X ] ⊆ B.

More specific notational conventionswill be included and explained in the following
sections.

2 Some historical facts and set-theoretic examples regarding the
concepts of projective system and of projective limit

It will be convenient to recall next—before stating the definition of the concepts of
inductive system of sets, of an inductive cone from an inductive system of sets, and
of the inductive limit of an inductive system of sets in Sect. 4—some historical facts
and set-theoretic examples concerning both the notion of projective system of sets and
that of projective limit of a projective system of sets. This is for the following reasons.
(1) These notions chronologically precede both the concept of inductive system of
sets and that of inductive limit of an inductive system of sets. And (2) these notions
are the dual of the concepts of inductive system of sets and of the inductive limit of
an inductive system of sets, respectively. In this regard, our historical source is Weil
(1975).

In what follows we have not attempted to give an exhaustive treatment of this
subject; we have just sought to highlight, at this stage, in addition to the aforementioned
historical facts, that (1) a theorem of Cantor (see below) has a proof by means of the
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concept of projective limit and that (2) this last concept was also used, implicitly, by
Dedekind at a crucial step in the proof of one of his theorems (see below).

For additional examples regarding the concepts of projective and inductive limits,
see, e.g., Dieudonné (1989) and Krömer (2010).

The concept of a projective limit—which is a generalization of the sequential limit
of Hans Freudenthal and Lev Pontrjagin, see the quotation below—was introduced by
Weil (1975, p. 23–28) to discuss the structure of locally compact groups and to prove
that every compact group is the projective limit of a family of compact Lie groups. In
fact, Weil (1975, pp. 28–29) makes the following remarks on the development of the
concept of projective limit:

La notion de limite projective d’une suite de groupes finis paraît avoir été intro-
duite pour la première fois par J. Herbrand (dans Herbrand 1933). Auparavant,
P. Alexandroff avait introduit en topologie la notion de spectre projective (dans
Alexandroff 1928), cas particulier de la notion topologique de limite projec-
tive, analogue à celle qui est étudiée ici. Les limites projectives de suites de
groupes abéliens finis étaient aussi apparues implicitement dans un travail de
L. Pontrjagin (dans Pontrjagin 1931). L. Pontrjagin paraît avoir considéré le
premier des limites de suites de groupes compacts (dans Pontrjagin 1934). La
notion de limite projective d’une suite de groupes (et la notion analogue pour
les espaces topologiques) a été introduite dans toute généralité par Freudenthal
(dans Freudenthal 1937), dont la terminologie diffère quelque peu de celle qui
est proposée ici; il introduit aussi une autre espèce de limite, sur laquelle nous
reviendrons dans les notes du § 28. Quant à la définition d’une limite projec-
tive au moyen d’un ensemble filtrant quelconque, elle m’a été communiquée
il y a quelques années, dans le cas des groupes compacts, par C. Chevalley;
l’extension correspondante de la notion de spectre projective est due à Kurosh
(dans Kurosh 1935); pour le cas particulier des limites projectives de groupes
abéliens finis, une définition équivalente a été donnée récemment par R. Baer
(dans Baer 1937), qui cependant évite en apparence d’introduir une topologie
dans les groupes qu’il définit, et pour cette raison est amené à introduir deux
conditions superflues (les conditions 1.G et 1.H, p. 872 de son mémoire, sont
conséquences des autres).

Before proceeding any further, recall—because we will immediately afterwards
make use of both the concept of a projective system of sets and that of the projective
limit of a projective system of sets—that a projective system of sets is an ordered pair
(I,A) where I = (I,�) is a preordered set, i.e., a set I equipped with a preorder �
on I (i.e., a reflexive and transitive relation � on I ), andA = ((Ai )i∈I , ( fi ′,i )(i,i ′)∈�)

such that:

1. ∀ i ∈ I , Ai is a set.
2. ∀ (i, i ′) ∈�, fi ′,i : Ai ′ �� Ai .
3. ∀ i ∈ I , fi,i = idAi .
4. ∀ i, i ′, i ′′ ∈ I , if (i, i ′) ∈� and (i ′, i ′′) ∈�, then fi ′′,i = fi ′,i ◦ fi ′′,i ′ .

The mappings fi ′,i : Ai ′ �� Ai are called the transition mappings of the projective
system of sets (I,A). Notice thatA is a contravariant functor from C(I), the category
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canonically associated with I, to Set, the category of sets (in a fixed Grothendieck
universe U ) and mappings.

On the other hand, if (I,A) is a projective system of sets, then a projective limit
of (I,A) is an ordered pair (lim←−(I,A), ( fi )i∈I ) where lim←−(I,A) is a set and, for
every i ∈ I , fi is a mapping from lim←−(I,A) to Ai , such that, for every (i, i ′) ∈�,
fi = fi ′,i ◦ fi ′ and, for every ordered pair (L , (gi )i∈I ) where L is a set and, for every
i ∈ I , gi : L �� Ai , if, for every (i, i ′) ∈�, gi = fi ′,i ◦ gi ′ , then there exists a unique
mapping u : L �� lim←−(I,A) such that, for every i ∈ I , gi = fi ◦ u.

Remark 1 The set lim←−(I,A) is the subset of
∏

i∈I Ai , the Cartesian product of the
family of sets (Ai )i∈I , defined as follows:

lim←−(I,A) =
{

x ∈
∏

i∈I
Ai | ∀ (i, i ′) ∈� ( fi ′,i (pri ′(x)) = pri (x))

}
,

where, for every i ∈ I , pri is the canonical projection from
∏

i∈I Ai to Ai . And, for
every i ∈ I , fi is the restriction of pri to lim←−(I,A).

If (I,A) is a projective system of structured sets (and transition morphisms) of
some species, then, under appropriate conditions, lim←−(I,A) can be equipped with a
structure of the same species in such a way that the canonical mappings are actually
morphisms.

We next try to illuminate, as much as we can, this last technical concept. The
projective limit lim←−(I,A)—along with the mappings fi from lim←−(I,A) to Ai—of
a projective system (I,A) can be interpreted as the optimal way of obtaining the
equalizer of an equation (represented by a parallel pair of mappings between two
adequate Cartesian products) obtained from the transition mappings fi ′,i : Ai ′ �� Ai

of the projective system (I,A).
Although of a topological, but not set-theoretic, nature, we notice that Weil (1975,

Chapter V, pp. 92–93) announced without proof (he literally wrote, on p. 93, that:
“l’on montre facilement”) that Cantor’s set (≡ Cantor’s nowhere dense perfect set)—
which was independently constructed by Smith (1875, p. 147)—is homeomorphic to
a projective limit of finite discrete spaces. For a proof of it, see, e.g., Hocking and
Young (1988, pp. 97–100).

Following this, we append as a further example of projective limit one related to the
following theorem: “Every transfinite aggregate T has parts with the cardinal number
ℵ0”, which was stated and proved—without employing the notion just mentioned—by
Cantor (1955, p. 105). And we do this for the following reasons.

(1) The theorem of Cantor was set out in the same historical period that another
theorem of Dedekind (1888, art. 159) which reads as follows: “Σ is an infinite set
if, and only if, every initial segment of N has an embedding into Σ”. But, while
Cantor’s proof of his theorem is not trivial, Dedekind’s proof of the conditional: “If Σ

is infinite, then every initial segment of N has an embedding into Σ” makes use, as an
intermediate step, of the fact that ifΣ is infinite, then there exists a part T ofΣ which is
simply infinite and consequently similar to the number-sequence N , which has, in his
conceptual framework, a straightforward proof, because it is founded on his definition

123



108 J. Climent Vidal, J. Soliveres Tur

of infinite system, of chain generated by an element, of simply infinite system, and on
the theorem that asserts that all simply infinite are similar to the number-sequence N .
(2) Both theorems were proved by using, implicitly, the countable axiom of choice,
something which is well known.
(3) Dedekind, in the proof of his theorem, obtained, at a crucial step, by using the prin-
ciple of definition by mathematical recursion, a countably infinite family of injective
mappings that belongs to the projective limit of a suitable projective system of sets
(for details, see Sect. 3 when considering art. 159 of § 14). And
(4), the theorem of Cantor has, as we will state below, an alternative proof by means
of the concept of projective limit.

With regard to the last of the previous points, it is worthwhile to quote a part of
MichaelAtiyah’s answer inRaussen and Skau (2004, p. 24) to the question, formulated
by these interviewers, about the underlyingmotives for providing different proofs with
different strategies for the Atiyah-Singer Index Theorem: “Any good theorem should
have several proofs, the more the better. For two reasons: usually, different proofs have
different strengths and weaknesses, and they generalize in different directions—they
are not just repetitions of each other. …the more perspectives, the better!”

However, before doing that, because it will throw some light on the aforementioned
alternative proof, we show—by using the axiom of dependent choices of Paul Bernays,
which is weaker than the axiom of choice, but stronger than the countable axiom of
choice—that the above theorem of Cantor can be proved in a simpler way. Recall that
the axiom of dependent choices says the following: If A is a nonempty set and Φ a
binary relation on A such that for every x ∈ A there exists a y ∈ A such that (x, y) ∈ Φ,
then there exists a sequence (xn)n∈N in A such that, for every n ∈ N, (xn, xn+1) ∈ Φ.
Then, the proof of Cantor’s theorem runs as follows: If the set T is infinite, then
for every k ∈ N, the set M(k + 1, T ) of the injective mappings from k + 1 to T is
nonempty, and hence,

⋃
k∈NM(k+1, T ) �= ∅. Then on

⋃
k∈NM(k+1, T )we define

the binary relation Φ as follows: ((xi )i∈m, (y j ) j∈n) ∈ Φ if, and only if, n = m + 1
and, for every i ∈ m, xi = yi , where m and n ≥ 1. Thus, by the axiom of dependent
choices, there exists a family ((xi )i∈n+1)n∈N, in the set

⋃
k∈NM(k +1, T ), such that,

for every n ∈ N, ((xi )i∈n+1, (xi )i∈n+2) ∈ Φ. Therefore, the union of the images of
the families (xi )i∈n+1, comprising the family ((xi )i∈n+1)n∈N, is the countably infinite
set which we wanted to obtain.

We now turn to the proof of Cantor’s theorem through the use of the projective
limits. Consider, on the one hand, the family of sets (M(n + 1, T ))n∈N and, on
the other hand, the family of transition mappings ( fn+1,n)n∈N−1, where, for every
n ∈ N − 1, fn+1,n is the mapping from M(n + 1, T ) to M(n, T ) obtained from the
canonical embedding inn,n+1 of n into n + 1. Thus fn+1,n assigns to every injective
mapping ϕ from n + 1 to T the injective mapping ϕ ◦ inn,n+1, i.e., the restriction
of ϕ to n. In this way, we obtain a projective system of sets, denoted by M(T ). It
happens that, for every n ∈ N − 1, fn+1,n is surjective and that, for every n ∈ N, the
setsM(n + 1, T ) are nonempty. Then, by the countable axiom of choice, we choose
a family (gn,n+1)n∈N−1 such that, for every n ∈ N − 1, gn,n+1 is a mapping from
M(n, T ) to M(n + 1, T ) and fn+1,n ◦ gn,n+1 is the identity mapping at M(n, T ).
Then we have that, for every n ∈ N − 1, the structural mapping fn from lim←−M(T ) to
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M(n, T ) is surjective. Moreover, since, for every n ∈ N, we have that M(n + 1, T )

is nonempty, it follows that lim←−M(T ) is nonempty, and hence, the infinite set T has
subsets with the cardinal number ℵ0.

With regard to the dual concept of projective limit, Weil (1975, p. 109) makes
the following remark, based on the fact that the character groups of the groups of an
inverse sequence form themselves a direct sequence:

On est ainsi conduit à définir, chaque fois que l’on s’est donné un ensem-
ble ordonné filtrant d’indices α, des groupes Hα , et, chaque fois que α ≺ β,
un isomorphisme de Hα dans Hβ , un groupe H , réunion de groupes isomor-
phes aux Hα , qu’on pourra appeler la limite inductive des Hα par rapport aux
isomorphismes donnés; il n’est pas difficile de formuler pour cette notion un
système d’axiomes convenable, par analogie avec les axiomes de la limite pro-
jective. …La notion de limite inductive, pour les suites de groupes et d’espaces
topologiques, a été introduite (avec une terminologie et des axiomes quelque
peu différents de ceux qui sont suggérés ici) par Freudenthal (dans Freudenthal
1937).

In connection with Weil’s previous historical notes, it seems pertinent to suggest
reading what Dieudonné (1989, pp. 72–73) wrote concerning Pontrjagin’s amazing
missed opportunity, in 1931, of defining the concept of projective limit.

3 Universal algebra, category theory, primitive recursive mappings, and
the axiom schema of replacement in Was sind und was sollen die
Zahlen?

In this section, our main aim is to point out some facts contained in Was sind und was
sollen die Zahlen?—one of the masterpieces by Dedekind—which are usually passed
over in silence, or are not sufficiently emphasized. However, it will occasionally be
impossible to avoid repeating some well-known remarks on Dedekind (1888), mostly
due to Zermelo, for discursive coherence and because they are partially connected to
the above.We hope that, after having done that, it will be clear that Dedekind’s work is,
in particular, a precursor of universal algebra, category theory, the theory of primitive
recursive mappings, as well as of a form of the axiom schema of replacement. The task
to be addressed is a difficult one taking into account the amount of effort deployed, for
the past 129 years, in discussing, almost exclusively from a nonmathematical point of
view, the works of Dedekind on the foundations of mathematics in general, and, above
all, his masterpiece What are numbers and what are they good for? in particular.

Dedekind in § 1, after elucidating (but not formally defining) in art. 1 the notion
of thing, defined the identity of two things—by means of Leibniz’s (second order)
Principle of the Identity of Indiscernibles—and established its fundamental proper-
ties. Next, in art. 2, he stated the comprehension principle and the notion of a system,
which for him is an object. Actually, he said: “It very frequently happens that dif-
ferent things a, b, c, …for some reason can be considered from a common point of
view, can be associated in the mind, and we say that they form a system S”. Then
he considered the membership relation and established the principle of extensionality
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for systems, indicating that: “[a system] S is completely determined when, for every
thing, it is determined whether it is an element of S or not”, and emphasizing that:
“How this determination is brought about, and whether we know a way of deciding
upon it, is a matter of indifference for all what follows; …”, thus membership is only
a determined question but not a necessarily decidable one. This makes manifest his
radical divergence from Kronecker’s decidability requirements about the definition of
concepts (only the definitions for which there is a proof of decidability are accept-
able), which from Dedekind’s standpoint: “impose limitations on the free formation
of concepts in mathematics which I do not believe to be justified”. Following this, in
art. 3 he defined the set-theoretic relation of inclusion between systems and proved its
fundamental properties. Then in art. 6, he defined the set-theoretic relation of proper
inclusion between systems, in art. 8, the set-theoretical operation of union and its
basic properties, and in art. 17, the set-theoretic operation of intersection and its basic
properties.

Afterwards, in § 2, art. 21, Dedekind defined the concept of a mapping (he used the
term transformation), for every system S, the identity mapping at S, which we denote
by idS , and the (direct) image of a subset of the domain of a mapping, and stated
the fundamental relations between the formation of direct images and the inclusion
relation, as well as those between the formation of direct images and the operations of
union and intersection, respectively. In art. 25 he defined the composition ofmappings,
which for f : A �� B and g : B �� C we denote by g ◦ f , and stated its essential
property: associativity.

Next, in § 3, art. 26, Dedekind defined both the concept of an injective mapping and
that of a bijective mapping; in art. 32, he defined the binary relation of isomorphism
between sets, which he stated has the properties of an equivalence relation.

In § 4, Dedekind discussed, using modern terminology, the mono-unary algebras,
i.e., those pairs S = (S, ϕ), where S is a set and ϕ a mapping from S into itself. And,
in particular, for a fixed, but arbitrary, mono-unary algebra S, art. 37, he defined when
a part of S is a chain relative to ϕ, i.e., he defined what nowadays is called a subalgebra
of S.

At this point, and before going on with our discussion of Dedekind (1888), we
would like to notice that Dedekind’s chain theory—which being as it is a fundamental
mathematical idea necessarily occurs in a naturalway in several differentmathematical
fields—was employed by Zermelo (1967, pp. 184–185) in an essential way—together
with the axiom of choice—in his second proof of Cantor’s well-ordering principle.
Specifically, given a set M and a choicemappingϕ for M , i.e., amappingϕ : Sub(M)−
{∅} −→ M , where Sub(M), we recall, is the set of all subsets of M , such that, for
every nonempty subset X of M , ϕ(X) ∈ X , we call, in agreement with the definition
given in Zermelo (1967, p. 184), a subsetK of Sub(M) a Zermelo-chain relative to the
choice mapping ϕ for M or, simply, a Z-chain, if it possesses the following properties:

1. M ∈ K.
2. For every L ⊆ K, if L �= ∅, then

⋂
L∈L L ∈ K.

3. {K − {ϕ(K )} | K ∈ K} ⊆ K.

We now explain the relationship between Dedekind’s chains and Zermelo’s chains.
From the given choice mapping ϕ : Sub(M) − {∅} −→ M for M one obtains the
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endomapping ϕ̂ of Sub(M) defined as follows: ϕ̂(∅) = ∅, and, for every nonempty
subset X of M , ϕ̂(X) = X −{ϕ(X)}. Thus, for the ordered pair (Sub(M), ϕ̂), which is
an example of a mono-unary algebra, one can consider the concept of chain relative to
ϕ̂. So that a partK of Sub(M) is a chain relative to ϕ̂ if, and only if, ϕ̂[K] ⊆ K. There-
fore, a subset K of Sub(M) is a Z-chain exactly if it is a chain relative to ϕ̂ and K is a
closure system on M , i.e., K satisfies the first two conditions previously enumerated.
Therefore, Zermelo’s chains are a specialization ofDedekind’s chains.Moreover, if we
denote by Setch,m the category whose objects are the ordered pairs (M, ϕ), where M
is a set and ϕ a choice mapping for M , and whose morphisms from (M, ϕ) to (M ′, ϕ′)
are the injective mappings f from M to M ′ such that f ◦ ϕ = ϕ′ ◦ f [·], i.e., for every
X ∈ Sub(M) − {∅}, f (ϕ(X)) = ϕ′( f [X ]), and by Algm−u the category of mono-
unary algebras andmorphisms ofmono-unary algebras, then there exists a functor from
Setch,m to Algm−u whose object mapping assigns to (M, ϕ) precisely (Sub(M), ϕ̂),
and whosemorphismmapping assigns to f : (M, ϕ) �� (M ′, ϕ′) in Setch,m themor-
phism f [·] : (Sub(M), ϕ̂) �� (Sub(M ′), ϕ̂′) in Algm−u. Besides, from the functor
from Setch,m to Algm−u which sends (M, ϕ) to (M, idM ) to the above functor there
exists a pointwise monomorphic natural transformation.

Wepoint out that themono-unary algebras are very important in thefield of universal
algebra—because, in particular, many important features of an algebra are determined
from its unary algebraic operations—just as are the derived notions of discrete flows,
i.e., ordered pairs (X, f ) with X a topological Hausdorff space and f : X �� X a
homeomorphism, in the area of topological dynamics (de Vries 1993), and of mul-
tiunary algebras, i.e., ordered pairs S = (S, (ϕi )i∈I ), where S is a set and, for every
i ∈ I , ϕi is an endomapping of S, in the domain of algebraic automata theory (Büchi
1989).

Afterwards, in art. 44, Dedekind defined, in an impredicative way (since at this
stage the set of all natural numbers is not yet available for use), an operator SgS which
sends a (nonempty) subset A of S to SgS(A), the subalgebra generated by A. We
must point out that he spoke of the chain of the system A (relative to ϕ), not of the
subalgebra generated by A, and that he denoted it by A0 or ϕ0(A) not by SgS(A).
And he stated (we once more use contemporary terminology) that the operator SgS
is a closure operator on S which, in addition, is completely additive. Therefore SgS
is, in particular, an algebraic closure operator on S. Specifically, Dedekind stated the
following facts:

1. In art. 48, he remarked that the subalgebra generated by A is characterized as the
smallest subalgebra of (S, ϕ) that contains A.

2. In art. 45, he proved that the operator SgS is extensive or inflationary.
3. From what Dedekind stated in art. 51, one obtains, as an evident corollary, that the

operator SgS is idempotent.
4. In art. 54, he proved that the operator SgS is isotone.
5. In art. 57, he proved that the mapping ϕ[·] from Sub(S) to Sub(S) commutes with

the operator SgS, i.e., that ϕ[·] ◦ SgS = SgS ◦ ϕ[·] or, equivalently, that for every
A ⊆ S, ϕ[SgS(A)] = SgS(ϕ[A]).

6. In art. 61, he proved that the operator SgS commutes with the unions of arbitrary
nonempty families of parts of S, i.e., that, for every nonempty family (Ai )i∈I of
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subsets of S, SgS(
⋃

i∈I Ai ) = ⋃
i∈I SgS(Ai ). Thus SgS is a completely additive

operator. This result is characteristic of the mono-unary algebras (S, ϕ), since, for
arbitrary signatures Σ = (Σ, ar), where Σ is a set of operation symbols and ar a
mapping from Σ to N, and Σ-algebras A = (A, (Fσ )σ∈Σ), where A is a set and,
for every σ ∈ Σ , Fσ a mapping from Aar(σ ) to A, what is true is that the operator
SgA commutes with the unions of nonempty upward directed families of parts of
A. Implied in the above theorem of Dedekind is the following. In order to be able
to have families of parts of S one must have the set Sub(Sub(S)) and to establish
that SgS is completely additive one must have a mapping from Sub(Sub(S)) to
Sub(Sub(S)) which sends a set A in Sub(Sub(S)) to the set {SgS(A) | A ∈
A} in Sub(Sub(S)). Thus we have here an implicit use of the axiom schema of
replacement in order to obtain from A, by means of SgS—which is acting as a
functional condition—precisely {SgS(A) | A ∈ A}.

Moreover, in art. 62 Dedekind proved that, for every nonempty family (Ai )i∈I of
subsets of S, SgS(

⋂
i∈I Ai ) ⊆ ⋂

i∈I SgS(Ai ). Hence Dedekind obviously knew that
SgS was not necessarily a completely multiplicative operator.

Before proceeding further, notice that, for a mono-unary algebra S = (S, ϕ), the
structural operation ϕ is also an endomorphism of S.

We think it is extremely important to point out that a profound and clear reflection
on the essential role played by the notion of chain in the definition by Dedekind of the
system of natural numbers—which allowed him to reduce complexity to simplicity—
can be found in the letter that Dedekind sent to Hans Keferstein on February 27, 1890
(van Heijenoort 1967, p. 101).

We notice that Dedekind, to define the operator SgS, took for granted, implicitly,
that there exists, strictly speaking, the set Sub(S)−{∅}, since he considered the action
of SgS only on nonempty subsets of S. And recall also that (in Dedekind 1888, art. 2)
he wrote the following: “On the other hand, we intend here for certain reasons wholly
to exclude the empty systemwhich contains no element at all,…”. However, Dedekind
(1888, art. 2), just after the above quotation, also wrote that: “…although for other
investigations it may be appropriate to imagine such a system”. Thus, judging by what
Dedekind said in the last quotation, it does not seem unreasonable to think that he
would have admitted Sub(S) as a legitimate set (notice that in this case SgS(∅) = ∅).
Furthermore, since Dedekind has defined, for every (nonempty) set S, idS , the identity
mapping at S, we have, for an arbitrary (nonempty) set S, the mono-unary algebra
(S, idS), hence the set of all subalgebras of (S, idS), i.e., in this case, strictly speaking,
the set of all nonempty subsets of S. But, as above, it does not seem unjustified to think
that Dedekind would have admitted Sub(S) as the set of all subalgebras of (S, idS).
Moreover, since Dedekind also used functional sets (see below), we can conclude that,
for every (nonempty) set S, the set Hom(S, 2), of all mappings from S to 2, which
is isomorphic to Sub(S), is available to him. Thus, without distorting the thought of
Dedekind, we can infer that he allowed, in addition to the set-theoretical operations
of union and intersection, the power set operation. Afterwards, Dedekind proved, in
art. 59, for mono-unary algebras, the principle of proof by algebraic induction which,
as a matter of fact, is the basis, in art. 80, for the classical principle of proof by (finite)
mathematical induction. Notice that the condition σ in art. 59, i.e., that ϕ[SgS(A) ∩
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Σ] ⊆ Σ , is equivalent to: SgS(A) ∩ Σ is a subalgebra of S, i.e., to ϕ[SgS(A) ∩ Σ] ⊆
SgS(A)∩Σ . Moreover, Dedekind announced without proof in art. 63 of § 4 a theorem
fromwhich follows a corollary that is the basis for the proof of the theorem of Cantor–
Bernstein, also known as the theorem of Dedekind–Cantor–Bernstein–Schröder. But
before stating and proving this theorem in art. 63, as well as the corollary, we note
that all sets involved in the theorem are subsets of the underlying set S of an arbitrary,
but fixed, mono-unary algebra S = (S, ϕ). Moreover, for simplicity of notation, for a
subset A of S, throughout the proof we let A0 stand for SgS(A).

63. Theorem. If ϕ[K ] ⊆ L ⊆ K , and therefore K is a chain, L is also a chain. If
it is a proper part of K , and U is the system of all those elements of K which are
not contained in L , and if the chain U0 is a proper part of K , and if V is the system
of all those elements of K which are not contained in U0, then K = U0 ∪ V and
L = ϕ[U0] ∪ V . If finally L = ϕ[K ], then V ⊆ ϕ[V ].

Before proving this theorem notice that in it Dedekind twice used the difference
between sets (obtained by applying the axiom schema of separation).

Proof From L ⊆ K , it follows that ϕ[L] ⊆ ϕ[K ], but ϕ[K ] ⊆ L , thus ϕ[L] ⊆ L ,
i.e., L is a ϕ-chain. ��

Now suppose that L ⊂ K , that U0 ⊂ K , where U = K − L , and that V = K −U0.
Then K = U0 ∪ V and L = ϕ[U0] ∪ V .

It is obvious that K = U0 ∪ V , since V = K − U0.
To prove that L = ϕ[U0] ∪ V , we state, as a lemma, that U0 = U ∪ ϕ[U0]. Since

U ⊆ U0 and ϕ[U0] ⊆ U0, we have that U ∪ ϕ[U0] ⊆ U0. To prove the converse
inclusion, it suffices to show that ϕ[U ∪ ϕ[U0]] ⊆ U ∪ ϕ[U0]. But, ϕ[U ∪ ϕ[U0]] =
ϕ[U ] ∪ ϕ[ϕ[U0]]. On the other hand, from U ⊆ U0 it follows that ϕ[U ] ⊆ ϕ[U0];
moreover, ϕ[U0] ⊆ U0, hence ϕ[ϕ[U0]] ⊆ ϕ[U0], so ϕ[U ] ∪ ϕ[ϕ[U0]] ⊆ ϕ[U0],
therefore ϕ[U ] ∪ ϕ[ϕ[U0]] ⊆ U ∪ ϕ[U0]. Hence U0 ⊆ U ∪ ϕ[U0]. Consequently
U0 = U ∪ ϕ[U0].

We next prove that L = ϕ[U0] ∪ V . But, from U0 ⊂ K , it follows that ϕ[U0] ⊆
ϕ[K ], yet ϕ[K ] ⊆ L , hence ϕ[U0] ⊆ L . On the other hand, from U ⊆ U0 it follows
that V = K − U0 ⊆ K − U = K − (K − L) = L , i.e., that V ⊆ L . Hence
ϕ[U0] ∪ V ⊆ L . To prove the converse inclusion, taking into account that K can be
represented as K = U ∪ L and since K = U ∪ (ϕ[U0] ∪ V ), because K = U0 ∪ V
and U0 = U ∪ ϕ[U0], we infer that L cannot be included in U , because U = K − L ,
so that L ⊆ ϕ[U0] ∪ V . Consequently L = ϕ[U0] ∪ V .

Now assume that L = ϕ[K ]. Then we can assert, by the above, that ϕ[K ] =
ϕ[U0] ∪ V . But it happens that K = U0 ∪ V , so ϕ[K ] = ϕ[U0] ∪ ϕ[V ], hence
ϕ[U0] ∪ ϕ[V ] = ϕ[U0] ∪ V . But V ⊆ ϕ[U0] ∪ V , hence V ⊆ ϕ[U0] ∪ ϕ[V ].

It only remains to prove that V cannot be included in ϕ[U0]. But ϕ[U0] ⊆ U0 and
V = K − U0. Hence V cannot be included in ϕ[U0], since, if it could, then it would
be included in U0, which would be absurd. Q.E.D.

From this theorem, we obtain the following corollary.

Corollary If a set M is isomorphic to one of its subsets M ′, then it is also isomorphic
to any other subset T of M such that T ⊇ M ′.
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Proof Let f be an arbitrary, but fixed, bijection from M to M ′, Q = T − M ′, and
TM ′,T the subset of Sub(M) defined as follows:

TM ′,T = { A ⊆ M | Q ⊆ A& f [A] ⊆ A }.

We have that M ∈ TM ′,T , therefore TM ′,T �= ∅. Let A be
⋂

A∈TM ′,T A. Then Q ⊆ A

and f [A] ⊆ A, hence A ∈ TM ′,T and it is, in fact, the smallest member of TM ′,T . It
happens that A = Q ∪ f [A]. In fact, by the above, it is clear that Q ∪ f [A] ⊆ A.
To prove the converse inclusion, i.e., that A ⊆ Q ∪ f [A], let r be an element of
A − Q and suppose that r /∈ f [A]. Then f [A] ⊆ A − {r}. On the other hand, we
have that f [A − {r}] ⊆ f [A], because A − {r} ⊆ A and f [·] is isotone. Therefore
f [A − {r}] ⊆ A − {r}. But Q ⊆ A − {r}, because Q ⊆ A and r /∈ Q. Thus
A −{r} ∈ TM ′,T , but A −{r} ⊂ A, which is a contradiction, because A is the smallest
member of TM ′,T . Therefore A = Q ∪ f [A]. Thus T = A ∪ (M ′ − f [A]), since
T = Q ∪ M ′ and Q ∪ M ′ = (Q ∪ f [A])∪ (M ′ − f [A]). But A is isomorphic to f [A],
hence T is isomorphic to f [A] ∪ (M ′ − f [A]). However, f [A] ∪ (M ′ − f [A]) = M ′
and M ′ is isomorphic to M ; consequently, T is isomorphic to M . Q.E.D. ��

From the preceding corollary, as we have said above, the theorem of Cantor–
Bernstein follows immediately. On this subject we refer the reader to the following
work by Dedekind: Ähnliche (deutliche) Abbildung und ähnliche Systeme. 1887.7.11,
which is included in Dedekind (1930–1932, Vol. III, pp. 447–448), and to Noether’s
illuminating accompanying commentary.

In § 5, art. 64, Dedekind defined the notions of infinite set and of finite set. He
wrote: “A system S is said to be infinite when it is similar to a proper part of itself (32);
otherwise S is said to be a finite system”. And in a footnote he wrote: “If one does not
care to employ the notion of similar systems (32) one must say: S is said to be infinite,
when there is a proper part of S (6) into which S can be distinctly (similarly) mapped
(26), (36)”. This shows that Dedekind knew that in the image analysis of an injective
mapping f from a set A to another B as the composition inIm( f ) ◦ f e, where f e is
the epimorphic mapping from A to Im( f ) defined by f e(a) = f (a), for all a in A,
and inIm( f ) the canonical embedding of Im( f ) into B, the epimorphic part f e is an
isomorphism. Afterwards, in art. 66, Dedekind stated the “proof” of the existence of
an infinite set, which, as it is well known, is mathematically unacceptable because the
faulty General Comprehension Principle is, ultimately, involved in it, by considering
“the totality S of all things which can be objects of my [Dedekind’s] thought”, i.e.,
the “set” of all sets, which is not a set. Let us recall that the just-mentioned Principle
asserts that there exists a “functional operator” Ext that assigns to every property ϕ (an
unsaturated entity, in Frege’s terminology) its extension, Ext(ϕ) (a saturated entity, in
Frege’s terminology), i.e., the object consisting of all x such that ϕ(x) (that fall under
ϕ).

Actually, Dedekind was well aware of the difficulties raised by some of his princi-
ples, whether implicit or explicit, since, e.g., in the preface to the third edition of Was
sind und was sollen die Zahlen?, he wrote:
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…doubts had arisen about the reliability [Sicherheit] of important foundations
of my conception. Even today I do not underestimate the importance, and to
some extend the correctness, of these doubts. But my trust in the inner harmony
of our logic is not thereby shattered; I believe that a rigorous investigation of
the power [Schöpferkraft] of the mind to create from determinate elements a
new determinate object, their system, that is necessarily different from each
of these elements, will certainly lead to an unobjectionable formulation of the
foundations of my work.

As a sample of those principles about which Dedekind doubted their reliability, and
without trying to be exhaustive, we indicate the following ones:
(1) the aforementioned General Comprehension Principle, which, e.g., enabled him to
obtain, in art. 66, the “system” that has been indicated above and, in art. 134, to gather
together in a “class” all simply infinite systems,
(2) the principle, stated in art. 34, that allows the formation of the quotient “system”
of the “system” of all systems by the similarity (≡ isomorphism) relation between
systems (which for sets is legitimate because it is a particular case of the axiom
schema of replacement), and
(3) the principle, also stated in art. 34, that every equivalence relation on a system has
a transversal (≡ a system of representatives) (which for sets is valid since it is the
following form of the axiom of choice: every surjective mapping is a retraction).

Following this, in § 6, art. 71, Dedekind defined the simply infinite systems—
nowadays called Dedekind–Peano algebras. These, let us recall, are ordered triples
S = (S, ϕ, e) where S is a set, ϕ a mapping from S to S, and e an element of S,
satisfying the following conditions: the mapping ϕ is injective, e is not in the image of
ϕ, and Sg(S,ϕ)({e}) = S, where Sg(S,ϕ) is the subalgebra generating operator on the
reduct (S, ϕ) of (S, ϕ, e). Then, in art. 72, he provided a proof sketch of the following
theorem: from every infinite set one can obtain, by using the difference between sets
(thus by applying the axiom schema of separation), a Dedekind–Peano algebra, which,
up to isomorphism, is the Dedekind–Peano algebra of the natural numbers (see below
the commentary on § 10).

The proof runs as follows. Let S be an infinite set. Then let ϕ be a fixed injective
mapping from S into itself such that ϕ[S] is a proper part of S and let e be a fixed
element of S −ϕ[S]. Since Sg(S,ϕ)({e}) is a chain (relative to ϕ) and e ∈ Sg(S,ϕ)({e}),
it follows that ϕ(e) ∈ Sg(S,ϕ)({e}). Moreover, ϕ[Sg(S,ϕ)({e})] = Sg(S,ϕ)({ϕ(e)}) and
Sg(S,ϕ)({ϕ(e)}) is the smallest chain (relative to ϕ) which contains {ϕ(e)}. There-
fore ϕ[Sg(S,ϕ)({e})] is included in Sg(S,ϕ)({e}). Hence there exists a unique mapping
ϕe from Sg(S,ϕ)({e}) into itself such that ϕ ◦ inSg(S,ϕ)({e}) = inSg(S,ϕ)({e}) ◦ ϕe and,
as ϕ ◦ inSg(S,ϕ)({e}) is injective, ϕe is injective. Moreover, e /∈ ϕe[Sg(S,ϕ)({e})] =
Sg(S,ϕ)({ϕe(e)}) because, from Sg(S,ϕ)({e}) ⊆ S it follows that Sg(S,ϕ)({ϕe(e)}) ⊆
ϕ[S], and, by hypothesis, e /∈ ϕ[S]—observe that ϕe[Sg(S,ϕ)({e})] = ϕ[Sg(S,ϕ)({e})]
and ϕe(e) = ϕ(e). Thus (Sg(S,ϕ)({e}), ϕe, e) is a simply infinite system. Moreover,
for a simply infinite system S = (S, ϕ, e), from art. 79 it follows, obviously, that, for
every X ⊆ S, if e ∈ X and ϕ[X ] ⊆ X , then X = S. De facto we have: if S = (S, ϕ, e)
is such that ϕ : S �� S and e ∈ S, then, Sg(S,ϕ)({e}) = S if, and only if, for every
X ⊆ S, if e ∈ X and ϕ[X ] ⊆ X , then X = S.
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In § 7 Dedekind defined and investigated, the relation “<” between pairs of natural
numbers, using the fact that he had, in an implicit way, a free algebra, and stating,
ultimately, that the set of natural numbers is well-ordered. (In art. 96, he proved that
every nonempty subset of N has a minimum element, which is the characteristic
property of the concept of well-ordering on a set, together with the transitivity and the
irreflexivity.)

We point out that, in art. 84, Dedekind proved, for a simply infinite system S =
(S, ϕ, e), that the restriction of the operator Sg(S,ϕ) to S is injective, i.e., that, for every
x , y ∈ S, if Sg(S,ϕ)({x}) = Sg(S,ϕ)({y}), then x = y. Furthermore, in art. 87, he
proved, by using the difference between sets, that every number-chain is monogenic
or principal, i.e., that, for every subset K of S, if ϕ[K ] ⊆ K , then there exists at least
one (and, by art. 84, at most one) x ∈ K such that the subalgebra of (S, ϕ) generated
by {x} is K . Besides, in art. 98, Dedekind defined the initial segment determined by
a natural number n, i.e., defines the set {1, . . . , n}, and introduces the useful notation
Zn for it. Observe that Dedekind wrote, in this respect, the following:

If n is any number, then we shall denote by Zn the system of all numbers that
are not greater than n, and hence not contained in n′

0 …

Therefore, in doing so, Dedekind was defining Zn as N − n′
0, i.e., by using, once

more, the difference between sets. Concerning the relation “<” we recall that, given
an algebraic signature Σ and a Σ-algebra A = (A, (Fσ )σ∈Σ), we obtain a binary
relation SA on A, the algebraic successor relation on A, defined as follows:

SA =
{

(a, b) ∈ A2
∣
∣
∣
∣

∃n ≥ 1 ∃σ ∈ Σn ∃(x j ) j∈n ∈ An

such that b = Fσ (x j | i ∈ n) and ∃k ∈ n (xk = a)

}

.

If aSAb, then we say that b is an algebraic successor of a, or that a is an algebraic
predecessor of b. Then, using SA, we define the binary relation <A on A as StA =⋃

n∈N−1 S
n
A, the transitive closure of SA. For theDedekind–Peano algebras the relation

<A is an strict order, i.e., an irreflexive and transitive relation on A, and satisfies the
minimal condition, and in this case <A is called the natural ordering on A. One can,
informally, say that a Dedekind–Peano algebraA = (A, (Fσ )σ∈Σ) is “ordered” by the
family (Fσ )σ∈Σ of its structural operations. Moreover, it happens that the Dedekind–
Peano algebra of the natural numbers is linearly ordered by its natural ordering. This
may explain why Dedekind (1888, art. 71) changed his terminology, concerning the
structural mapping ϕ, by writing the following: “…and say the simply infinite system
N is ordered by this mapping ϕ.”

Dedekind devoted § 8 to investigating the finite and infinite parts of the set of all
natural numbers. In particular, he characterized the finite and infinite parts of N in
terms of the well-ordering < on N as: a part T of N is finite if, and only if, T has a
greatest element, or, what is equivalent, a part T of N is infinite if, and only if, there
does not exist a greatest element in T .

In § 9Dedekind proved, for the first time in the history ofmathematics, the principle
of definition bymathematical recursion. This principle, in category-theoretic terms and
using N, states that the following diagram
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1
κ0

N
sc

N

where κ0 is the mapping from 1 to N that sends 0 to 0 and sc the successor mapping,
is an initial object in the category Srd, of simple recursion data (see Manes and Arbib
1986, p. 53–54). It has been proposed by Lawvere (1964, p. 1507) as one of the axioms
for a category-theoretic approach to the foundations of mathematics. We will show,
in Sect. 4, that in his proof of this principle Dedekind used, in an implicit way, the
concept of an inductive cone from an inductive system of sets and that of the inductive
limit of an inductive system of sets. With regard to the principle under consideration
Lawvere (1964, p. 1508) announced without proof the following theorem: “All of
Peano’s Postulates hold for N”. This provides an example of the fact that the axioms
used to specify a certain type of mathematical object are not necessarily unique, and in
addition, it shows that the principle of definition by mathematical recursion is strictly
stronger than the principle of proof by mathematical induction. Actually, we have the
following theorem.

Theorem An ordered triple A = (A, f, e), where A is a set, f an endomorphism
of the set A, and e an element of A, is a Dedekind–Peano algebra if, and only if, A
satisfies the principle of definition by mathematical recursion, i.e., for every ordered
triple A′ = (A′, f ′, e′), where A′ is a set, f ′ : A′ �� A′, and e′ ∈ A′, there exists a
unique mapping h : A �� A′ such that κe′ = h ◦ κe and h ◦ f = f ′ ◦ h, where κe is
the mapping from 1 to A that sends 0 to e, and κe′ the mapping from 1 to A′ that sends
0 to e′.

That A satisfies the principle of definition by mathematical recursion if A is a
Dedekind–Peano algebra is the content of Dedekind’s § 9.

In § 10, Dedekind investigated the class of simply infinite systems. Specifically,
he stated, in art. 132, that any two simply infinite systems are isomorphic (this the-
orem follows from the principle of definition by mathematical recursion)—from the
viewpoint of mathematical logic this theorem asserts the categoricity of the concept
of simply infinite system. Then in art. 133, he stated that every system isomorphic to
the underlying system of a simply infinite system is also equipped with a structure
of simply infinite system, which is certainly an example of the principle of transport
of structure or, what is equivalent, of the principle that structure is abstract. Thus we
can see in these theorems of Dedekind’s—which together state that simply infinite
systems are unique up to a unique isomorphism—his interest in the subject of what
the right morphisms are between structured sets and an instance of those properties
which are characteristic of the category-theoretic universal constructions.

In §§ 11–13, Dedekind defined the arithmetical operations of addition, multipli-
cation, and exponentiation and proved their essential properties (in particular, the
compatibility of the order relation with the addition). We notice that, e.g., addition
is obtained by Dedekind from a countably infinite family (+m)m∈N : N �� N N ,
where each of the mappings +m : N �� N is given by applying the principle
of definition by mathematical recursion. Thus, +1 is idN , the identity mapping at
N , and, for m ∈ N − {1}, +m is such that +m(1) = sc(m) and, for n ∈ N ,
+m(sc(n)) = sc(+m(n)).
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At this stage, in order to support our claim about Dedekind’s anticipation of Gödel’s
notion of a primitive recursive mapping, we begin by recalling Gödel’s definition of
the above-mentioned set of number-theoretic mappings.

Gödel (1931, pp. 179–180) defined a subset PRM, the set of all “recursive”
mappings (currently known as the set of all primitive recursive mappings) of⋃

n∈NHom(Nn, N), the set of all number-theoretic mappings—a “parenthetic con-
sideration” for him—as follows:

Eine zahlentheoretische Funktion φ heißt rekursiv, wenn es eine endliche Reihe
von zahlentheoretischen Funktionen φ1, φ2, . . . , φn gibt, whelche mit φ endet
und die Eigenschaft hat, daß jede Funktion φk der Reihe entweder aus zwei der
vorhergehenden rekursiv definiert ist oder aus irgend welchen der vorherge-
henden durch Einsetzung entsteht oder schließlich eine Konstante oder die
Nachfolgerfunktion x +1 ist. [A number-theoretic function φ is said to be recur-
sive if there is a finite sequence of number-theoretic functionsφ1, φ2, . . . , φn that
ends with φ and has the property that every function φk of the sequence is recur-
sively defined in terms of two of the preceding functions or results from any of
the preceding functions by substitution, [here Gödel adds a footnote explaining
more precisely the meaning of the expression “by substitution” (durch Einset-
zung), we add] or, finally, is a constant or the successor function x + 1.]

Let us notice the formal identity of the above definition of the notion of primitive
recursivemapping and the definition of the concept of proof of a sentence ϕ.Moreover,
from such a definition one concludes that a number-theoretic mapping is primitive
recursive if, and only if, it belongs to the union of the underlying many-sorted set of
a suitable subalgebra of a convenient many-sorted algebra with (Hom(Nn, N))n∈N as
underlying many-sorted set and equipped with a family of constants, the successor
mapping, families of operators of primitive recursion, and families of operators of
substitutions.

Remark 2 The reader will find in Appendix A a many-sorted algebraic model of the
theory of primitive recursive mappings.

We suggest that Dedekind clearly anticipated Gödel’s theory of primitive recur-
sive mappings, since from the principle of definition by mathematical recursion the
parameterized operation of primitive recursion (≡ recursion ≡ primitive recursion)
immediately follows. This operation, together with the generalized composition (≡
substitution) of number-theoretic mappings—itself an obvious generalization of the
composition of mappings, which, as we have already seen, was clearly defined by
Dedekind—is, froma structural standpoint, at the basis of such a theory. Thus, although
recursion theory, like other theories, did not reach a mature form with Dedekind, it
had at least a substantial beginning with him.

Remark 3 The readerwill also find inAppendixAadiagrammatic proof of the fact that
the three basic mathematical operations, addition, multiplication, and exponentiation,
defined by Dedekind in §§11–13 of Dedekind (1888), are primitive recursive.

123



The modernity of Dedekind’s anticipations. . . 119

In §14 art. 159, Dedekind proved the following theorem: “IfΣ is an infinite system,
then every one of the number-systems Zn defined in 98 is similarly representable into
Σ (i.e., similar to a part of Σ), and conversely”.

Note that in his proof of this theorem, specifically of the converse part, Dedekind
considered, for a set Σ and every n, the set M(Zn,Σ) of all injective mappings
from Zn to Σ and an element (αn)n∈N of

∏
n∈N M(Zn,Σ), as arbitrarily given, or

as he said: “regarded as given, but respecting which nothing further is assumed”.
Thus we have, in this case, as Zermelo pointed out, an implicit use of the count-
able axiom of choice by Dedekind. From here, with the aid of the principle of
definition by mathematical recursion, he proved the existence of a new family of
such mappings (ψn)n∈N possessing the special property that whenever Zm ⊆ Zn ,
the mapping ψm of the part Zm is contained in the mapping ψn of Zn , i.e., the
mappings ψm and ψn completely coincide with each other for all numbers con-
tained in Zm (i.e., ψn � Zm , the restriction of ψn to Zm , is ψm), so that always
ψm(m) = ψn(m).

To this end, he defined an appropriate triple (Ω, θ, ω) consisting of a set Ω , a
mapping θ from Ω to Ω , and an ω ∈ Ω . Actually, in art. 159, he wrote: “we under-
stand by Ω that system whose elements are all possible similar representations of
all systems Zn into Σ .” Hence Ω = ⋃

n∈N M(Zn,Σ), and, here, Dedekind, in
addition to considering functional sets and the union of a countably infinite family
of sets, made use, implicitly, of the axiom schema of replacement to obtain the set
{M(Zn,Σ) | n ∈ N } from the functional condition consisting in associating to each
n ∈ N the setM(Zn,Σ).

Moreover, Dedekind explicitly defined the mapping θ from Ω to Ω as follows.
Since Ω = ⋃

n∈N M(Zn,Σ) and (M(Zn,Σ))n∈N is a family of pairwise disjoint
sets, to give a mapping θ from Ω to Ω is equivalent, by the universal property of the
coproduct—in this case of the disjoint union—to give a family (θn)n∈N where, for
every n ∈ N , θn is a mapping from M(Zn,Σ) to Ω , i.e., a family (θn)n∈N should
be chosen in

∏
n∈N Hom(M(Zn,Σ),Ω). But it happens that, for every n ∈ N and

β ∈ M(Zn,Σ), θn(β) : Zn′ ��Σ is exactly the mapping γ defined by Dedekind
in his proof. So here the axiom of choice is not used, because the components of
the family (θn)n∈N are explicitly defined and, in addition, in a uniform or natural
way. (The axiom of choice is not always necessary when making a simultaneous and
independent choice of elements.) We summarize his definition of the mapping θ as
follows:

M(Zn,Σ)
inn

θn

Ω = ⋃
n∈N M(Zn,Σ)

θ = [θn]n∈N

Ω = ⋃
n∈N M(Zn,Σ)
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where inn is the canonical inclusion fromM(Zn,Σ) to Ω , θn is defined as follows:

θn

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M(Zn,Σ) �� Ω

β �−→ θn(β)

⎧
⎪⎨

⎪⎩

Zn′ �� Σ

m �−→
{

β(m), if m ∈ Zn;
αn′(k), if m = n′,

with k = min{ p ∈ Zn′ | αn′(p) /∈ β[Zn] }, and θ = [θn]n∈N is the unique mapping
from Ω to Ω such that, for every n, [θn]n∈N ◦ inn = θn . Moreover, he took for ω

precisely α1.
Then Dedekind obtained, by means of the principle of definition by mathematical

recursion, from α1 ∈ Ω and θ , the family (ψn)n∈N in
∏

n∈N M(Zn,Σ) possessing
the special property that whenever Zm ⊆ Zn ,ψn � Zm = ψm . Therefore, if, similarly to
whatwe did in Sect. 2with regard to a theoremofCantor, we consider the family of sets
(M(Zn,Σ))n∈N and, on the other hand, the family of transition mappings ( fn′,n)n∈N ,
where, for every n ∈ N , fn′,n is the mapping fromM(Zn′ ,Σ) toM(Zn,Σ) obtained
from the canonical embedding of Zn into Zn′ , then we obtain a projective system of
sets, denoted by M(Σ) and it happens that (ψn)n∈N ∈ lim←−M(Σ), the projective
limit ofM(Σ). Thus Dedekind had, constructively, proved that lim←−M(Σ) �= ∅ and,
consequently, that the canonical embedding of lim←−M(Σ) into

∏
n∈N M(Zn,Σ) is a

section.
To the above we add that in the last step of the proof of the theorem at issue—to

prove that there exists an injective mapping χ from N to Σ—Dedekind explicitly
defined χ by making use of the family (ψn)n∈N . Actually, χ = [

ψn ◦ in{n},Zn

]
n∈N is

the unique mapping from N to Σ such that, for every n ∈ N , the following diagram

{n} in{n},N

in{n},Zn

N = ⋃
n∈N {n}

χ = [
ψn ◦ in{n},Zn

]
n∈N

Zn
ψn

Σ

commutes, where in{n},Zn is the canonical embedding of {n} into Zn and in{n},N the
canonical embedding of {n} into N .

There is no doubt for us, grounding our conviction on his actual work, that Dedekind
was well aware of how to define mappings from the union

⋃
i∈I Ai of a family (Ai )i∈I

of pairwise disjoint sets to another set B, when, for every i ∈ I a mappings fi from
Ai to B is available—which is an instance of a universal property. This procedure, as
shown above, is twice implicit in the proof of the above theorem and once, as we will
see, in the theorem stated in art. 160.

In art. 160,Dedekind proved the following theorem: “A systemΣ is finite or infinite,
according as there does or does not exist a system Zn similar to it”. In this connection,
Zermelo (2010, p. 259) once again highlighted Dedekind’s implicit use of the axiom
of choice in his proof. We notice that Dedekind inferred, from the hypothesis that a
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set Σ is finite and the theorem stated in art. 159, that there exists a Zn such that the
set M(Zn,Σ) = ∅. But since for every (nonempty) set S, there exists an injective
mapping from Z1 to S, he concluded that min{n ∈ N | M(Zn,Σ) = ∅} must be of
the form n′, i.e., of the form sc(n), for a (unique) n ∈ N . Therefore, because n < n′,
there exists an injective mapping ψ from Zn to Σ . Then, to prove that ψ[Zn] = Σ ,
Dedekind proceeded by reductio ad absurdum. Thus, he supposed that ψ[Zn] ⊂ Σ

and selected an element α from the set Σ − ψ[Zn]. From here, since Zn ∩ {n′} = ∅,
Dedekind obtained a new injective mapping ϕ from Zn′ , which is Zn ∪ {n′}, to Σ by
using the injective mapping ψ from Zn to Σ and the mapping from {n′} to Σ which
sends n′ to α. But, by hypothesis, M(Zn′ ,Σ) = ∅. Hence ψ[Zn] = Σ and Zn is
isomorphic to Σ .

Moreover, from art. 161 to art. 171, Dedekind defined, among other things, the
concept of cardinal number of a finite set and stated someof its fundamental properties.
We notice that Dedekind, in art. 166, considered, for a nonempty finite set B, the set
B ∪{γ } under the hypothesis that γ /∈ B (≡ B ∩{γ } = ∅) and that, in art. 168, for two
finite sets A and B, he says: “…and if A and B have no common element, then A ∪ B,
…”, thus allowing the empty set—recall that in art. 2, Dedekind had written: “…we
intend here for certain reasons wholly to exclude the empty system which contains no
element at all …” Moreover, in the proof of the theorem stated in art. 171, Dedekind
used, for the set {ψ−1[{α′}]|α′ ∈ ψ[Σ]} of all nonempty fibres of a noninjective
mapping ψ from a nonempty finite set Σ—set obtained from Sub(Σ) by applying
the axiom schema of separation—the finite version of what is today called Zermelo’s
principle: If P is a partition of a set A, then there exists a T ⊆ A such that, for every
P ∈ P , T ∩ P has exactly one element.

Finally, in art. 172, Dedekind wrote:

In this way we reach the notion, very useful in many cases [e.g., in classical
algebra, algebraic geometry, and complex function theory, we add], of systems
in which every element is endowed with a certain frequency-number which
indicates how often it is to be reckoned as an element of the system.

Here Dedekind foresaw, for a set S, what is currently known as the concept of multiset
over S, i.e., the set N(S) of all mappings x from S to N such that card(supp(x)) < ℵ0,
where supp(x), the support of x , is {s ∈ S | x(s) �= 0}, which is the underlying set
of the free abelian monoid on S. Once more, another solution to a universal problem.
And also pointing to the fact that multisets, unlike sets, do not satisfy the principle of
extensionality.

After having surveyed the contents of Dedekind (1888), trying to understand their
true originality, we would now like to highlight certain issues which have already been
raised in the above survey.

Dedekind, in addition to having used, as it is obvious, the relations of inclusion and
of strict inclusion, as well as the union and intersection of sets, used the difference
of two sets (obtained by, implicitly, applying the axiom schema of separation), as
we have seen, e.g., in the theorems stated in art. 63, and in art. 87, as well as in the
definition established in art. 98, and also employed—as an attentive reading shows—
Cartesian products, functional sets (≡ mapping sets), and even natural isomorphisms

123



122 J. Climent Vidal, J. Soliveres Tur

between functional sets. Thus, e.g., in art. 131, Dedekind stated, for a set Ω , a (nat-
ural) isomorphism between the set of all binary operations on Ω , i.e., the set of all
mappings from Ω × Ω to Ω , and the set of all mappings from Ω to End(Ω), the set
of all endomorphisms of the set Ω , which is a precursor of the theorem of Curry–
Schönfinkel—according to which, for every set A, the functor (·)A from Set, the
category of sets and mappings, to Set is right adjoint to the functor A × (·) between
the same categories. Dedekind also stated in art. 131, as a theorem, that given a mono-
unary algebra (S, ω) and a subset A of S, the subalgebra of (S, ω) generated by A,
A0, is precisely A ∪ ⋃

n∈N ωn[A], and he says: “We advise the reader to return to the
earlier theorems 57 and 58 with this conception of a chain.”

Dedekind possibly made such a recommendation in order that we might become
aware, now that the natural numbers are available to us, of the following facts:
(1) there is an alternative proof of the theorem stated in art. 57 and (2) the subal-
gebra generated by a subset A of S has another, constructive, description as the
union of an ascending chain of subsets of S, obtained by applying the principle
of definition by mathematical recursion—something that he could not do in art. 58
because up until then the set of all natural numbers was not formally available to him.
From here it follows that Dedekind has proved the coincidence between an impred-
icative, top-down, definition of Sg(S,ω) and a constructive, bottom-up, definition of
Sg(S,ω).

We close this section by reiterating that Dedekind can be regarded, in particu-
lar and by restricting our attention to Dedekind (1888)—after having linked every
factual statement to supporting evidence—as one of the precursors of universal alge-
bra, category theory, the theory of primitive recursive mappings, and of some axioms
of set theory. As for category theory, we highlight his instrumental use of both the
concept of set and that of mapping, together with the identity mappings, the partial
operation of composition of mappings, and their fundamental properties: identities act
as identities with respect to composition, and composition is associative. For Frege,
incidentally, these were not logical notions (any more than the membership relation
was logical for him). Moreover, contrary to what Frege and Dedekind thought, nowa-
days we know that a logic (understood, as we have said in Sect. 1, as a suitable
combination of two components: a proof-theoretical and a model-theoretical one)
cannot prove the existence of anything, let alone of infinite sets. Furthermore, we
remark that the views of Frege and Dedekind about the essence of natural numbers
are radically different. In fact, for Frege the natural numbers are defined by means
of another idea—the extension of a concept—they are the sequence determined by
a certain procedure, and they do not admit of any kind of polymorphism, i.e., are
absolutely unique, while for Dedekind they are defined globally, i.e., up to isomor-
phism (Dedekind 1888, art. 73 and §10), as a construct (i.e., a set equipped with
extra structure) characterized by a (categorical and finitely axiomatizable) system of
axioms. We have here a concrete example of the extreme modernity of the mathemat-
ical thought of Dedekind, which allows us to conclude that Dedekind had broken
loose from old habits of mathematical thinking and had left the narrow classical
mathematical world completely. In this respect, it is most enlightening to compare
what we have just stated about Dedekind with what Grothendieck (1971, p. 194)
says about “raisonner directement sur des catégories fibrées sans utiliser des clivages
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explicites,” by omitting the cleavage as a part of the structure of the concept of fibred
category:

Il est d’ailleurs probable que, contrairement à l’usage encore prépondérant main-
tenant, lié à d’anciennes habitudes de pensée, il finira par s’avérer plus commode
dans les problémes universels, de ne pas mettre l’accent sur une solution sup-
posée choisie une fois pour toutes, mais de mettre toutes les solutions sur un
pied d’égalité.

4 Dedekind’s principle of definition by mathematical recursion

In this section, we shall show that Dedekind (1888, §9) used, in an implicit way,
both the notion of an inductive cone from an inductive system of sets and that of the
inductive limit of an inductive system of sets in his proof of the principle of definition
by mathematical recursion. But before doing that we first explain, in a succinct way,
how other mathematicians proceeded at the time with regard to this principle and,
on the basis of Hilbert’s first-hand report, we show that, unfortunately, the impact of
Dedekind’s algebraic approach to the foundation of the system of natural numbers
appears to have had no influence on his fellow mathematicians. Yet right now, and
linked to this last point, we notice that it was not until many years later that this aspect
of Dedekind’s approach had any influence. Concretely, this happened when universal
algebra and category theory, after reaching the appropriate degree of maturity, were
able to grasp and show the essence of some profoundmathematical ideas clearly. Thus,
for example, the principles of proof by mathematical induction and of definition by
mathematical recursion were generalized, by the working universal algebraist, to the
principles of proof by algebraic induction and of definition by algebraic recursion,
respectively (see the remark at the end of this section), and the principle of definition
by mathematical recursion was proved to be equivalent, by working categoricians, to
the axioms of Dedekind–Peano. To this we add that, among other things, what makes
Dedekind’s principle of definition by mathematical recursion remarkable is—in addi-
tion to the just-mentioned facts and its use to prove, e.g., that a certain projective limit
is nonempty, as we have seen in Sect. 3—that from this principle the parameterized
operation of primitive recursion immediately follows, which, together with the gen-
eralized composition of number-theoretic mappings and some basic number-theoretic
mappings, is at the basis of the theory of primitive recursive mappings. Indeed, the
set formed by gathering together the mappings involved in this theory is, within the
hierarchy of the constructive number-theoretic mappings, one of themost fundamental
types.

Although it is true that, e.g., Grassmann (1861), Peirce (1881), and Peano
(1889), apparently recursively defined the basic arithmetical operations—sum, prod-
uct, and exponentiation—their definitionswere not in anywaymathematically justified
because these authors lacked a principle of definition by mathematical recursion and
also, what is certainly more important, its corresponding proof. Even Dedekind in
Gedanken über die Zahlen (Dugac 1976, p. 300), composed between 1872 and 1878,
was fully aware of the fact that he did not yet have a correct proof of the principle of
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definition by mathematical recursion—in contrast to his conviction of the correctness
of his proof of the principle of proof by mathematical induction—because he wrote:

Der Beweis der Richtigkeit der Beweismethode von n auf n +1 ist richtig; dage-
gen ist derBeweis (Vollständigkeit) derBegriffserklärungdurchdieMethodevon
n auf n +1 an dieser Stelle noch nich genügend; die Existenz (widerspruchsfrei)
des Begriffs bleibt zweifelhaft. Dies wird erst möglich durch die Deutlichkeit
durch die Betrachtung des Systems [n]!!!!!! Fundament. [The proof of the cor-
rectness of the method of proof from n to n + 1 is correct; in contrast, the proof
(completeness) of the definition of concepts by the method from n to n +1 is not
yet sufficient at this point; the existence (free of contradictions) of the concept
remains in doubt. This will become possible only by the distinctness, by the
consideration of the system [n]!!!!!! Foundation.]

From this it follows that, for Dedekind, a recursive definition is definitely only admis-
sible if it has been proved that such a definition unequivocally characterizes that
which is intended to be defined with it. And by taking account of this fact cleanly and
explicitly in the formulation and proof of his principle of definition by mathemati-
cal recursion, Dedekind (1888) made a substantial and invaluable contribution to the
rigorous development of arithmetic as a science in its own right.

It is worth noting that Bertrand Russell in his discussion of Dedekind’s pamphlet
in Chapter XXX—entitled “Dedekind’s theory of number”—of Russell (1903), sur-
prisingly, among other remarkable omissions, mentions neither Dedekind’s principle
of definition by mathematical recursion nor its explicit use by Dedekind to obtain the
basic arithmetic operations. Actually, Russell (1903, p. 245) wrote the following:

The fundamental ideas of the pamphlet in question are these: (1) the represen-
tation (Abbildung) of a system (21); (2) the notion of a chain (37); (3) the chain
of an element [sic] (44); (4) the generalized form of mathematical induction
(59); (5) the definition of a singly infinite system (71). From these five notions
Dedekind deduces numbers and ordinary Arithmetic.

And, after explaining these notions and then mentioning that Dedekind proceeded to
deduce the various properties of simply infinite systems, in particular, the principle of
proof bymathematical induction, art. 80, to define the order relation between numbers,
art. 89, and to state some of its properties, arts. 88, 90, Russell (1903, p. 247), somewhat
rashly—taking into account what has been stated until now in this article—wrote:
“From this point everything proceeds simply”, and “The only further point that seems
important for our present purpose is the definition of cardinals”.

Before continuing with our exposition, we notice that Heck (2012) has been able to
detect—concealed among the convoluted ideograms used by Frege (1966), which, by
the way, is by no means a lesser merit—that Frege formally proved, in addition to (a
generalized form of) the principle of proof by mathematical induction, the principle
of definition by mathematical recursion. In this respect, it is interesting to recall that
Frege (1879), after defining

(1) a procedure (Verfahren) as a binary relation,
(2) for a procedure f , when a property F is f -hereditary,
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(3) the binary relation < f of f -precedence (≡ proper ancestral), and
(4) the binary relation ≤ f as the reflexive closure of the relation < f (≡ ancestral),
proves, among other theorems about the general theory of sequences (allgemeine
Reihenlehre), that, given a procedure f and a property F , if F is f -hereditary, x has the
property F and x < f y, then y also has the property F . And this theorem—interpreting
x as 0 and f as the successormapping—is the foundation of the (generalized) principle
of proof by mathematical induction (generalized because f is a relation and not
necessarily a mapping).

Moreover, to partially understand the reduced or almost nil impact of What are
numbers and what are they good for? on the Dedekind’s contemporaries, we have to
recall the qualified testimony of Hilbert (1931, p. 487) on the mathematicians’ opinion
about the mentioned work:

Auf meiner ersten Station, in Berlin, hörte ich in allen mathematischen Kreisen
bei jung und alt von der damals eben erschienenen Arbeit Dedekinds „ Was sind
und was sollen die Zahlen?“ sprechen — meist in gegnerischem Sinne. [On my
first stop, in Berlin, I heard in all mathematical circles that everyone, young and
old, talked about Dedekind’s essay “What are numbers and what are they good
for?”, which had just then appeared—but mostly in an hostile sense.]

And, in this regard, we must point out that such hostility towards Dedekind’s essay
came from the prevailing mathematical community at that time: that of the algorith-
mic mathematicians. On this matter, one has to take into account that when speaking
about nineteenth-century mathematicians, they can be classified, in a broad sense, into
two classes (not necessarily mutually exclusive): the one of the computational mathe-
maticians and the one of the conceptual mathematicians. The first class, represented,
inter alia, by Kronecker—a dominant figure in the mathematical panorama of the last
third of the late nineteenth century—is essentially typified by upholding, to a greater
or lesser degree, the following principles. Natural numbers are given, they are not in
need of any foundation, and everything else must be constructed. This is substantiated,
e.g., in the following dictum uttered by Kronecker in a talk at the 1886 meeting of
the Berliner Naturforscher-Versammlung and quoted by Weber (1891, p. 19) in his
obituary of Kronecker (who died in 1891):

Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.
[The good Lord made the integers, but all else is the work of man.]

For these people, only potentially infinite sets, decidable definitions, and constructive
proofs of existence are admissible in mathematics. The second class, which includes,
among others, to Dedekind, is characterized by the acceptance of actually infinite
sets—completed infinite sets—by establishing natural and canonical definitions—not
subject to any decidability constraints—by stating concise and accurate theorems—
without necessarily requiring proofs of constructive character for those of existential
type—and by setting up general theories—having models not necessarily pairwise
isomorphic. And also by the strengthening of demonstrative exactitude, by a strong
turn towards abstraction, and by the elimination of any appeal to intuition.
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Before showing the implicit use made by Dedekind, in his proof of the principle
of definition by mathematical recursion, of the concepts of an inductive cone from an
inductive system of sets and of the inductive limit of an inductive system of sets—
which until now, to the best of our knowledge, nobody has noticed—for completeness
of exposition, we next recall these concepts.

An inductive system of sets is an ordered pair (I,A) where I = (I,�) is an upward
directed preordered set, and A = ((Ai )i∈I , ( fi,i ′)(i,i ′)∈�) such that:

1. ∀ i ∈ I , Ai is a set.
2. ∀ (i, i ′) ∈�, fi,i ′ : Ai �� Ai ′ .
3. ∀ i ∈ I , fi,i = idAi .
4. ∀ i, i ′, i ′′ ∈ I , if (i, i ′) ∈� and (i ′, i ′′) ∈�, then fi,i ′′ = fi ′,i ′′ ◦ fi,i ′ .

The mappings fi,i ′ : Ai �� Ai ′ are called the transition mappings of the inductive
system of sets (I,A). We notice that A is a covariant functor from C(I), the category
canonically associated with I, to Set, the category of sets (in a fixed Grothendieck
universe U ) and mappings.

Let (I,A) be an inductive systemof sets.An inductive cone from (I,A) is an ordered
pair (L , ( fi )i∈I ) where L is a set and, for every i ∈ I , fi : Ai �� L , such that, for
every (i, i ′) ∈�, fi = fi ′ ◦ fi,i ′ . On the other hand, a morphism from (L , ( fi )i∈I ) to
another inductive cone (L ′, ( f ′

i )i∈I ) from (I,A) is a mapping h from L to L ′ such
that, for every I ∈ I , f ′

i = h ◦ fi . Then an inductive limit of (I,A) is an initial
inductive cone from (I,A), i.e., an inductive cone (L , ( fi )i∈I ) from (I,A) such that,
for every inductive cone (L ′, ( f ′

i )i∈I ) from (I,A), there exists a unique morphism
from (L , ( fi )i∈I ) to (L ′, ( f ′

i )i∈I ). If (L , ( fi )i∈I ) is an inductive limit of (I,A), which
is unique up to isomorphism, then lim−→(I,A) stands for L .

Remark 4 The set lim−→(I,A) is the quotient set
∐

i∈I Ai/R(I,A) where R(I,A) is
the smallest equivalence relation on

∐
i∈I Ai (= ⋃

i∈I (Ai × {i})), the coproduct of
the family of sets (Ai )i∈I , that contains all ordered pairs in

∐
i∈I Ai of the form

((x, i), ( fi,i ′(x), i ′)), where x ∈ Ai and (i, i ′) ∈�. And, for every i ∈ I , fi is the
composition of ini , the canonical embedding of Ai into

∐
i∈I Ai , and prR(I,A)

, the
canonical projection from

∐
i∈I Ai to

∐
i∈I Ai/R(I,A).

We now try to illuminate, as far as we can, this last technical concept. The inductive
limit lim−→(I,A)—along with the mappings fi from Ai to lim−→(I,A)—of an inductive
system (I,A) is the optimal way of classifying the sets Ai (after putting them together
but not mixing them) that occur in the net of interactions between them given by
the transition mappings fi,i ′ : Ai �� Ai ′ of the inductive system (I,A). As Aristotle
(1984, Z 17, 1041b11–1042a2) wrote:

As regards that which is compounded out of something so that thewhole is one—
not like a heap, however, but like a syllable,—the syllable is not its elements, ba
is not the same as b and a, nor is flesh fire and earth; for when they are dissolved
the wholes, i.e. the flesh and the syllable, no longer exist, but the elements of
the syllable exist, and so do fire and earth. The syllable, then, is something—not
only its elements (the vowel and the consonant) but also something else; and the
flesh is not only fire and earth or the hot and the cold, but also something else.
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We next recall the statements, but not the proofs, of Dedekind’s theorems contained
in arts. 125, and 126 (written in slanted typeface) of § 9 of Dedekind (1888)—as
translated into English by Ewald (1996, pp. 816–818)—to make our paper as self-
contained as possible. And working directly on them we will attempt to show that the
concepts of an inductive cone from an inductive system of sets and of the inductive
limit of an inductive system of sets are implicit in his proof of the principle of definition
by mathematical recursion.

But before doing that we make the following, obvious, observation. We consider,
on the one hand, the well-ordered set N = (N,≤) and, on the other hand, the ordered
pair

((n)n∈N−1, (inn,sc(n))n∈N−1),

where, for every n ∈ N − 1, n is {0, . . . , n − 1} and inn,sc(n) the canonical embed-
ding of n into sc(n) = n ∪ {n}. Then the pair (N,N ), where N is the ordered pair(

(n)n∈N−1, (inm,n)m,n∈N−1
m≤n

)

in which, for every m, n ∈ N − 1 with m ≤ n, we let

inm,n stand for:

inm,n = insc(n−2),sc(n−1) ◦ · · · ◦ inm,sc(m) = inn−1,n ◦ · · · ◦ inm,sc(m),

is an inductive system of sets.
Dedekind’s art. 125 says the following.
125. Theorem. Given an arbitrary (similar or dissimilar) mapping θ of a system Ω

into itself, and given a determinate element ω in Ω , then to every number n there cor-
responds one and only one mapping ψn of the associated number-system Zn explained
in (98), which satisfies the conditions2

I. ψn(Zn) ≺ Ω ,
II. ψn(1) = ω,
III. ψn(t ′) = θψn(t), if t < n, where the symbol θψn has the meaning given in

(25).
In the sequel, N = {0, 1, . . .} and n = {0, . . . , n − 1} stand for N = {1, 2, . . .}

and Zn = {1, . . . , n}, respectively. And, in consequence, all involved mappings are
redefined taking care of such a convention. This is an inessential variation with regard
to Dedekind’s notation, but it is in accordance with current standards in set theory.

In art. 125, Dedekind, from a triple (Ω, θ, ω), showed, by means of the principle
of proof by mathematical induction, that there exists a family of mappings (ψn)n∈N−1
in

∏
n∈N−1 Hom(n,Ω) such that, for every n ∈ N − 1, the mapping ψn from n to Ω

satisfies the following conditions:

1. ψn(0) = ω, and
2. for every i ∈ {0, . . . , n − 2}, ψn(sc(i)) = θ(ψn(i)) = θ sc(i)(ω).

2 For clearness here and in the following theorem (126) I have especially mentioned condition I, although
properly it is a consequence of II and III.
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Consequently, for every i ∈ {0, . . . , n − 2}, we have that:

ψn(sc(0)) = θ(ψn(0)) = θ sc(0)(ω) = θ(ω)

ψn(sc(1)) = θ(ψn(1)) = θ sc(1)(ω) = θ2(ω)
...

ψn(sc(n − 2)) = θ(ψn(n − 2)) = θ sc(n−2)(ω) = θn−1(ω)

From this it immediately follows that, for every n ∈ N − 1 and every i ∈ n,
we have that ψn(i) = ψsc(n)(i), i.e., that ψsc(n) �n , the restriction of the mapping
ψsc(n) : sc(n) ��Ω to n, is equal to the mapping ψn from n to Ω .

We notice that Dedekind did not restrict himself here to simply proving that∏
n∈N−1 Hom(n,Ω) is not empty (which is obvious, since, e.g., the family of map-

pings (κn)n∈N−1, where, for every n ∈ N − 1, κn is the mapping from n to Ω that,
to every i ∈ n, assigns ω, belongs to it). What he did was to obtain, explicitly—in
this case by means of the principle of proof by mathematical induction—a family of
mappings (ψn)n∈N−1 in

∏
n∈N−1 Hom(n,Ω), by constructing each of its components,

ψn , and all in such a way that each of them satisfies some specific conditions and,
moreover, are such that, for every n ∈ N − 1, ψsc(n)�n= ψn .

As we will see below, the above art. 125 can be interpreted as saying that in it
Dedekind has defined an inductive cone from the inductive system of sets (N,N )

defined above.
Dedekind’s art. 126 says the following.
126. Theorem of definition by induction. Given an arbitrary mapping θ (similar or

dissimilar) of a system Ω into itself, and given a determinate element ω in Ω , then
there exists one and only one mapping ψ of the number-series N which satisfies the
conditions

I. ψ(N ) ≺ Ω ,
II. ψ(1) = ω,
III. ψ(n′) = θψ(n), where n represents every number.

In art. 126,Dedekind, froma triple (Ω, θ, ω) and the family ofmappings (ψn)n∈N−1
in

∏
n∈N−1 Hom(n,Ω) obtained in art. 125, showed that there exists a uniquemapping

ψ from N to Ω defined, for every i ∈ N, as ψ(i) = ψsc(i)(i), and that it fulfils the
following conditions:

1. ψ(0) = ω, and
2. for every n ∈ N, ψ(sc(n)) = θ(ψ(n)).

In fact,ψ(0) = ω becauseψ(0) = ψsc(0)(0) = ω, by the definition ofψ and ofψsc(0).
Moreover, for every n ∈ N, ψ(sc(n)) = θ(ψ(n)), because

ψ(sc(n)) = ψsc(sc(n))(sc(n)) = θ(ψsc(n)(n)) = θ(ψ(n)),

by the definition of ψ and of ψsc(sc(n)).
On the other hand, from the fact that, for every i ∈ N, we have thatψ(i) = ψsc(i)(i),

it follows that: ψ(0) = ψ1(0) (from which we get that ψ ◦ in1,N = ψ1, where in1,N is
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the canonical embedding of 1 into N); ψ(1) = ψ2(1) (from which we get, since also
ψ2�1= ψ1, that ψ ◦ in2,N = ψ2, where in2,N is the canonical embedding of 2 into
N), etc. So, by the principle of proof by mathematical induction, for every n ∈ N − 1,
we have that ψ ◦ inn,N = ψn , where, for every n ∈ N − 1, inn,N is the canonical
embedding of n into N. Conversely, for each ψ ′ : N ��Ω , if, for every n ∈ N − 1,
we have that ψ ′ ◦ inn,N = ψn , then ψ ′, necessarily, must be such that, for every i ∈ N,
ψ ′(i) = ψsc(i)(i).

We finally set out what is implicit in Dedekind’s proof of the principle of definition
by mathematical recursion.

For the family of mappings (ψn)n∈N−1 in art. 125, it happens that, for every n ∈
N−1, ψn = ψsc(n) ◦ inn,sc(n), i.e., that, for every n ∈ N−1, ψsc(n)�n= ψn . Hence, for
the family of mappings (ψn)n∈N−1, it holds, by the principle of proof by mathematical
induction, that, for every m, n ∈ N − 1 with m ≤ n, ψm = ψn ◦ inm,n , i.e., that, for
every m, n ∈ N − 1 with m ≤ n, ψn�m= ψm . In other words, that (Ω, (ψn)n∈N−1) is
an inductive cone from the inductive system (N,N ).

Afterwards, in art. 126, Dedekind, starting from a triple (Ω, θ, ω) and the family
of mappings (ψn)n∈N−1 in

∏
n∈N−1 Hom(n,Ω), proved, as we have seen above, that

there exists a unique mapping ψ from N to Ω such that, for every n ∈ N − 1,
ψn = ψ ◦ inn,N, i.e., that there exists a unique morphism from the inductive cone
(N, (inn,N)n∈N−1) to the inductive cone (Ω, (ψn)n∈N−1). In other words, that the
inductive cone (N, (inn,N)n∈N−1) from (N,N ) is a solution of a universal problem.

Remark 5 As it is well known, Dedekind’s principle of definition by mathematical
recursion is a particular instance, in the field of universal algebra, of the principle
of definition by algebraic recursion. Recall that, for an algebraic signature Σ and
the category Alg(Σ), of Σ-algebras and homomorphisms between Σ-algebras, the
last mentioned principle states that, for a set X (of variables), a Σ-algebra A, and a
mapping f from X to A, the underlying set of A, there exists a unique homomorphism
f � from TΣ (X), the free Σ-algebra on X , to A such that f = f � ◦ ηX , where ηX

is the canonical mapping from X to TΣ (X), the underlying set of TΣ (X), i.e., the
value at X of the unit of the adjunction from Set to Alg(Σ). Also the principle of
proof by mathematical induction, stated by Dedekind for mono-unary algebras, is a
particular case of the principle of proof by algebraic induction. Therefore, we can say
that Dedekind was a precursor of both principles in the field of universal algebra.

5 Dedekind and Birkhoff’s works in the 1930s on universal algebra and
lattice theory

In this section,we consider, on the one hand, towhat degreeGarrett Birkhoffwas aware
of the structural approach to algebra—to a large extent resulting from the algebraic
work of Dedekind—as carried out by Noether (herself inspired by Dedekind), by
Noether’s algebraic school (Götingen), and by Emil Artin (Hamburg) in the 1930s,
and, therefore, if he had an indirect influence of Dedekind, and, on the other hand, if
the above-mentioned booklet by Dedekind, because of its highly algebraic contents,
had any direct influence on Birkhoff in his work on universal algebra.
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It is apparent that classical universal algebra, as a mathematical discipline and as
we know it today, was not founded by Dedekind; it was founded by Birkhoff and it
came into being in Birkhoff (1935). We notice, in passing, that, in § 2 of the article just
mentioned, Birkhoff defined an abstract algebra as a pair (C, F), where C is a set and
F a set of operations, such that each operation fi ∈ F is a mapping from a set Di of
sequences of elements ofC, to be called the “proper domain” of fi , toC. Therefore each
fi is a mapping from a subset Di of

⋃
α∈Oi

Cα , where Oi is a set of, not necessarily
finite, ordinal numbers, to C. Hence the operations fi are, in Birkhoff’s terminology,
not “uniform”, i.e., its arguments do not have a fixed length, a generalization currently
abandoned (even by Birkhoff himself, who, from § 8 onwards of the above-mentioned
article, considered exclusively “uniform” operations, i.e., operations fi such that the
proper domain of fi is Cki , for some, possibly transfinite, ordinal ki ).

In order to carry out the foregoing it seemsfitting to begin by recallingwhatBirkhoff
said in Albers andAlexanderson (2008, p. 2) about his work on lattice theory (Birkhoff
1933) and his unawareness of Dedekind’s work on the same subject:

My ideas about lattices developed gradually. Philip Hall [though officially super-
vised by R. H. Fowler, Birkhoff, who spent 1932–33 in Cambridge, UK, was
Hall’s first research student, we add] did not know of the important work of
Dedekind on “Dualgruppen,” although he did call my attention to Fritz Klein’s
related papers on “Verbände.” It was my father who, when he told Ore at Yale
about what I was doing some time in 1933, found out from Ore that my lattices
coincided with Dedekind’s Dualgruppen. Ore had edited Dedekind’s collected
works [together with Robert Fricke and Emmy Noether in 1930–32, we add]. I
was lucky to have gone beyond Dedekind before I discovered his work. It would
have been quite discouraging if I had discovered all my results anticipated by
Dedekind.

Besides, we also have to suggest an attentive reading of Birkhoff (1934), which was
written after Ore called it to his attention to the close relation between his afore-
mentioned article and two earlier articles of Dedekind on “Dualgruppen”: Über
Zerlegungen von Zahlen durch ihre größten gemeinsamen Teiler (1897) and Über
die von drei Moduln erzeugte Dualgruppe (1900), reprinted as articles XXVIII (pp.
103–147) and XXX (pp. 236–271), respectively, in the second volume of Dedekind’s
Gessammelte mathematische Werke (published in 1931).

From the above quotation by Birkhoff it plainly follows that after having published
his ideas about lattices, he knew, at least since 1933, the articles byDedekind just cited.
Therefore, in principle, it is reasonable to think that hemight have been also acquainted
withDedekind’smasterpieceWas sind und was sollen die Zahlen?, whose sixth edition
(1930) was reprinted in 1932 (Dedekind, 1930-1932, Vol. III, art. LI, pp. 335–390).
However, as we shall see below, at least one sentence included in Birkhoff (1935)
certainly points to the fact that Was sind und was sollen die Zahlen? was not known
by him at that time, concretely from 1933 until 1935.

Birkhoff actually went far beyond the mono-unary algebras and the simply infinite
systems of Dedekind in his seminal paper: On the structure of abstract algebras
(Birkhoff 1935). Certainly, the principal results contained in the above-mentioned
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paper—for instance, as highlighted by the author himself (Birkhoff 1987, p. 112):
“…a general construction of ‘free’ algebras having any number of ‘generators’, given
any set of ‘operations’ and ‘identities.’ Deepest and most original was the so called
HSP-Theorem”—were not anticipated by Dedekind. Furthermore, Birkhoff was, as he
said of himself (Birkhoff 1987, p. V), “a self-taught algebraist”, on the basis of his in-
depth knowledge of the algebraic works, of among others, Noether and the members
of her school, set forth in detail in van derWaerden’s two-volume textbook on abstract
algebra Moderne Algebra (first ed., 1930–1931). We can also point out that in July
1933 Birkhoff visited Munich and met Constantin Carathéodory, who advised him
to read Andreas Speiser’s Gruppentheorie and van der Waerden’s Moderne Algebra.
Therefore, Birkhoff was aware of the abstract structural approach to algebra through
van der Waerden’s treatise, and so one can say that he was indirectly influenced of
Dedekind.

The sentence alluded to above (Birkhoff 1935, p. 434) reads as follows: “Only
recently the object of special research has been what I consider to be a dual notion,
that of the ‘lattice’ of the subalgebras of an algebra”.We consider this enough evidence
to justify the conclusion that Dedekind (1888) was not known by Birkhoff from 1933
until 1935. To this we add, for sure, that Birkhoff never cites Dedekind (1888) in
his papers on universal algebra and history of algebra. And exactly the same can be
said of MacLane and Birkhoff (1988) since, on p. 15 of such an excellent textbook,
they wrote: “Formally, we shall describe N by axioms essentially due to G. Peano
…Peano Postulates …”, and such postulates, up to definitional equivalence, are—as
has already been stated in the comments on § 6 contained in Sect. 3—the conditions
set out in art. 71 of Dedekind (1888). Therefore Dedekind (1888) did not have any
direct influence on Birkhoff in his work on universal algebra. Although, with regard
to the first quotation contained in this paragraph, in Dedekind (1888) one can find, as
pointed out in Sect. 3, an investigation of the subalgebras of a mono-unary algebra.

We finish this section by saying that some of the seeds planted by Dedekind in
the last quarter of the nineteenth century began, finally, to germinate and fructify in a
wonderful way with Birkhoff in the 1930s.
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Appendix A: A many-sorted algebraic model of the theory of primitive
recursive mappings

We next provide—in the algebraic spirit of Dedekind—a new model, based on many-
sorted universal algebra, of the theory of primitive recursivemappingswhichwill allow
us to diagrammatically prove that the three basic mathematical operations, addition,
multiplication, and exponentiation, defined by Dedekind in §§ 11–13 of Dedekind
(1888), are primitive recursive. We remark that the just-mentioned many-sorted alge-
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braic model, appropriately modified, can be used to supply many-sorted algebraic
models of the theories of general recursive mappings and of recursive partial map-
pings. Moreover, the subalgebra generating operators associated with these models
make the notion of relative recursiveness, in each case, natural.

Since the set of all primitive recursive mappings will be the union of the underlying
many-sorted set of the smallest many-sorted subalgebra of a convenient many-sorted
algebra, we begin by defining the many-sorted signature of the many-sorted algebra
at issue. Note that in what follows N� stands for the underlying set of the free monoid
on N, that � is the binary operation of concatenation on N�, and that λ denotes the
empty word on N. Moreover, given sets A, B, and C , and mappings f : C �� A and
g : C �� B, we denote by 〈 f, g〉 the unique mapping from C to A × B such that
prA ◦ 〈 f, g〉 = f and prB ◦ 〈 f, g〉 = g, where prA is the canonical projection from
A × B to A and prB the canonical projection from A × B to B.

Definition We denote byΣpr the N-sorted signature, for the primitive recursive map-
pings, whose (w, n)-th coordinate, where (w, n) ∈ N� × N, is defined as follows:

Σ
pr
w,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{κ0,0}, if w = λ and n = 0;
{sc} ∪ {pr1,0}, if w = λ and n = 1;
{ prn,i | i ∈ n }, if w = λ and n ≥ 2;
{
Ω

m,n
C

}
, if w = (m) � (n | i ∈ m) and m ≥ 1;

{
Ωm

R

}
, if w = (m) � (m + 2) and n = m + 1;

∅, otherwise.

Definition We denote by Hpr(N·, N) the many-sortedΣpr-algebra whose underlying
N-sorted set, Hpr(N·, N), is (Hom(Nn, N))n∈N, so its n-th coordinate is the set of all
mappings from Nn to N, and where the structural operations are the following:

1. κ0,0, the 0-ary constant mapping determined by 0, which is the mapping from N0

to N that sends the unique element of N0 to 0.
2. sc, the successor mapping.
3. pr1,0, the identity mapping at N.
4. For every n ≥ 2 and every i ∈ n, prn,i , the i-th canonical projection from Nn to

N.
5. For every m ∈ N − 1 and every n ∈ N, Ω

m,n
C , the operator of (generalized)

composition of arity (m) � (n | i ∈ m) and co-arity n, which is the mapping from
Hom(Nm, N) × (Hom(Nn, N))m to Hom(Nn, N) that sends a pair ( f, (gi )i∈m) in
Hom(Nm, N) × (Hom(Nn, N))m to the mapping Ω

m,n
C ( f, (gi )i∈m) from Nn to N

obtained by composing 〈gi 〉i∈m and f , where 〈gi 〉i∈m is the unique mapping from
Nn to Nm such that, for every i ∈ m, gi = prm,i ◦ 〈gi 〉i∈m .

6. For every m ∈ N, Ωm
R , the operator of primitive recursion (also known as the

parameterized operation of primitive recursion) of arity (m) � (m + 2) and
co-arity m + 1, which is the mapping from Hom(Nm, N) × Hom(Nm+2, N) to
Hom(Nm+1, N) that sends a pair ( f, g) in Hom(Nm, N) × Hom(Nm+2, N) to the
mappingΩm

R ( f, g) fromNm+1 toN obtained from f and g by primitive recursion.
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Let us recall that, for every m ∈ N, if f : Nm �� N and g : Nm+2 ��N, then,
from the principle of definition by mathematical recursion, it follows immediately
that there exists a unique mapping Ωm

R ( f, g) = h : Nm+1 ��N such that the
following diagram:

Nm+1

h

Nm+1idNm × sc

〈
idNm+1 , h

〉
Nm

〈idNm , κ0 ◦ ωNm 〉

f
N Nm+2

g

commutes (where ωNm is the unique mapping from Nm to 1 = {0} and κ0 the
mapping from 1 to N that sends 0 to 0), i.e., such that:

(a) ∀a ∈ Nm (h(a, 0) = f (a)).

(b) ∀a ∈ Nm ∀n ∈ N (h(a, sc(n)) = g(a, n, h(a, n))).

In the above definition, we have identified the set Hom(N1, N)with the set End(N),
of all endomorphisms of the set N. Moreover, to simplify the notation, no distinction
has beenmade between the symbols of operation and their realizations on theN-sorted
set (Hom(Nn, N))n∈N.

Since it will be used below to define the set of all primitive recursive mappings,
we will next recall under what conditions an N-sorted subset of the underlying N-
sorted set Hpr(N·, N) of Hpr(N·, N) is a subalgebra of the many-sorted Σpr-algebra
Hpr(N·, N).

Definition AnN-sorted subsetF=(Fn)n∈N of the underlyingN-sorted setHpr(N·, N)

of Hpr(N·, N) is a subalgebra of Hpr(N·, N) exactly if it satisfies the following con-
ditions:

1. κ0,0 ∈ F0.
2. sc ∈ F1.
3. pr1,0 ∈ F1.
4. For every n ≥ 2 and every i ∈ n, prn,i ∈ Fn .
5. For every m ∈ N − 1, every n ∈ N, every f ∈ Fm , and every (gi )i∈m ∈ (Fn)

m ,
Ω

m,n
C ( f, (gi )i∈m) ∈ Fn .

6. For every m ∈ N, every f ∈ Fm , and every g ∈ Fm+2, Ωm
R ( f, g) ∈ Fm+1.

We denote by Sub(Hpr(N·, N)) the set of all subalgebras of the many-sorted Σpr-
algebra Hpr(N·, N).

We next state the fundamental properties of the set of all subalgebras ofHpr(N·, N).

Proposition The set Sub(Hpr(N·, N)), of all subalgebra of the many-sorted Σpr-
algebra Hpr(N·, N), is an algebraic closure system on Hpr(N·, N), i.e.,
Sub(Hpr(N·, N)) satisfies the following conditions:
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1. (Hom(Nn, N))n∈N is a subalgebra de Hpr(N·, N).
2. If (F i )i∈I is a nonempty family of subalgebras of Hpr(N·, N), then

⋂
i∈I F i is a

subalgebra of Hpr(N·, N).
3. If (F i )i∈I is a nonempty family of subalgebras of Hpr(N·, N), and if, for every

i, j ∈ I , there exist k ∈ I such that F i ∪F j ⊆ Fk , then
⋃

i∈I F i is a subalgebra

of Hpr(N·, N).

From the algebraic closure system Sub(Hpr(N·, N)) on Hpr(N·, N) we obtain the
algebraic closure operator Sgpr on H

pr(N·, N) induced by it, as stated in the following
corollary.

Corollary For the many-sorted Σpr-algebra Hpr(N·, N), the endomorphism Sgpr of

the set Sub(Hpr(N·, N)), of all N-sorted subsets of Hpr(N·, N), defined as:

Sgpr

{
Sub(Hpr(N·, N)) �� Sub(Hpr(N·, N))

F �−→ ⋂{ C ∈ Sub(Hpr(N·, N)) | F ⊆ C }

has the following properties:

1. Im(Sgpr) ⊆ Sub(Hpr(N·, N)), i.e., for every F ∈ Sub(Hpr(N·, N)), Sgpr(F) is a

subalgebra of Hpr(N·, N).
2. {F ∈ Sub(Hpr(N·, N)) | F = Sgpr(F) } = Sub(Hpr(N·, N)), i.e., the fixed

points of Sgpr are exactly the subalgebras of Hpr(N·, N).

3. Sgpr is extensive, i.e., for every F ∈ Sub(Hpr(N·, N)), it happens that F ⊆
Sgpr(F).

4. Sgpr is isotone, i.e., for every F ,G ∈ Sub(Hpr(N·, N)), if F ⊆ G, then Sgpr(F) ⊆
Sgpr(G).

5. Sgpr is idempotent, i.e., for everyF ∈ Sub(Hpr(N·, N)), it happens thatSgpr(F) =
Sgpr(Sgpr(F)).

6. Sgpr is algebraic, i.e., for every nonempty family (F i )i∈I inSub(Hpr(N·, N)), if, for

every i, j ∈ I , there exists a k ∈ I such thatF i ∪F j ⊆ Fk , then Sgpr(
⋃

i∈I F i ) =
⋃

i∈I Sgpr(F i ).

Thus, for any F ⊆ Hpr(N·, N), Sgpr(F) is the smallest subalgebra of Hpr(N·, N) that

includes F . Sgpr(F) is called the subalgebra of Hpr(N·, N) generated by F and Sgpr
the subalgebra generating operator on Hpr(N·, N).

Definition Let F = (Fn)n∈N be a countable N-sorted subset of Hpr(N·, N), i.e., an
N-sorted subset of Hpr(N·, N) such that card(

∐
F) ≤ ℵ0. Then we call the mappings

in
⋃

Sgpr(F), the union of the subalgebra of Hpr(N·, N) generated by F , the F-
primitive recursive mappings or the primitive recursive mappings relative to F , and,
to shorten the notation, we will write PRM(F) instead of

⋃
Sgpr(F). In particular,

the set of all primitive recursive mappings, denoted by PRM, is
⋃

Sgpr((∅)n∈N), the
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union of the subalgebra of Hpr(N·, N) generated by the N-sorted set (∅)n∈N (which
is constantly empty).

We next provide, for a countable N-sorted subset F of Hpr(N·, N), a constructive
characterization of PRM(F) (which is also valid when F is arbitrary).

Proposition Let F = (Fn)n∈N be an N-sorted subset of Hpr(N·, N) such that
card(

∐
F) ≤ ℵ0 and f ∈ ⋃

n∈NHom(Nn, N). Then f ∈ PRM(F) if, and only
if, there exists a formative construction for f relative to Σpr and F , i.e., if, and only
if, there exists a p ∈ N − 1 and a family ( fi )i∈p in

⋃
n∈NHom(Nn, N) such that

f = f p−1 and, for every i ∈ p, it happens that:

1. fi ∈ Fn, for some n ∈ N, or
2. fi = κ0,0, or
3. fi = sc, or
4. fi = pr1,0, or
5. fi = prn, j , for some n ≥ 2 and some j ∈ n, or
6. fi is m + 1-ary and fi = Ωm

R ( f j , fk), for a j and a k ∈ i such that f j is m-ary
and fk is m + 2-ary, or

7. fi is n-ary and fi = Ω
m,n
C ( f j , ( fkα )α∈m), for an m ∈ N − 1, a j ∈ i and a family

(kα)α∈m ∈ im such that f j is m-ary and, for every α ∈ m, fkα is n-ary.

Proof Let L denote the N-sorted subset of Hpr(N·, N) whose n-th coordinate, Ln ,
for n ∈ N, has as elements all mappings f ∈ Hom(Nn, N) for which there exists a
formative construction for f relative to Σpr and F . Since PRM(F) is the union of
the underlying N-sorted set of the least subalgebra of Hpr(N·, N) that contains F , to
show that PRM(F) ⊆ ⋃

n∈N Ln it suffices to verify that L contains F and that L is a

subalgebra of Hpr(N·, N). ��
We have that F ⊆ L, since, for n ∈ N and f ∈ Fn , the family ( fi )i∈1 with

f0 = f , is a formative construction for f . It is obvious that κ0,0 ∈ L0, that sc and
pr1,0 ∈ L1 and that, for every n ≥ 2 and every j ∈ n, prn, j ∈ Ln . Moreover, given an
m ∈ N − 1, an n ∈ N, an f ∈ Lm , and an m-indexed family (g j ) j∈m in Ln , then, by
virtue of the definition of L, there exists a formative construction ( fi )i∈n f for f and,
for every j ∈ m, there exists a formative construction ( f j,i )i∈n j for g j . Since it may
be helpful for the sake of understanding, let us represent the situation just described
by the following figure:

f0 f1 ... fn f −1 = f
f0,0 f0,1 ... f0,n0−1 = g0
f1,0 f1,1 ... f1,n1−1 = g1
...

...
. . .

...

fm−1,0 fm−1,1 ... fm−1,nm−1−1 = gm−1

Then, for n = n f +
(∑

j∈m n j

)
+1 and taking as (hi )i∈n the family ofmappingswhose

last term is Ω
m,n
C ( f, (g j ) j∈m) and being the other terms those formed by the terms of

the previous figure, going from left to right and from top to bottom,we have that (hi )i∈n
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is a formative construction for Ω
m,n
C ( f, (g j ) j∈m). Hence Ω

m,n
C ( f, (g j ) j∈m) ∈ Ln . In

the same way one proves that L is closed under Ωm
R . Therefore L is a subalgebra of

Hpr(N·, N). From all this we conclude that PRM(F) ⊆ ⋃
n∈N Ln .

We next show, by induction limited to an initial segment of N, that
⋃

n∈N Ln is a
subset of PRM(F).

Let n ∈ N and f ∈ Ln . Then, by definition, there exists a p ∈ N − 1 and a
family ( fi )i∈p in

⋃
n∈NHom(Nn, N) such that f = f p−1 and, for every i ∈ p, we

have that fi ∈ Fn , for some n ∈ N, or fi = κ0,0, or fi = sc, or fi = pr1,0, or
fi = prn, j , for some n ≥ 2 and some j ∈ n, or fi is m + 1-ary and fi = Ωm

R ( f j , fk),
for a j and a k ∈ i such that f j is m-ary and fk is m + 2-ary, or fi is n-ary and
fi = Ω

m,n
C ( f j , ( fkα )α∈m), for an m ∈ N − 1, a j ∈ i and a family (kα)α∈m ∈ im such

that f j is m-ary and, for every α ∈ m, fkα is n-ary.
Now we will prove, by induction on i ∈ p, that f = f p−1 ∈ PRM(F). For i = 0,

f0 ∈ PRM(F), because, in this case, f0 either belongs to Fn , for some n ∈ N, or is
of the form κ0,0, or sc, or pr1,0, or prn, j , for some n ≥ 2 and some j ∈ n, and then
f0 ∈ PRM(F), because PRM(F) is the union of the underlying N-sorted set of the
least subalgebra of Hpr(N·, N) that contains F . Let k ∈ p and let us suppose that,
for every i ∈ k, fi ∈ PRM(F). Then, by definition, fk ∈ Fn , for some n ∈ N, or
fk = κ0,0, or fk = sc, or fk = pr1,0, or fk = prn, j , for some n ≥ 2 and some j ∈ n,
or fk is m + 1-ary and fk = Ωm

R ( fu, fv), for a u and a v ∈ k such that fu is m-ary
and fv is m + 2-ary, or fk is n-ary and fk = Ω

m,n
C ( f j , ( fkα )α∈m), for an m ∈ N − 1,

a j ∈ k and a family (kα)α∈m ∈ km such that f j is m-ary and, for every α ∈ m,
fkα is n-ary. It is evident that in the first five cases fk ∈ PRM(F). In the last two
cases too fk ∈ PRM(F), because being, by hypothesis, f0, . . . , fk−1 ∈ PRM(F),
also fu , fv and fk0 , . . . , fkm−1 ∈ PRM(F), hence, since PRM(F) is the union of

the underlying N-sorted set of the least subalgebra of Hpr(N·, N) that contains F ,
fk = Ωm

R ( fu, fv) ∈ PRM(F) and fk = Ω
m,n
C ( f j , ( fkα )α∈m) ∈ PRM(F). Therefore,

for every k ∈ p, fk ∈ PRM(F). Hence, for k = p − 1, f = f p−1 ∈ PRM(F). From
this it follows that

⋃
n∈N Ln ⊆ PRM(F). Hereby completing our proof.

From the above proposition, forF = (∅)n∈N one obtains, immediately, a construc-
tive characterization of the set PRM.

Corollary Let f be an element of
⋃

n∈N Hom(Nn, N). Then f ∈ PRM if, and only
if, there exists a p ∈ N − 1 and a family ( fi )i∈p in

⋃
n∈NHom(Nn, N) such that

f = f p−1 and, for every i ∈ p, it happens that:

1. fi = κ0,0, or
2. fi = sc, or
3. fi = pr1,0, or
4. fi = prn, j , for some n ≥ 2 and some j ∈ n, or
5. fi is m + 1-ary and fi = Ωm

R ( f j , fk), for a j and a k ∈ i such that f j is m-ary
and fk is m + 2-ary, or

6. fi is n-ary and fi = Ω
m,n
C ( f j , ( fkα )α∈m), for an m ∈ N − 1, a j ∈ i and a family

(kα)α∈m ∈ im such that f j is m-ary and, for every α ∈ p, fkα is n-ary.

Since it will be used afterwards, to prove that the multiplication and exponentiation
are primitive recursive mappings, we notice that, for every n ∈ N and every k ∈ N,
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the constant mapping κn,k : Nn ��N, which sends every element of Nn to k, is a
primitive recursive mapping.

Proposition The addition +: N2 ��N, defined as:

{
x + 0 = x,

x + sc(y) = sc(x + y), if y ≥ 0,

is a primitive recursive mapping.

Proof This is so because + = Ω1
R(pr1,0,Ω

1,3
C (sc, (pr3,2))), or in a diagrammatic

manner:

N1

pr1,0

N2

+

N3

Ω
1,3
C (sc, (pr3,2))

N

where Ω
1,3
C (sc, (pr3,2)) is the mapping from N3 to N obtained as:

N3

Ω
1,3
C (sc, (pr3,2))

〈
pr3,2

〉 pr3,2

N1
pr1,0

sc

N

N

��

Proposition The multiplication · : N2 ��N, defined as:

{
x · 0 = 0,

x · sc(y) = x · y + x, if y ≥ 0,

is a primitive recursive mapping.
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Proof This is so because · = Ω1
R(κ1,0,Ω

2,3
C (+, (pr3,2, pr3,0))), or in a diagrammatic

manner:

N1

κ1,0

N2

·

N3

Ω
2,3
C (+, (pr3,2, pr3,0))

N

where Ω
2,3
C (+, (pr3,2, pr3,0)) is the mapping from N3 to N obtained as:

N3

Ω
2,3
C (+, (pr3,2, pr3,0))

〈
pr3,2, pr3,0

〉 (pr3,2, pr3,0)

N2

(pr2,i )i∈2
+

N

N

��

Proposition The exponentiation exp : N2 ��N, defined as:

{
x0 = 1,

xsc(y) = x y · x, if y ≥ 0,

is a primitive recursive mapping.

Proof This is so because exp = Ω1
R(κ1,1,Ω

2,3
C (·, (pr3,2, pr3,0))), or in a diagrammatic

manner:

N1

κ1,1

N2

exp

N3

Ω
2,3
C (·, (pr3,2, pr3,0))

N

123



The modernity of Dedekind’s anticipations. . . 139

where Ω
2,3
C (·, (pr3,2, pr3,0)) is the mapping from N3 to N obtained as:

N3

Ω
2,3
C (·, (pr3,2, pr3,0))

〈
pr3,2, pr3,0

〉 (pr3,2, pr3,0)

N2

(pr2,i )i∈2
·

N

N

��
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