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Abstract This paper is a technical study of the systematic observations and com-
putations made by Muh. yı̄ al-Dı̄n al-Maghribı̄ (d. 1283) at the Maragha observatory
(north-western Iran, c. 1259–1320) in order to newly determine the parameters of the
Ptolemaic lunar model, as explained in his Talkhı̄s. al-majist. ı̄, “Compendium of the
Almagest.” He used three lunar eclipses on March 7, 1262, April 7, 1270, and January
24, 1274, in order to measure the lunar epicycle radius and mean motions; an observa-
tion on April 20, 1264, to determine the lunar eccentricity; an observation on August
29, 1264, to test the model; and another on March 15, 1262, for measuring the lunar
parallax. In the second period of activity at the Maragha observatory, Shams al-Dı̄n
Muh. ammad al-Wābkanawı̄ (c. 1254–1320) adopted all of al-Maghribı̄’s parameter
values in his Zı̄j, but decreased his value for the mean longitude of the moon at epoch
by 0;13,11◦. By comparing the times of the new moons and lunar eclipses in the period
of 1270–1320 as computed from the astronomical tables of the Maragha tradition with
the true modern ones, it is argued that this correction was very probably the result of
actual observations.

1 Introduction

The [Islamic] astronomers from the day of al-Ma’mūn to al-Battānı̄ and after-
wards did not mention their measurements in the same manner that Ptolemy
mentioned his own computations, and did not manifest how they derived the
planetary parameters from positions and motions of the planets through their
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68 S. M. Mozaffari

continuous attempts to provide them. […] He who elucidates his computational
procedures is the most deserved to be followed.

∼Abū al-Rayh. ān al-Bı̄rūnı̄ (973–1048)1

The Marāgha observatory was built in 1259 by Hülegü (d. 1265), the founder of the
Īlkhānı̄d dynasty of Iran. During its about fifty-eight years of operation, it represented
the acme of Islamic astronomy.2 It appears that some observations at Maragha had
taken place before the construction of the observatory: In his treatise on the astrolabe,
Fı̄ kayfiyyat tast. ı̄h. al-basit. al-kurı̄, Ibn al-S. alāh al-Hamadhānı̄ (d. 1153) said that, at
Maragha, he had found a magnitude of 23;35◦ for the “total declination” (al-mayl al-
kullı̄; i.e., obliquity of the ecliptic).3 During the first two decades of the observatory,
two zı̄jes were written: al-T. ūsı̄’s Īlkhānı̄ zı̄j in Persian and Muh. yı̄ al-Dı̄n al-Maghribı̄’s
Adwār al-anwār in Arabic. Al-T. ūsı̄ (d. 1274) completed the Īlkhānı̄ Zı̄j in about 1270.
Although the majority of its underlying parameters are either Ptolemaic or borrowed
from earlier zı̄jes, nevertheless, some parameter values adopted in the Īlkhānı̄ zı̄j were
not known in any text prior to this work and appear to be the results of the observational
program of the main staff of the observatory in the 1270s.4 Muh. yı̄ al-Dı̄n (d. June
1283) completed his zı̄j in the end of 1276 (see below). It was evidently based on
the extensive observations done by him at the Maragha observatory. Muh. yı̄ al-Dı̄n
later wrote a treatise named Talkhı̄s. al-majist. ı̄, “Compendium of the Almagest,” in
which he describes his systematic observations and measurements of the solar, lunar,
and planetary parameters. This treatise is our main concern in this paper. The two
observational programs proceeded simultaneously and were conducted independently;
none of Muh. yı̄ al-Dı̄n’s new values for some parameters, except his value 23;30◦ for

1 A tentative translation of Bı̄rūnı̄, Vol. 3, p. 1193, lines 2–5.
2 Sayılı (1960, pp. 187–223); some essential corrections will be given in Mozaffari and Zotti (2013).
3 Cf. Lorch (2000, p. 401). MS. Iran, the library of parliament, no. 6412, fol. 62r: wa huwa ‘alā mā
wajadnāhu bi-’l-ras. ad bi-Marāgha 23 juzan wa 35 daqı̄qa. Nevertheless, in some later copies of it (e.g.,
MS. Iran, Library of Parliament, no. 602, pp. 33–52, written originally by Qād. ı̄-zādih al-Rūmı̄ in Rajab
892/July 1487, and MS. Iran, Library of Parliament, no. 6329, pp. 24–35), the second part (maqāla) of the
treatise is the “Projection of the Astrolabe” (Tast. ı̄h al-ast.urlāb) of Muh.yı̄ al-Dı̄n al-Maghribı̄, wherein that
author stated his own found magnitude for the total declination, 23;30◦ (bi-qadr al-mayl al-a‘zam, huwa
23;30 ‘alā mā wajadnāhu bi-’l-ras. ad; the edited text in the present author’s thesis for receiving M. Sc.
degree in the history of astronomy, cf. Mozaffari 2007).
4 Cf. below, Sect. 5. Some parameter values applied to the Īlkhānı̄ Zı̄j that may not be found in earlier
works are: (1) the values tabulated for the longitude of the solar apogee for the years 601 Yazdigird (AD
1232) onwards; no relation between them and earlier zı̄jes may be found. Qut.b al-Dı̄n al-Shı̄rāzı̄, a member
of the observatory, associated these values with the “new observations” done at the Maragha observatory
(al-Shı̄rāzı̄, Tuh. fa, fol. 38v; al-Shı̄rāzı̄, Ikhtiyārāt, fol. 50v). (2) The radius of Mars’ epicycle: the table for
the epicyclic equation of Mars for the adjusted anomaly is symmetrical with the maximum value 42;12◦
at mean distance (i.e., when the distance between the center of the planet’s epicycle and that of the earth
is equal to the radius of the deferent, which is taken as R = 60) (Īlkhānı̄ Zı̄j, C: p. 116, P: fols. 38v–39r,
M: fols. 70v–71v). This amount corresponds to the value 40;18 for the radius of the epicycle. (3) A star
table in which the ecliptical coordinates of 16 stars observed at the Maragha observatory are tabulated,
accompanied by their coordinates according to Ptolemy and Ibn Yūnus (d. 1007) as well as those attributed
to Ibn al-A‘lam (d. 985). All longitudes were converted to the epoch of the zı̄j, i.e., January 18, 1232.
The coordinates attributed to Ibn al-A‘lam appear to have been derived indirectly from the Mumtah. an zı̄j
(Baghdad, c. 830) (van Dalen 2004a, pp. 27–28).
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Lunar measurements at the Maragha observatory 69

the obliquity of the ecliptic resulting from observations performed on three successive
days after the two dates of June 12 and December 7, 1264, were employed in the
Īlkhānı̄ zı̄j.

Little is known about Muh. yı̄ al-Dı̄n except that his full name is Abū al-Shukr/Abu al-
Karı̄m/Abu al-Fath. Yah. yā b. Muh. ammad b. Abı̄ al-Shukr b. H. umı̄d of the Maghrib (of
Tunis, of Andalus, or of Cordoba). He spent some years (after 1237 to October 2, 1260)
in the service of King Nās.ir of Damascus (reign: 1237–1260) in Aleppo, before the
king was killed by the Mongols and al-Maghribı̄ was sent to the Maragha observatory.
Other than a short-period migration to Baghdad in the second part of the 1270s (see
below), he seems to have lived at Maragha and done his observations at the Maragha
observatory until his death in June 1283. He taught some students in the observatory5

and wrote about 26 works on mathematics, astronomy, and astrology6 including two
zı̄jes: Tāj al-azyāj (Aleppo, about 1257)7 and Adwār al-anwār (Maragha, 1276).

Muh. yı̄ al-Dı̄n’s systematic observations at the Maragha observatory made him
such an outstanding figure that his contemporaries and immediate successors called
him by unique honorific titles denoting his skill in doing observations. For instance,
Ibn al-Fuwat.ı̄, the librarian of the observatory, called him the “geometrician of the
observations,” muhandis al-ras. adı̄.8 His observational program is often named the
“new Īlkhānı̄d observations,” ras. ad al-jadı̄d al-Īlkhānı̄, in order to distinguish it from
the purported observations conducted at Maragha for preparing the Īlkhānı̄ zı̄j.9 His
fame was so widespread that his astrological doctrines were generally trusted (nine of
his treatises are on astrology). An amazing example of this is the interpretation of the
appearance of the comet C/1402 D1 based on his astrological doctrines which led to
a very decisive war in the Middle East at the turn of the fifteenth century.10

This paper deals with al-Maghribı̄’s lunar measurements as explained in the Talkhı̄s
al-majist. ı̄. The work, its characteristics, and its place in the history of Islamic
observational astronomy have already been introduced in three papers by George
Saliba.11 Despite its name, the treatise is neither a rewriting nor an abridgement of the

5 Of them, Ibn al-Fuwat.ı̄ (1995, Vol. 1, 146–147) mentions of a certain ‘Izz al-Dı̄n al-H. asan b. al-Shaykh
Muh.ammad b. al-Shaykh al-H. asan al-Wāsit.ı̄ al-‘at.t.ār Shaykh Dār Mūsı̄yān (also cf. below, note 65).
6 Cf. Suter (1902, p. 155), Brockelmann, Vol. 1, p. 626, S1, p. 868, Sarton (1953, pp. 1015–1016),
Sezgin (1978, p. 292); Rosenfeld and Ihsanoglu (2003, p. 226). Some of his mathematical works were
studied, cf. Voux (1891), Hogendijk (1993). S. Tekeli’s short entry about al-Mghribı̄ in DSB (Gillipsie et
al. 1980, Vol. 9, p. 555) only covers his mathematical works. Also, cf. M. Comes’ entry in Hockey et al.
(2007, pp. 548–549).
7 Cf. Dorce (2003).
8 Ibn al-Fuwat.ı̄, 1995, Vol. 5, p. 117.
9 In the prologue of his Zı̄j al-muh. aqqaq al-sult.ānı̄, Shams al-Dı̄n Muh.ammad Wābkanawı̄ (c. 1254–1320)
employs the term “new Īlkhānı̄d observations” specifically for Muh.yı̄ al-Dı̄n’s observations; cf. below,
Sect. 5. In Mozaffari and Zotti (2013), all of the indications of the term, found in the treatises written either
during the lifetime of the observatory or after that are introduced.
10 Cf. Mozaffari (2012, pp. 363–364).
11 The contents of the treatise were introduced in Saliba (1983). The computations related to the eccentricity
of the sun and of Jupiter were subject to two critical studies by Saliba (1985; 1986; for al-Maghribı̄’s solar
observations, cf. Mozaffari 2013a, pp. 318, 330). The present author analyzed al-Maghribı̄’s measurements
of the Ptoemaic orbital elements of Saturn in his Ph. D. dissertation. A detailed study of al-Maghribı̄’s
planetary and stellar observations is being prepared by him.
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contents of the Almagest, which, sometimes accompanied by criticisms about Ptolemy,
was constituted as a genre with its own peculiar characteristics, playing a pivotal role
in Islamic astronomy. Rather, in the same way of Ptolemy in the Almagest, Mūh. yı̄
al-Dı̄n expounds how he proceeded to establish systematically his parameters starting
from measuring the latitude of Maragha, the length of the tropical year, the solar mean
angular velocity, … up to the planetary parameters. In order to present his measure-
ments, he first provides data obtained from his dated observations which are arranged
chronologically, and then, he explains the mathematical procedure to determine the
parameter in question. Finally, the procedures of applying the input observational data
and doing computations are done, respectively, and described in detail. The obtained
result is established as a new value or verified as an already existing one for that para-
meter. These materials as presented by Muh. yı̄ al-Dı̄n allow one to pursue precisely
his line of investigation, to uncover his mistakes and their effects on the final result, to
recognize the probable circular arguments, etc, which is indeed very useful for making
a comprehensive critical study. Regarding its contents, the Talkhı̄s. has no counterpart
in the medieval astronomical literature of the Middle East. Some sections of the trea-
tise that are devoted to the measurement of planetary parameters may be considered
as its most important parts, because it is hard to find any other work whose aim was
to measure the planetary parameters in Islamic astronomy.

The Talkhı̄s. is preserved in a unique copy (Leiden, Universiteitsbibliotheek, no.
Orientalis 110) in al-Maghribı̄’s own handwriting. According to the table of contents
given on fol. 2r, the treatise consists of ten books (maqāla). They discuss plane and
spherical trigonometry (books I and II), time-reckoning (III), solar motion (IV), lunar
motion (V), lunar parallax and the theory of eclipses (VI), longitudes and latitudes
of the fixed stars (VII), planetary motions in longitude (VIII), retrograde motion and
latitude of the planets (IX), and stereographic projection of the celestial sphere on the
plane tangential to its north pole (X). The manuscript is, however, incomplete and
corrupt where our author finishes his computations of Mars, while the reader expects
he commences the computations related to the inferior planets. One may assume that it
is the treatise itself that may have been left incomplete because of any possible reason.
However, this does not appear to be the case here, because Wābkanawı̄ reports three
of Muh. yı̄ al-Dı̄n’s values for the parameters of the inferior planets.12 The last two
books are also missing from this copy, but the contents of the last book may have been
adopted from (possibly, a brief survey of) his treatise on the astrolabe, which deals
with the same problem.13

Muh. yı̄ al-Dı̄n dedicated the Talkhı̄s. to S. adr al-Dı̄n Abū al-H. asan ‘Alı̄ b. Muh. ammad
b. Muh. ammad b. al-H. asan al-T. ūsı̄,14 the son of Nas.ı̄r al-Dı̄n al-T. ūsı̄, who was
appointed director of the observatory after the death of his father.15 According to
the Talkhı̄s. , Muh. yı̄ al-Dı̄n’s period of observations at the Maragha observatory was

12 They are the eccentricities of Mercury and Venus: 3;10 and 1;2,49, respectively, and the radius of the
epicycle of Mercury: 22;30,30 (Wābkanawı̄, IV, 15, 10: T: fols 93r–93v, Y: 160v–161r).
13 Cf. Mozaffari (2007). This treatise is interesting in various aspects; e.g., its clear mention of the infinite
geometrical spaces.
14 Al-Maghribı̄, Talkhı̄s. , fol. 2r.
15 Sayılı (1960, p. 205).
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Lunar measurements at the Maragha observatory 71

from March 7, 1262 (lunar eclipse; cf. Table 1) to August 12, 1274 (Jupiter). He applied
the newly obtained parameters in his second zı̄j, the Adwār al-anwār, a copy of which
has been preserved in the handwriting of the author (Mashhad, Holy Shrine Library,
no. 332), which bears the date of Dhu al-qa‘da 674 H (April/May 1276) in the end of
the canons16 and the date of Rajab 675 H (December 1276/January 1277) in the end
of the tables.17 These two dates may indicate when the canons and the tables were
completed. It thus seems that he had finished his observations between August 12,
1274 and April/May 1276, and had engaged in constructing the tables in the period
between April and December 1276. He also mentions in the prologue of this copy of
the Adwār that he had commenced to write the zı̄j after completing a (now lost) treatise
named Manāzil al-ajrām al-‘ulwiyya, “The mansions of the upper bodies.” We can
therefore safely assume that the Talkhı̄s. was written after Muh. yı̄ al-Dı̄n completed
the Adwār, i.e., after the end of the year 1276. According to Ibn al-Fuwat.ı̄,

18 Muh. yı̄
al-Dı̄n left the observatory and spent a while in the service of Al-S. āh. ib Sharaf al-Dı̄n
b. al-S. āh. ib Shams al-Dı̄n in Baghdad. The date of his departure was not given, but the
migration had more likely been occurred after he finished the writing of the Adwār,
i.e., after the end of 1276. From Ibn al-Fuwat.ı̄’s statements, it may be understood
that this abandonment was due to some uncomfortable and inconvenient conditions
at Maragha after the death of al-T. ūsı̄, because he states immediately that after Muh. yı̄
al-Dı̄n returned to Maragha, he was honored and supplied with the good amounts
of regular stipend and honorarium. Thus, it is also possible that he has written the
Talkhı̄s. after his return from Baghdad to Maragha (i.e., a time after 1277 and, of
course, before his death in 1283) when the observatory was directed by S. adr al-Dı̄n
and, likely, its dedication to S. adr al-Dı̄n is as a response to his kind behavior toward
the author.

In this paper, Sect. 2 concerns al-Maghribı̄’s observations of the three lunar eclipses
at the Maragha observatory from which he determined the radius of the lunar epicycle
and its mean motions. Section 3 introduces the other three lunar observations and
explains al-Maghribı̄’s procedures, calculations, and numerical details in six separate
parts that are arranged as follows: the first two parts explain how our author determined
the size of the epicycle and the mean motions; in the third part, the eccentricity of the
lunar orbit in the Ptolemaic model; in the fourth part, the distance between the point
of prosneusis and the center of the earth; and in the fifth part, the inclination of the
lunar orbit. Then, al-Maghribı̄’s tables of the lunar equations are briefly discussed.
Finally, the last part deals with his determination of the lunar parallax. In all of these
steps, the numerical values are al-Maghribı̄’s. The recomputed or true modern values
will be indicated explicitly (the former within square brackets). In Sect. 4, some
highlighted characteristics of Muh. yı̄ al-Dı̄n’s observations, computations, methods,
the instruments applied, and so on will be discussed and commented upon. His values
for the lunar parameters will also be compared with the other medieval values obtained

16 Al-Maghribı̄, Adwār, M: fol. 55v.
17 Al-Maghribı̄, Adwār, M: fol. 124v.
18 Ibn al-Fuwat.ı̄, 1995, Vol. 5, p. 117.
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in the Middle East. Section 5 contains a comparative study between the times of the
conjunctions and oppositions of the moon with the sun computed on the basis of
modern theories and the times computed from the parameter values determined by
al-Maghribı̄ and those applied in the Īlkhānı̄ zı̄j. This aims to evaluate the criticisms
made by Wābkanawı̄ (an astronomer who flourished about two decades later in the
observatory) of the Īlkhānı̄ zı̄j and his modification of al-Maghribı̄’s value for the lunar
mean longitude, as will be explained there.

2 The observations of the lunar eclipses at the Maragha observatory

Table 1 presents the lunar eclipses observed by Muh. yı̄ al-Dı̄n at the Maragha obser-
vatory, arranged chronologically, which have been used to determine the lunar para-
meters.

Col. 1 contains the numbers by which our author refers to each eclipse.
Col. 2 presents the dates of the observations given in the text according to the

Yazdigird era and their corresponding dates in the Julian calendar and in Julian Days
Number. In order to transform the dates from the Yazdigird era to the Julian one,
it should be considered that in Islamic chronology, the day is traditionally reck-
oned from sunset, and hence, “night” precedes “day.” As a result, for example, the
night of Wednesday, February 28, 631 Yazdigird, is the time interval between sunset
on Tuesday, the 27th, and sunrise on the 28th. This confusion cannot occur when
we use the equivalent Julian dates. Since our author has made the precise time of
the maximum phase of each eclipse available (Col. 3), the dates can be converted
conveniently.

Col. 3 presents the times of the eclipses, that is, the instants when the maxi-
mum phases occurred, counted from the beginning of the Yazdigird era. Our author

Table 1 Lunar Eclipses observed by al-Maghribı̄ at the Maragha observatory

Nos. Date Time Type Magnitude �� Stars’ altitudes

1 Night of Wed. 630 y 1 m
27d 8;18 h

TD Total 354;22,50 At the start of totality:

28/2/631 Y Regulus (α Leo): 51◦ West

7 March 1262 At the end of totality:

JDN 2182069 Spica (α Vir): 17◦ East

2 Night of Tue.
1/4/639 Y
7 April 1270
JDN 2185022

638 y 3 m 0d
10;13 h

P ≈ (1/2) + (1/3)

From south
24;53, 1 At the beginning

of the eclipse:

Arcturus (α Boo): 42◦ East

At the end of the eclipse:

Regulus (α Leo): 35◦ West

3 Night of Wed.
18/1/643 Y
24 Jan. 1274
JDN 2186410

642 y 0 m
17d 14;0 h

P ≈ 4/5
From north

311;41,28 At the beginning
of the eclipse:

Arcturus (α Boo): 35◦ East

At the end of the eclipse:

Arcturus (α Boo): 68◦ East
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Lunar measurements at the Maragha observatory 73

counts the hours using a clepsydra (Pangān in Persian and Bankām in Arabic)
from the instant of the meridian transit of the sun (true noon).19 The instants of
true noon for the days of the eclipses are, respectively, 12:10, 12:0, and 12:15 (–1
day), according to the mean local time of Maragha ≈ UT + 3;5 h. The true times
of the maximum phases of the three eclipses are 20:23, 22:8, and 2:12, respec-
tively. Thus, the times of the eclipses after true noon, measured in hours, are as
follows:

Nos. Muh.yı̄ al-Dı̄n Modern Error

1 8;18 h 8;13 h +5 m
2 10;13 h 10; 8 h +5 m
3 14; 0 h 13;57 h +3 m

Col. 4 indicates the type of the eclipse; TD denotes “Total eclipse with a perceptible
duration (lit. “staying,” makth)”; P stands for “Partial.”

Col. 5 presents the magnitude of the eclipse. These might be a naked eye esti-
mate; however, two optical devices for directly measuring eclipse magnitudes had
been invented and constructed at the Maragha observatory.20 Modern values are as
follows:21

Nos. Muh.yı̄ al-Dı̄n Modern

1 Total 1.77
2 0.833 0.823
3 0.8 0.77

Col. 6 gives the true longitude of the sun at the time of each eclipse, i.e., at the
instant of the maximum phase. Our author has indeed calculated �� based on his

19 Cf. below, Sect. 4.5.
20 Ptolemy (Almagest, V, 14) used a dioptra originally described by Hipparchus that was four cubits in length
(≈ 185.28 cm) (Toomer 1998, p. 56). This dioptra has a fixed lower pinnula on which there is a hole for
sighting, and a movable outer one, which is placed in front of the sun. The solar/lunar angular diameter is
calculated based on the movable pinnula’s width and the distance between the two pinnulas. In his Fı̄ kayfı̄yya
al-ars. ād (“How to make the observations”), Mu’ayyad al-Dı̄n al-‘Urd. ı̄, the instrument maker of the Maragha
observatory (d. 1266), presented an addition for the antique dioptra to determine the eclipsed area/diameter
of the sun or the moon (Seemann 1929, pp. 61–71). Thus, Muh.yı̄ al-Dı̄n had a specific instrument for
measuring the magnitude of eclipses at his disposal, which he may have applied to these lunar eclipses.
In the Risāla al-Ghāzāniyya fi ’l-ālāt al-ras. adiyya (“Ghāzān’s treatise on observational instruments”) (cf.
Zotti and Mozaffari 2010, pp. 165–167; Mozaffari and Zotti 2012, pp. 419–421) and in Wābkanawı̄’s Zı̄j
(IV, 15, 8: Y: fols. 159r–159v, T: fols. 92r–92v), an instrument as a pinhole image device is introduced that
fulfills the measuring of the magnitude of solar eclipses. The treatise contains the physical descriptions and
applications of 12 new observational instruments in the second period of the Maragha observatory, which
were presumably the inventions of Ghāzān Khān, the seventh ruler of the Īlkhānı̄d dynasty of Iran (reg. 21
October 1295-17 May 1304). About it, also see Mozaffari and Zotti (2013).
21 Based on NASA’s Five Millennium Catalog of Lunar Eclipses (http://eclipse.gsfc.nasa.gov/lunar.html),
which is now the standard: nos. 07878, 07897, and 07907.
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own parameters.22 As we shall see below, in order to measure the radius of the lunar
epicycle, it is necessary as the first step to obtain the moon’s longitudes at the instants
of the maximum phases of a trio of the lunar eclipses, i.e., when the moon is in
true opposition to the sun. Then, they can readily be calculated as .
A comparison with modern values is as follows:

Nos. ��
Muh.yı̄ al-Dı̄n Modern

1 354;22,50◦ 354;20, 4◦
2 24;53, 1 24;52,17
3 311;41,28 311;36,54

In the following, Muh. yı̄ al-Dı̄n’s values for the lunar latitude and the longitude of
its ascending node at the time of the eclipse no. 3 are compared with the corresponding
modern data; cf. Sect. 3.2, (28) and (30).

Col. 7 shows the observed altitudes of some bright stars which were ordinarily
used in order to determine the durations and times of the phases of the lunar eclipses.
The position with respect to the horizon of a given celestial body may be given by
means of its altitude plus its direction with respect to the meridian line; e.g., “51◦ East”
means an altitude of 51◦ at a given instant while it is located east of the meridian. An
important note here is that in the case of the eclipse no. 1, the directions Mūh. yı̄ al-Dı̄n
cites for the measured altitudes do not express the direction of the star with respect
to the meridian, but with reference to the lunar disk. Otherwise, the altitudes should
have been expressed as 51◦ East for Regulus and 17◦ East for Spica at, respectively,
the start and end of totality.

Based on what our author says (fol. 67v), these were the eclipses that he “dealt with
observing them with the extreme accuracy,” and thus, he could rely on his observations
and be confident about the correctness of the data obtained from them. In the period of
his observations, nine other lunar eclipses were observable at their maximum phases
from Maragha, and Muh. yı̄ al-Dı̄n might have witnessed them as well.

22 For example, for the time of the maximum phase of the eclipse no. 1, the true longitude of the sun is
calculated as follows:
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Lunar measurements at the Maragha observatory 75

3 Muh. yı̄ al-Dı̄n’s lunar measurements

In Talkhı̄s. V, chapter 1, Muh. yı̄ al-Dı̄n reviews the situations of lunar motions in lon-
gitude, in anomaly, and in latitude, their periods, and explains the reason why ancient
astronomers used lunar eclipses for measuring them (a recapitulation of Almagest IV,
1–3). In chapter 2, he suggests the equivalence of eccentric and epicyclic hypotheses
(Almagest IV, 5) and gives the magnitudes of the radius of the lunar epicycle computed
by Hipparchus, Ptolemy, and himself. In chapter 3, Ptolemy’s first (or Hipparchus’)
model of the moon consisting of an epicycle rotating on a zero-eccentricity inclined
deferent which intersects the ecliptic in the two orbital nodes is introduced. Our author,
of course, mentions that the lunar motions cannot be explained by the aid of only an
epicyclic hypothesis, but it needs to take the eccentric hypothesis into account as well
(introductory remark in Almagest IV, 6). In chapter 4, our author computes the radius
of the moon’s epicycle from the trio of lunar eclipses observed at the Maragha obser-
vatory (Table 1 and below, Sect. 3.1) (corresponding to Almagest IV, 6). In chapters 5
and 6, by comparing his third lunar eclipse and that of October 20, 134 observed by
Ptolemy at Alexandria, he determines the rates of the lunar mean motions in longitude
and in anomaly and that of the retrograde motion of the nodal line of the lunar orbit
(below, Sect. 3.2) (Almagest IV, 7 and 9). In chapter 7, he computes the mean positions
of the moon and the longitude of its ascending node at the epoch, i.e., for the end of the
year 600 Yazdigird (= mean noon of January 17, 1232, JDN 2171062, at Maragha),
from those in his eclipse no. 3 (Almagest IV, 8 and 9) and then constructs the tables
of the lunar mean motions (Almagest IV, 4). In chapter 8, the second anomaly of the
moon, which is related to its elongation from the sun, and then Ptolemy’s second lunar
model based on an eccentric with the movable center to account for this anomaly are
explained (Almagest V, 2 and 3). In chapter 9, our author computes the eccentricity
of the now inclined eccentric deferent of the moon based on an observation done at
Maragha in April 20, 1264 when the moon was near its last mean quadrature (below,
Table 2 and Sect. 3.3) (Almagest V, 4). In chapter 10, he describes the idea of prosneu-
sis (inh. irāf or muh. ādhāt), that is, the point on the apsidal line of the lunar eccentric,
in which the diameter passing through the lunar mean epicyclic apogee and perigee is
directed is displaced from the earth’s center by the amount of eccentricity toward the
lunar eccentric perigee. Our author measures the value of the displacement through an
observation performed on August 29, 1264 when the moon was close to mean octant
(below, Table 3 and Sect. 3.4) and verifies that it is equal to the eccentricity (Almagest
V, 5). In chapter 11, our author instructs how to calculate trigonometrically the equa-
tions resulting from the lunar anomalies, constructs the tables for their components,
and explains the procedure of computing the true ecliptical coordinates of the moon
from the tables of the mean motions and equations (Almagest V, 6–9). The final parts
of chapters 9 and 10 are specified to our author’s computations of the inclination of
the moon’s eccentric from the last two observations (see below, Sect. 3.5). The book V
ends with chapter 12 that explains the schemata of the four orbs of the moon (Ptolemy’s
Planetary Hypotheses II).23

23 Cf. Neugebauer (1975, Vol. 2, pp. 922–926).
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76 S. M. Mozaffari

Fig. 1 Ptolemy’s lunar model and the components of its equations: P = Prosneusis; T = Earth; Lunar
eccentric of radius EC = R with center E; e = PT = T E = Eccentricity; Lunar epicycle of radius
MC = r with center C; Ā = Mean epicyclic apogee; A = True epicyclic apogee; = Mean longitude,
�̄; = True longitude in the plane of the eccentric, �; ωt = Mean motion in longitude with respect
to ; MC Ā = Mean anomaly, ᾱ; MCA = True anomaly, α; ωa = Mean motion in anomaly with
respect to P Ā; η̄ = Mean elongation; Longitude of the ascending node of the eccentric = (Convention:
− = 360◦ − ); i = Inclination of the eccentric to the ecliptic; β = Ecliptical latitude; q = Equation of
center; pA = Epicyclic equation at the eccentric apogee; p� = Epicyclic equation at the eccentric perigee.
The tabular equation values and the calculation of the true longitude and latitude: c3 = q(2η̄) → α = ᾱ±c3;
c4 = pA(α); c5 = p�(α) − pA(α); The coefficient of the interpolation: c6(2η̄); p(α) = c4 + c5 × c6;
� = �̄ ± p; Argument of latitude: �β = � − . Equation of the inclined eccentric: c7(�β); True ecliptical
longitude: �∗ = � ± c7; and β(�β)

A general overview of the contents of Talkhı̄s. V shows that although Muh. yı̄ al-
Dı̄n describes and re-quantifies the Ptolemaic lunar model step-by-step through his
own observations in the same way as Ptolemy did this, in fact, he has, a priori, the
Ptolemaic ready-to-use model in his mind24 and now wants, to a larger degree, to
renew the computation of its underlying parameters and, to a lesser degree, to test it
(especially, in the case of prosneusis). Figure 1 illustrates the Ptolemaic lunar model,
its parameters and equations, and the conventional symbols used for referring to them.
They will be explained further in the rest of the paper.

24 E.g., see note 33, below.
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Lunar measurements at the Maragha observatory 77

Fig. 2 a and b The positions of
the Moon on its epicycle in the
three lunar eclipses observed by
al-Maghribı̄: no. 1: A, no. 2: B,
and no. 3: C . Reproduced based
on the diagram drawn by
al-Maghribı̄ on fol. 70v

3.1 The measurement of the radius r of the lunar epicycle

In Almagest IV, 6, Ptolemy proposed a mathematical method to determine the radius
r of the moon’s epicycle in terms of the radius of its deferent R = 60 from the data
obtained from the observations of three lunar eclipses.25 Mūh. yı̄ al-Dı̄n’s method in
chapter 4 (fols. 69r–70v) is essentially that of Ptolemy; however, the application of
the sine function makes the steps shorter and the whole procedure somewhat easier-
to-reconstruct.

Assume that, in Fig. 2a, b, the points A, B, and C show the position of the moon
on its epicycle in the eclipses nos. 1, 2, and 3, respectively (Fig. 2a, b are copies of the
diagrams drawn by our author in the manuscript, fol. 70v).26

We know the times of the three eclipses since the epoch (cf. Col. 3 of Table 1).
Thus, the time intervals between two successive eclipses are

�t

From eclipse no. 1 → no. 2 8 years 33 days 1;55 h
From eclipse no. 2 → no. 3 3 years 292 days 3;47 h

Then, the differences in the lunar mean anomaly �ᾱ and in its mean longitude ��̄
are

25 Toomer (1998, pp. 190–203); cf. Pedersen (1974, pp. 172–178); Neugebauer (1975, Vol. 1, pp. 73–80),
Thurston (1994, Appendix 4: p. 204f), Duke (2005).
26 We use the standard proposed by Kennedy (1991/1992, p. 21) to transliterate the letters in the diagrams.
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78 S. M. Mozaffari

�ᾱ ��̄

From eclipse no. 1 → no. 2 61;57,26◦ 30;57,18◦
From eclipse no. 2 → no. 3 123;11,59 277;44,27

Thus, in Fig. 2a, b,

arc AB = 61;57,26◦ and arc BC = 123;11,59◦. (1)

The difference in the lunar true longitude between two successive eclipses can be
calculated from the true longitude of the sun at the instant of the maximum phase of
each eclipse, already listed in Col. 6 of Table 1.

��

From eclipse no. 1 → no. 2 30;30,11◦
From eclipse no. 2 → no. 3 286;48,27

In Fig. 3a, the positions of the mean and true moon (A, B, C) at the times of the
three lunar eclipses are shown (drawn to scale). Figure 3b (which is the drawn-to-scale
version of the same Fig. 2a, b) is produced through transforming DC and DB (the lines
passing through the earth D and the moon in the eclipses nos. 2 and 3) in such a
manner that each of them occupies their true position with respect to the mean moon.

Then, it can easily be seen that � ADB and � ADC can be calculated from
∣
∣
∣�� − ��̄

∣
∣
∣:

� ADB = 30;57,18 − 30;30,11 = 0;27,7◦,
� BDC = 286;48,27 − 277;44,27 = 9;4,0◦.

(2)

Now, the problem is to find the radius T H(= r) of the circle ABC (= the lunar
epicycle), so that the chords AB, BC, and AC appear from D (the earth) under the
angles ADB, BDC, and ADC, respectively.

From (1), � AEB = 1/2 (arc AB) = 30;58,43◦, then � DBE = 30;31,36◦. If we
assign to ED an arbitrary length equal to 60, then with applying the sine rule to the
plane triangle BED (Fig. 2a), we can calculate the length of BE in terms of ED. Our
author computed it as

BE = 0;55,54,18 [0;55,54,17] . (3)

(Hereafter, all numbers are Muh. yı̄ al-Dı̄n’s; the recomputed numbers are given in
brackets and the deviations are indicated in italics.) From (1), arc ABC = 185;9,25◦.
As a result, arc CA = 174;50,35◦. Thus, � AEC = 1/2 (arc AC) = 87;25,17,30◦. From
(2), � ADC = � BDC − � ADB = 8;36,53◦. Thus, � ECD = 78;48,24,30◦. Again, with
applying the sine rule to the plane triangle CED, we have:

CE = 9;10,11,26 [9;9,41,53] (4)

in terms of DE = 60.
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Lunar measurements at the Maragha observatory 79

(a)

(b)

Fig. 3 a The positions of the Moon in longitude and in anomaly in the three lunar eclipses observed
by al-Maghribı̄ in a lunar “epicycle zero-eccentricity deferent” model (i.e., Hipparchan model). b The
transformation of the lunar anomalistic positions in the eclipses nos. 2 and 3 (the points B and C) to its
orbital position in the eclipse no. 1

We also have � BEC = � AEB + � AEC = 118;24,0,30◦. We extend the chord EC
from E to the right side and drop the perpendicular BZ that intersects it at Z . Thus,
� BEZ = 61;35,59,30◦, which is indeed, our author says, acute, and � BZE is right.
Then, � EBZ = 28;24,0,30◦.

Now, we want to calculate the length of BC. First, in the triangle BEZ, we calculate
the lengths of the lines BZ and EZ:27

BZ = BE · Sin � BEZ = 0;49,18,29 [0;49,10,35]
EZ = BE · Sin � EBZ = 0;26,35,23,27 [0;26,35,23,8] .

And we obtain, from the above-mentioned value for EZ and (4), C Z = E Z + EC =
9;36,46,49 [9;36,17,16]. Then

BC =
(

BZ2 + CZ2
)1/2 = 9;38,43,5 [9;38,22,56] . (5)

27 Throughout the paper, Sin α indicates the sine of the angle α under the condition that the radius of the
trigonometric circle is assumed to be R = 60, i.e., Sin α = 60 sin α. Similarly for Crd α.
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80 S. M. Mozaffari

Until now, all of the lines have been calculated in terms of DE = 60. We desire
to express all of the lengths in terms of the radius of the lunar epicycle (circle ABC)
taken as r = 60. For this purpose, our author computes:

BC = Crd (arc BEC) = r · crd (arc BEC) = 2 · Sin(� BEZ)

= 105;33,27,56,52 [105;33,27,41,7] .
(6)

Here, the length of BC is in terms of r = 60. Equations (5) and (6) establish the
ratio for expressing the lengths of the lines, which were already computed in terms of
DE = 60, in terms of r = 60. We can then determine the length of DE in terms of
r = 60 as

DE = 60 × (105;33,27,56,52/9;38,43,5)

= 10,56;38,14,49 [10,57;1,5,46] . (7)

Now, we want to compute the length of the chord AE. In the triangle BCZ:

� BCZ = Sin−1 (BZ/BC) = 4;53,16◦ [

4;52,39◦] .

And, indeed, arc BE = 2 · (� BCZ) = 9;46,32◦ [9;45,18◦]. From (1), arc AE =
arc BE + arc AB = 71;43,58◦ [71;42,44◦]. We can then calculate the length of the
chord AE in terms of r = 60:

AE = 2 · Sin (arc AE/2) = 70;18,27,59 [70; 17,24,43,46] . (8)

From (7) and (8), we can calculate the length of the line AD connecting the moon to
the center of the earth at the instant of the maximum phase of the eclipse no. 1:

AD = AE + DE = 12,6;56,42,48 [12,7;18,30,30] . (9)

With regard to Fig. 2b, by Euclid III, 36,28 from (7) and (9):

Y D · DH = AD · DE = 2,12,35,39;27,22,41 [2,12,44,14;57,11,9] . (10)

By Euclid II, 6,29 from (10) and TH = r = 60, we have:

DT = (YD · DH + TH2)1/2 = 11,33;29,52,45 [11,33;52,10,23] . (11)

The line DT is the radius of the moon’s deferent and is now known in terms of r = 60.
If we assume R = DT = 60, then we can conveniently calculate the length of r in
terms of R = 60 as

r = (60 × 60)/11,33;29,52,45 = 5;11,28 [5;11,18] . (12)

28 Heath (1952, p. 33).
29 Heath (1952, pp. 64–66). Like Ptolemy, our author does not refer to Euclid.
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Muh. yı̄ al-Dı̄n rounds the final result as 5;12. The errors befallen to our author are so
small that their effect on the final result would not produce a rounded value other than
5;12. The maximum amount of the difference between the mean and true positions of
the moon will then be Sin−1(5;12) ≈ 4;58◦, under the condition that the center of the
lunar deferent coincides with that of the earth or, in other words, the moon revolves on
a zero-eccentricity deferent (al-falak al-muwāfiq al-markaz). In his earlier zı̄j, Tāj al-
azyāj, our author has 4;51◦ (corresponding to r ≈ 5;5),30 which is the value ascribed
to Ibn al-A‘lam (d. 985) (see below, Sect. 4.7).

3.2 The measurements of ωt, ωa, and

In chapters 5 and 6 (fols. 70v–72r) the procedure of determining the mean angular
motions of the moon is described: the mean motion in anomaly, ωa, the mean motion in
longitude, ωt , and the velocity of the retrograde motion of the lunar orbital nodes, .
In doing so, the author made use of the data obtained for the instant of the maximum
phase of the eclipse no.3.

In Fig. 2b, we drop the perpendicular TKL from the center T of the epicycle to
the line AE, so that it bisects the line AE at K and the arc AE at L . Indeed, from (8),
KE = 35;9,13,59,30 [35;8,42,21,53]. Then, with the length of DE from (7):

DK = DE + KE = 11,31;47,28,48,30 [11,32;9,48,7,53] . (13)

Applying the sine rule to the plane triangle KTD, with (11) and (13), we have:

� DTK = Sin−1((DK/DT) · Sin( � TKD) = 85;58,40◦ [85;58,52◦]. (14)

Thus,

� KDT = 90◦ − � DTK = 4;1,20◦ [

4;1,8◦] (15)

� KDT is the epicyclic equation of the moon at the instant of the maximum phase of
the eclipse no. 1. From (2), � ADC = � BDC − � ADB = 8;36,53◦. Thus, from (15):

� YDC = � ADC − � KDT = 4;35,33◦ [

4;35,45◦] , (16)

which is the epicyclic equation of the moon at the instant of the maximum phase of
the eclipse no. 3. From (14): arc YL = 180◦ − � DTK = 94;1,20◦ [94;1,8◦]; also, we
previously computed arc AE = 71;43,58◦. Thus,

arc YA = arc YL − arc AE/2 = 58;9,21◦ [

58;9,9◦] . (17)

The arc YA is the true lunar anomaly α (khās. s. a al-mu‘addala, lit. “adjusted anomaly,”
named against mean anomaly ᾱ, khās. s. a al-wust.ā, which our author will introduce

30 Dorce (2003, p. 203).
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82 S. M. Mozaffari

later) at the instant of the maximum phase of the eclipse no. 1. In this way, the true
anomaly of the moon at the maximum phases of the other two eclipses, i.e., the arcs
YB and YC, respectively, will be determined as follows. From (1), we have:

arc YB = arc YA + arc AB = 120;6,47◦ [120;6,35◦],
arc YC = arc YA + arc AB + arc BC = 243;18,46◦[243;18,34◦]. (18)

The true lunar anomaly in the eclipse no. 3, i.e., the arc YC, is indeed more than 180◦.
Consequently, the lunar epicyclic equation calculated in (16) should be subtracted
from its true longitude in order to obtain its mean longitude (i.e., the longitude of
the center of the lunar epicycle). From Col. 3 of Table 1, �� = 311;41,28◦, and so

. Then from (16):

(19)

Now, we have the mean longitude of the moon in a well-measured time. In order to

determine ωt , a mean longitude for a given instant t0 should also be available. ωt

can then be computed from ��̄/�t . In doing so, Muh. yı̄ al-Dı̄n used the data presented
by Ptolemy in Almagest IV, 6 for the second of the triple lunar eclipses observed by
him at Alexandria (geographical longitude L = 82◦ from the Fortunate Isles, i.e.,
Canary Islands).31 The data are as below:

(20)

Our author converts the time of the maximum phase of this eclipse (counted from the
beginning of the Nabonassar era) from the local time of Alexandria to that of Maragha
(L = 62◦) by adding 1;20 h:

t0 = 881 years 92 days 12;20 hours.

The date of our author’s eclipse no. 3 corresponds to 18 Choiak 2022 Nabonassar.
Thus, the time of the maximum phase of this eclipse counted from the beginning of
the Nabonassar era is

t = 2021 years 107 days 14;0 hours.

31 Toomer (1998, pp. 198 and 203), Pedersen (1974), Appendix A, no. 69 (on p. 418); hereafter, our
author calls this as “First Eclipse” and his eclipse no. 3 as “Second Eclipse.” For the analysis of the eclipses
mentioned in the Almagest, cf. Steele (2000).
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Therefore, the time difference between the two eclipses is

�t = 1140 years 15 days 1;40 hours = 1,55,35,15;4,10 days. (21)

Indeed, from (19) and (20), ��̄ = 97;35,55◦ [97;35,43◦]. Our author calculated that
the moon completed 15230 revolutions +97;35,55◦ [97;35,43◦] during the period
(21); thus,

ωt = 13;10,35,1,52,46,45◦/d [. . . , 40,32] (22)

(Tā j al-azyā j : . . . , 36,32,17)32

In order to determine ωa, we should also have two magnitudes ᾱ and ᾱ0 for the mean
anomaly of the moon measured, respectively, in the two times t and t0 sufficiently far
from each other. From (20), it is clear that at the instant of the maximum phase of
Ptolemy’s eclipse no. 2, the moon’s double mean elongation (Centrum) was 2η̄ =
0;5,36◦. By means of interpolation in the Almagest table for the lunar equation of
center, our author obtains the equation of center q(0;5,36) = 0;50◦(0;49◦).33 The
lunar mean anomaly in the Ptolemaic model is calculated by

ᾱ = α ∓ q(2η̄)

(−if 0 < 2η̄ < 180◦; + if 180◦ < 2η̄ < 360◦)
(23)

Then, the mean anomaly of the moon at the time of Ptolemy’s eclipse no. 2 was

ᾱ0 = 64;38 − 0;50 = 63;48◦ (24)

Muh. yı̄ al-Dı̄n gives �̄� = 310;20◦ and [above (19)] for the instant
of the maximum phase of his eclipse no. 3. Thus, 2η̄ ≈ 353; 32◦. Now, by means of
interpolation in the table of the lunar equation of center (so-called the “first equation”)
calculated on the basis of his new value for the lunar eccentricity (cf. below, Sect. 3.3),
the lunar equation of center is derived as q(353;32) = 0;51,44◦.34 Thus, from (18)
and (23), the mean anomaly of the moon at the instant of our author’s eclipse no. 3 is

ᾱ = 243;18,46 + 0;51,44 = 244;10,30◦. (25)

32 Dorce (2003, p. 197).
33 Note that our author computes here the mean anomaly of the moon according to the Ptolemaic lunar
model introducing the second anomaly of the moon and the prosneusis while he has not yet expounded
this model and that the correction due to the prosneusis, i.e., the lunar equation of center, should be taken
into account in order to compute the lunar mean anomaly from its true anomaly. In the situations like
this, he refers reader to the future chapters. Another note is that Ptolemy in Almagest IV, 7 (Toomer 1998,
p. 204; Neugebauer 1975, Vol. 1, pp. 78–79) computes ωa according to his first (i.e., Hipparchan) lunar
model, but never comes back to revise it after completing his lunar model. On the four-eclipse method for
determining the length of the lunar anomalistic month (i.e., 360◦/ωa) described by Ptolemy and a more
coherent formulation of it by Jābir b. Aflah. (fl. Spain, the 12th ct.), cf. Bellver (2006).
34 Talkhı̄s. , fol. 82r; Adwār, CB: fol. 81v; Wābkanawı̄, fol. 154v (cf. below, Table 4): q(353) = 0;56◦ and
q(354) = 0;48◦ → q(353;32) = 0;51,44◦. However, the trigonometric formula for q results 0;50,35◦.
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Fig. 4 The positions of the lunar disk and the Earth’s shadow with respect to the ascending node of the
lunar orbit (A). Redrawn based on Muh.yı̄ al-Dı̄n’s diagram on fol. 72r

Thus, from (24) and (25), �ᾱ = 180;22,30◦. The moon completed 15101 revolutions
around the center of its epicycle + 180;22,30◦ in the period (21). Therefore,

ωa = 13;3,53,42,51,59,0◦/d [. . . , 58,26,20,17] (26)

(T ā j al-azyā j : . . . , 56,9,27,7)

In order to compute the rate of the retrograde motion of the lunar orbital node, ,
our author first draws Fig. 4 (on folio 72r) which shows the position of the moon at
the maximum phase of the eclipse no. 3 with respect to the ascending node (A), to the
ecliptic (AB), and to the circle of the earth’s shadow (the bigger circle with center B).
Our author states that the angular apparent diameter of the moon at the time of this
eclipse was .35 According to Almagest V, 14, the apparent radius of the
earth’s shadow in the moon’s orbit is

(27)

The magnitude of the eclipse no. 3 was 4/5 (cf. Col. 5 of Table 1). Thus, we have:

.
(28)

BC is the latitude β of the moon. The modern value for the geocentric latitude of the
moon at that moment is β = +0;34,52◦.36 In the triangle ABC, � B = 90◦, and � A

35 Our author discussion on the solar and lunar angular diameters as well as his non-Ptolemaic value for
the minimum apparent diameter of the moon and sun, i.e., 0;31,8◦, appear in VI, 6 (fol. 93v onwards).
36 Note that although the input data for the calculation of β is the magnitude of the eclipse, which was
obtained from the observation, the value of β in (28) should be compared with the modern value of the
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Lunar measurements at the Maragha observatory 85

is the maximum latitude (= the inclination i of the orbit) of the moon, which is equal
to 5◦ (cf. Sect. 3.5). Thus,

AC = 6;27,18◦ [6;27,40◦]. (29)

We know that the true longitude of the moon in the eclipse no. 3 was ;

thus, the true longitude of the ascending node is37

(30)

in fair agreement with the modern value for at the instant of the maximum phase
of the eclipse no. 3: = 125;15,38◦. In Ptolemy’s eclipse no. 2 [above (20)]:

= 199;20,18◦; thus, � = −74;6,8◦[−74;6,30◦]. The ascending node there-
fore completed 61 revolutions +74;6,8◦[+74;6,30◦] in the direction of decreasing
longitude in the time interval (21); then,

= 0;3,10,37,37,12,20◦/d [. . . , 23,46] (31)

(T āj al-azyāj : . . . , 38,58,42,48)

In order to determine the lunar mean positions at the epoch, in chapter 7 (fol. 72v),
our author computes back to the end of the year 600 Y (mean noon of January 17,
1232 at Maragha) from the eclipse no. 3 with the mean positions already calculated
in (19), (25), and (30).

�̄◦ = 221;14,20◦

ᾱ◦ = 249;12,59◦ (32)

− ◦ = 142;4,46◦

Now with (22), (26) and (31), Muh. yı̄ al-Dı̄n constructs his own tables for the lunar
mean motions in chapter 7.38

3.3 The measurement of the Ptolemaic lunar eccentricity e

Through Ptolemy’s laborious lunar measurements, our author was well acquainted with
the fact that the epicycle hypothesis is not enough in order to account for the moon’s

Footnote 36 continued
geocentric β (not with the topocentric/apparent β, which is about +0;11,30◦), simply because both and
r• have been calculated according to the geocentric hypotheses of the Ptolemaic model.
37 Note that the arc AB of the ecliptic, instead of the arc AC, should be subtracted from . However, the
two arcs are approximately equal: AB ≈ 6;26,12◦.
38 Mean motion in longitude: Talkhı̄s. , fol. 73r; Adwār, M: fol. 76v, CB: fol. 74v; in anomaly: Talkhı̄s. , fol.
73v; Adwār, M: fol. 77r, CB: fol. 75r; − : Talkhı̄s. , fol. 74r; Adwār, M: fol. 78r, CB: fol. 76r; the Adwār
has also the table for 2η̄: M: fol. 77v, CB: fol. 75v. All of the tables have been prepared for each 30 years,
one month, one day, and one hour (up to 30 h).
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Table 2 Muh.yı̄ al-Dı̄n’s lunar observation no. 4

Date Time (MLT) �h′

Muh.yı̄ al-Dı̄n 12 Tı̄r 633 Y ∼ 10.5m after sunrise 2;0◦ 28;34◦
Modern 20 April 1264 (1): 5:21 1:48 28:53

JDN 2182844 (2): 5:25 2;34 28;54

(1): 10.5 min after sunrise (∼5:10). Azimuth of the moon ≈ 358; 55◦
(2): When the moon transited the meridian

motions at the times other than conjunctions and oppositions. He also knew that the
lunar epicyclic equation at mean quadrature (when the moon’s mean elongation from
the sun is 180 ± 90◦) is greater than any similar epicyclic position occupied at the other
phases and that the moon has the least distance to the earth at quadratures. In order to
determine how much greater the epicyclic equation may be at mean quadratures, which
also makes possible to measure the lunar eccentricity, the moon should be observed
when both (a) it is near mean quadrature and (b) it has an anomaly of about 95◦ to
cause its epicyclic equation to be maximum. Our author starts his computations in
chapter 8 (fols. 73r–76r) from the values observed for the altitudes of the sun and
moon when the moon transited the meridian of Maragha on Sunday, April 20, 1264.
At that moment, the moon was near its last mean qudrature (Table 2).

He gave the following quantities for the instant of this observation, by which he
computed the moon’s ecliptical coordinates as follows (also see below, Sect. 4.6):

= 37;15,46° [modern : 37;13,42°] (33)
The sun’s oblique ascension : Aϕ(��) = 24;31,12◦[23;57,57◦]39

Time elapsed since sunrise : ∼ 10.5 min = 2;37,20◦ [

2;37,45◦]40

Our author draws Fig. 5 (fol. 76v) in which AB is an arc of the eastern horizon, CBL,
the meridian and ADE, the eastern arc of the ecliptic, the southern pole of which is M.

Thus, A is the ascendant ( t.āli‘) and D is the mid-heaven or the transit degree (darajat
al-tawassut.) whose longitude is denoted by �mid. CTY is the eastern arc of the celestial
equator; thus, the arc TY is the oblique ascension of the arc TA (i.e., Aϕ(T A) = T Y ).
At the moment of the observation, the apparent moon is at Z , but the true moon is at
H . ZH shows the lunar parallax in the vertical/altitude circle. Hence, ZB is the lunar
apparent (topocentric) altitude and HB is its true (geocentric) altitude. We draw the
orthogonal MHE to the ecliptic (� HED = 90◦); thus, E is the true position of moon
on the ecliptic and HE is its latitude. With D as the pole, we draw a great circle passing
through Y and M , which intersects the ecliptic and the meridian, respectively, at K
and L ( � TKY = 90◦; arc KYM = 90◦).

39 By means of interpolation in the table of the oblique ascension for the latitude of Maragha on folio 35v.
40 The time expressed in the sun’s apparent diurnal motion as projected onto the celestial equator, the
so-called dā’ir. Our author calls it “Altitude dā’ir,” indicating that this time was computed from the solar
altitude, not measured with the clepsydra. With our author’s parameters, i.e., the geographical latitude of
Maragha ϕ = 37;20,30◦, the obliquity of the ecliptic ε = 23.5◦, and �� = 37;15,46◦, half the sun’s
apparent diurnal motion = 100;56,31◦ (and so, half the duration of daylight = 6;43,46 h; our author later
gives 6;43,31 h) and, therefore, the sun’s hour angle when it had the altitude h = 2◦ was 98;18,46◦.
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Fig. 5 A schematic view of the positions of the Moon, the ecliptic, and the celestial equator with respect
to the meridian of Maragha in Muh.yı̄ al-Dı̄n’s lunar observation no. 4 based on the diagram drawn by him
on fol. 76v (the dotted circles are added, not drawn in the original)

In the spherical triangle KYT, YT = 24;31,12 + 2;37,20 = 27;8,32◦. � KTY is the
obliquity of the ecliptic, ε = 23;30◦. Using the sine rule, we have KY = 10;29◦.
TC = YC − YT = 90 − 27;8,32 = 62;51,28◦. Then the right ascension of the mid-
heaven is R A(�mid) = 360 − 62;51,28 = 297;8,32◦. Interpolating in our author’s
table of the right ascension (fol. 34v), we then have:

�mid = 295;10,48◦. (34)

The arc DB is the altitude of the mid-heaven: hmid = 31;30◦. For the lunar apparent
altitude ZB = h′

max = 28;34◦, our author calculates the lunar parallax (i.e., the
arc HZ) as Π = 1;15◦ (cf. below, Sect. 4.3). Then the lunar true altitude is HB =
hmax = 29;49◦. As a result,

DH = DB − HB = 31;30 − 29;49 = 1;41◦. (35)

Since � TCD = � YKT = 90◦, we have:

� EDH = � CDT = 90◦ − arc KY = 79;31◦ (36)

Then, we can calculate the lunar latitude (the arc EH) using the sine rule to the triangle
DEH:

(37)
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In order to determine the lunar longitude, we should compute the arc DE. We know arc
DE = 90◦ − � EML. Now, in the triangle MHL, MH = 90◦ − EH = 88;21◦, LH =
90◦ − DH = 88;19◦, and � HLM = 90◦; thus, using the sine rule in the triangle
HLM, � HML = 89;39,11◦ [89;40◦]. Therefore, DE = 0;20,49◦ [0;20◦]. Now, from
(34), the longitude of the moon is calculated as

(38)

The ecliptical coordinates computed by our author, compared with the modern ones,
are summarized as follows:

(39)

Our author gives the mean longitudes of the sun and moon for mean noon of April
20, 1264 at Maragha as �̄� = 35;55,4◦ and ; then η̄ = 269;38,15◦.
Thus, a distance of y = 0;21,45◦ should be travelled by both the mean sun and the
mean moon until the last mean quadrature occurs when they are located in the angular
distance of η̄ = 270◦ from each other (Fig. 6). We wish to know how long it will take.
This is easily calculated from

(40)

ωt is given in (22) and ω� = 0;59,8,20,8,4,36,38◦/d. Thus,

�t = 0;42,48h
[

0;42,49h
]

.

During this time interval, the moon travels

y1 = ωt .�t = 0;23,29◦

and the sun,

y2 = ω�.�t = 0;1,44◦

along the ecliptic. Therefore, on the basis of our author’s results, the time of the last
mean quadrature and the mean longitudes of the sun and moon when it took place
were

(41)
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Fig. 6 The procedure of finding
the time t ′ of the last quarter of
the Moon from the known
longitudes of the Sun and the
Moon in a specific time t

The results are in fair agreement with the modern values:

As it is obvious, our author’s value for the time of the last mean quadrature has an
error of about +18 min.

Our author gives half the hours of daylight as 6;43,31h [true ≈ 6;40h]. Thus, the
time of the last mean quadrature is 6;43,31 + 0;42,48 = 7;26,19h after sunrise and
7;26,19 − (2;37,20 × 24/360) ≈ 7;15,50h after the instant of the observation [above
(33)]. The moon travels an arc of 3;59,17◦ along the ecliptic during 7;15,50h.41 Thus,
from (39), the true longitude of the moon at the instant of the last mean quadrature is

(42)

Therefore, the difference between the lunar true and mean longitudes, (41) and
(42), is

(43)

41 Note that when the last mean quadrature occurred [above, (41)], the moon had an anomaly near 100◦
(see below), and so the line of sight to it was tangential to the epicycle. Thus, the lunar epicyclic equation
was maximum, and therefore, its true motion was equal to its mean motion.
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Fig. 7 The measurement of the
eccentricity of the Moon in the
Ptolemaic lunar model. Redrawn
based on the diagram drawn by
al-Maghribı̄ on fol. 77r

We know that this is the amount of the angle subtended by the lunar epicycle radius at
the earth’s center (or the same epicyclic equation of the moon) at the instant of the last
mean quadrature. In the end of Sect. 3.1, we have calculated that if the moon revolves
on a zero-eccentricity deferent, the radius of the lunar epicycle should always appear
under the angle 4;58◦ from the earth. Thus, the center of the moon’s deferent does not
evidently coincide with that of the earth. Our author is well aware of this as well as the
fact that the epicyclic equation will catch its maximum amount at mean quadratures.

In order to measure the lunar eccentricity e, our author draws Fig. 7 (or extracts
it from Almagest V, 4),42 in which the earth is at D. We previously assumed that the
lunar deferent is a circle with center D, whose radius AD is taken as R = 60, but it is
now known that the center C of the lunar deferent is displaced from D. Thus, CD is the
lunar eccentricity. We want to obtain the magnitude of CD in terms of AD = R = 60.
Through the Almagest, we know that at mean quadrature, the center of the lunar
epicycle is located at the perigee B of its eccentric. If the moon (Z) has an anomaly (arc
EZ) at that time such that the line DZ is tangential to the epicycle, then the epicyclic
equation (� BDZ) will be maximum. In the triangle DZB, � DBZ = 180◦ − � ZBE,
where � ZBE is the lunar anomaly, our author gives α = 100;29,59◦ for the time
of the last mean quadrature [above (41)]; then � DBZ = 79;30,1◦. And from (43),
� BDZ = 7;7,32◦. Thus, � DZB = 93;22,27◦. BZ is the radius of the epicycle, i.e.,
r = 5;12 in terms of R = 60. Using the sine rule results BD = 41;51. Our author
rounds this to the nearest integer number, i.e., BD = 42. Thus, AB = 60 + 42 = 102.
Therefore, the radius of the lunar eccentric deferent, AC, is calculated as 51, and the
lunar eccentricity, CD, as

42 Toomer (1998, p. 226); Arabic Almagest, fol. 63v.
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e = 9
[

Ptolemy (also adopted in Tāj al-azyāj) : 10;19
]

. (44)

Then, the maximum amount of the lunar epicyclic equation (“second equation”) will
be equal to sin−1(5;12/42) ≈ 7;8◦[7;7◦]. This is the case when at mean quadrature,
the line passing through the centers of the earth and moon is tangential to its epicycle.
And the difference between the maximum values of the second equation of the moon
when the center of its epicycle is located at the eccentric apogee and at the eccentric
perigee will be 7;8 − 4;58 = 2;10◦ [Ptolemy: 2;39◦].

3.4 Prosneusis and the mean epicylic apogee in the Ptolemaic lunar model

In chapter 10 (fols. 77v–80r), our author introduces the last component of the Ptolemaic
lunar model, i.e., prosneusis. This step is also like the testing of the model. In doing
so, he makes use of his observation of the meridian transit of the moon on Friday,
August 29, 1264, when the moon was near mean octant (Table 3).

The method of the determination of the ecliptical coordinates of the moon at the time
of the observation is as described above, Sect. 3.3. In order to compute the longitude
of the mid-heaven, our author first gives the solar mean longitude for the time of the
observation as

�̄� = 165;12,36◦. (45)

So�� = 163;16,41◦, and hence, the right ascension of the solar longitude counted from
the head of Capricorn is R A(��) = 254;35,46◦. The revolution of the celestial sphere
in this time interval is 41/5 × 15 = 63;0◦. Then R A(�mid) = 317;35,46◦ (counted
from the head of Capricorn). Thus, �mid = 230;3◦. Accordingly, hmid = 34;52◦. Our
author gives the lunar parallax in the vertical circle as Π = 1;3◦ (cf. below, Sect. 4.3).
Hence, and . With regard to Fig. 8 which depicts
the celestial sphere with respect to the local horizon at the instant of this observation,
δ′ = sin−1(sin(317;35,46 − 180) × sin(23;30)) = 15;35,53◦ [error ≈ −2′′]. We
have μ = 90◦ − δ′ (cf. (36) and Fig. 5). Then μ = 74;24,7◦. Like the procedure
already described in Sect. 3.3, the latitude of the moon and the difference x between
its longitude and the mid-heaven are determined by solving the highlighted triangles
in Fig. 8; the results are and x = 1;20,48◦[1;21,8◦]. Also, referring to
the tables of the lunar mean motions, our author gives the mean and true positions of
the moon at the instant of this observation as follows:

Table 3 Muh.yı̄ al-Dı̄n’s lunar observation no. 5

Date Time (MLT) � h′

Muh.yı̄ al-Dı̄n 23 Ābān 633 Y 41/5 h after true noon 25;12◦ 28;48◦
Modern 29 August 1264 (1): 16:10 25;22 28;29

JDN 2182975 (2): 16:14 24;30 28;29

(1): 4;12 h after true noon on 11:58. Azimuth of the moon ≈ 358;55◦
(2): When the moon transited the Meridian
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Fig. 8 A simple schematic view of the positions of the Moon, the celestial equator, and the ecliptic with
respect to the local horizon in Muh.yı̄ al-Dı̄n’s lunar observation no. 5

Fig. 9 The configuration of the Ptolemaic lunar model for measuring the distance of the prosneusis point,
Y , from the Earth’s center, E . Redrawn based on the diagram drawn by al-Maghribı̄ on fol. 79v

(46)

Now, our author draws Fig. 9 (fol. 79v) illustrating the orbital components of the
Ptolemaic lunar model. � AEB is the mean double elongation of the moon; from (45)
and (46), we have: 2η̄ = 137;11,8◦. Then, � BEG = 42;48,52◦. Also, if AE = 60,
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then DE = 9 and BD = 51. Thus, using the sine rule in the triangle BDE, we have
� DBE = 6;53,18◦. Also, � BDG = � BEG − � DBE = 35;55,34◦. Applying the sine
rule to the triangle BDE, we have:

BE = BD · Sin(� B DG)/Sin( � AE B) = 44;1,47 (47)

From (46), the moon’s epicyclic equation at the time of this observation is
, and so, as our author mentions, the line passing through the

centers of the earth and moon, i.e., EH, is located west of the line EZ. In the triangle
BEH, BH is the radius of the lunar epicycle r = 5;12 and � ZEH = 2;24,22◦. Using
the sine rule, we have: � EHB = 20;49,22◦ [error ≈ +1′′]. Thus,

� HBZ = � ZEH + � EHB = 23;13,44◦ (48)

This is the lunar anomaly. And it is evidently larger than the mean anomaly [cf.
above, (46)]. From this, it results that the origin of the lunar mean motion in anomaly
is not the point Z , but the point T locating west of Z by the distance of 23;13,44
−13;54,8 = 9;19,36◦(= � TBZ = � EBY) from it. Then, our author draws the
line TB and extends it to meet AG at Y . The problem is to verify EY = ED. If
so, the Ptolemaic lunar model is tested successfully. The proof is as follows: in
the triangle BEY , � BEG = 42;58,52◦ and � EYB = 180◦ − ( � BEG + � EBY) =
127;51,32◦ [127;41,32◦]. Then

EY = BE · Sin( � EBY)/Sin(� EYB) = 9;2 [9;1] (49)

which is approximately equal to ED, i.e., the Ptolemaic lunar eccentricity, computed
earlier, cf. (44).

3.5 The measurement of the inclination of the lunar deferent (= maximum latitude)

In the end of both chapters 9 (folio. 77v) and 10 (fols. 79v–80r), our author devotes an
unnumbered chapter to the calculation of the lunar parallax and orbital inclination from
the data presented above. In order to compute the inclination i of the lunar deferent
from the empirical data, we return to Fig. 4. AC is the angular distance of the moon from
the node and BC is its latitude at the instant of the observation. � B = 90◦. � B AC is the
inclination of the lunar deferent. Our author gives = 314;3◦ (modern = 313;56◦)
for the time of the observation no. 4 (cf. Table 2) from his table of the motion of the
lunar ascending node. Also, from (39), ; thus, .
And . Applying the sine rule to the triangle ABC, we have:

i ≈ 5;2◦ [5;1,8◦] (50)

which in full agreement with the modern value calculated for April 20, 1264 AD.
For the time of the observation no. 5 (cf. Table 3), our author computes =

307;5,40◦ (modern = 308;18◦) from his table. With regard to Fig. 4, from (46):
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and . Applying the sine rule to the
triangle ABC, we have:

i ≈ 5◦ [

4;59,11◦] (51)

The modern value for August 29, 1264 is i = 5;11◦.

After computing all of the lunar parameters, our author proceeded to prepare the
tables for the equations, all of which are for each 1◦ of argument up to 180◦ (cf.
Fig. 1): the table for the “first equation” or the “equation of center”: q(2η̄) = c3 and
the “coefficient of the interpolation” due to the distance between the center of the lunar
epicycle and that of the earth: c6(2η̄) (fol. 82r); the table for the “second equation”
or the “epicyclic equation at the eccentric apogee”: pA(α) = c4 (fol. 82v); the table
for the “third equation,”43 i.e., the difference between the epicyclic equation at the
eccentric perigee and at the eccentric apogee: p�(α) − pA(α) = c5 (fol. 83r); and
the last lunar equation tabulated is the equation due to the shift of the moon from the
inclined eccentric to the ecliptic: c7 (fol. 83v). The table for the lunar latitude is also
on fol. 83r. The values of c7 and the moon’s latitude are for the argument of latitude

. Cf. Tables 4, 5, and 6. In the Adwār al-anwār, all of the equations are
tabulated together (CB: fols. 81v–82r. The table of the latitude is on fol. 87v).44

Neither in the Almagest, nor in the Handy Tables,45 were the amounts of the equation
c7 tabulated. To our best knowledge, a table for it first appeared in Yah. yā b. Abı̄
Mans.ūr’s Zı̄j al-mumtah. an.46 He and later Ibn Yūnus gave max(c7) = 0;6,0◦ for
�β = 44◦, 45◦, and 46◦, presumably computed from the value i = 4;46◦.47 Al-
Maghribı̄, in chapter 11, calls c7 as “the equation of the inclined sphere of the moon”
(ta‘dı̄l al-falak al-mā’il) or “the equation of the shift” (ta‘dı̄l al-naql)48 (fol. 83v) and
explains how the equation to be calculated:

c7(�β) = tan−1(tan �β cos i) − �β (52)

where i = 5◦. Accordingly, max(c7) = 0;6,33◦ for �β ≈ 45◦, while the Muh. yı̄
al-Dı̄n’s table gives 0;6,40◦ for �β = 44◦, 45◦, and 46◦. The same table can be found
in Khāzinı̄ (Zı̄j, fol. 135r), the Īlkhānı̄ zı̄j (C: p. 84), Kamālı̄ (fols. 67r and 243v),

43 In the other zı̄jes, it is called the “extra difference.”
44 Our author’s tables for the lunar equations can be found in Kamālı̄, fols. 243v–251r, and his values for
the lunar mean motions on fols. 232v–233r. The tables in Wābkanawı̄’s zı̄j are all based on Muh.yı̄ al-Dı̄n’s
parameter values.
45 Cf. Neugebauer (1975, Vol. 2, pp. 988–989).
46 Cf. Kennedy and Pingree (1981, pp. 168 and 310).
47 Zı̄j al-mumtah. an has βmax = 4;30◦ and βmax = 5;0◦ (fols. 54r and 57r). H. abash (fol. 36r) and Bı̄rūnı̄
(al-Qānūn, Vol. 2, pp. 776 and 779) have associated i = 4;46◦ with the Banū Mūsā (cf. below, Sect. 4.2).
However, Bı̄rūnı̄ mentions that some people erroneously cast doubt on the correctness of this attribution and
consider this value as the average of the Indian and Ptolemaic values, respectively, 4;30◦ and 5;0◦. Another
source (Kamālı̄, fol. 53v) has attributed βmax = 4;46◦ to the Mumtah. an tradition and βmax = 4;55◦ to
Thābit b. Qurra, ‘Alı̄ b. ‘Īsā, Sanad b. ‘Alı̄, Khālid b. ‘Abd- al-Malak al-Marwarūdhı̄, and the Banū Mūsā.
48 In the other zı̄jes, it is called “the third equation.” In the modern astronomy, it is called “the reduction to
the ecliptic.”
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Table 4 An excerpt of
Al-Maghribı̄’s table of the
equation of center of the moon

2η̄ c3 err.
(′)

10 1;20 +2

20 2;40 +4

30 4;0 +7

40 5;20 +12

50 6;30 +10

60 7;37 +8

70 8;37 +6

80 9;33 +7

90 10;14 +4

100 10;41 +2

110 10;51 0

120 10;38 −2

130 9;58 −4

140 8;49 −6

150 7;11 −6

160 5;5 −5

170 2;37 −4

180 0

Wābkanawı̄ (T: fol. 156r), among others.49 Bı̄rūnı̄ (al-Qānūn, Vol. 2, p. 810), Kāshı̄
(IO: fol. 133v; P: fol. 51v), and Ulugh Beg (P1: fol. 126v; P2: fol. 145r) accurately
gave max(c7) = 0;6,33◦.

3.6 The measurement of the lunar parallax

In Talkhı̄s. VI, our author deals with the lunar parallax, the solar and lunar distances
from the earth, and the theory of eclipses (corresponding to Almagest V, 11–16, VI).
In order to measure the lunar parallax in the circle of altitude, the observation should
be made when (a) the moon is near the points of the solstices (� = 90◦ or 270◦), (b)
its ascending node is near the points of the equinoxes (� = 0 or 180◦) to cause the
moon to have the maximum northern or southern latitude, and (c) the moon transits
the local meridian. Through our author’s period of the observations at Maragha, such
a situation occurred in March 1262.50 In VI, 2 (fols. 85v–86r), He used an observation
made on March 15, 1262 (Table 7).

From the tables of the mean motions, he gives the following mean positions for the
instant of this observation:

49 Max(c7) = 0; 6, 40◦ is derived from i = 5; 3◦ which al-Fārisı̄ (fol. 119v) (about him, cf. Pingree 1985,
pp. 8–9) attributes to Ibn Yūnus.
50 The next appropriate opportunity was on March 19, 1271. Of course, the moon transited the meridian
of Maragha about 17:47 MLT, before the sunset in ∼18:15 MLT. Our author’s tables give � ≈ 89;46,49◦
and β = −4;59,59◦ for this time.
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Table 5 An excerpt of
Al-Maghibı̄’s table of the
epicyclic equation of the moon

α c4 err.
(′′) c5 err.

(′)

10 0;47,46 +6 0;19 +1

20 1;34,26 +14 0;37 +1

30 2;18,48 +18 0;53 −1

40 2;59,50 +24 1;11 +1

50 3;36,27 +33 1;26 +1

60 4;7,30 +37 1;39 0

70 4;32,2 +41 1;52 +1

80 4;49,19 +56 2;0 0

90 4;57,20 +8 2;7 +1

100 4;57,20 +11 2;10 +1

110 4;47,54 +3 2;8 0

120 4;30,3 +54 2;4 +2

130 4;2,8 +50 1;54 +2

140 4;25,37 +44 1;39 +2

150 2;41,31 +35 1;19 +2

160 2;51,18 +24 0;56 +2

170 0;56,46 +12 0;30 +2

180 0

Table 6 An excerpt of
Al-Maghribı̄’s table of the
equation of the inclined sphere
of the moon

�β c7 err.
(′)

10 0;2,13 −1

20 0;4,16 +4

30 0;5,47 +7

40 0;6,32 +5

45 0;6,40 +7

50 0;6,34 +7

60 0;6,2 +21

70 0;4,35 +22

80 0;2,26 +11

90 0

Table 7 Muh.yı̄ al-Dı̄n’s lunar observation no. 6

Date Time (MLT) � h′

Muh.yı̄ al-Dı̄n 5 Khurdād 631 Y Sunrise 0 22;48◦
Modern 15 March 1262 (1): 6:3 0 22;57

JDN 2182077 (2): 6:11 1;26◦ 22;59

(1): When sunrise on 6:2. Azimuth of the moon ≈ 358◦
(2): When the moon transited the local meridian
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�̄ = 275;56,45◦ ᾱ = 156;2,0◦ 2η̄ = 192;32,12◦ (53)

and then he proceeds to compute the lunar parallax as follows:

Muh.yı̄ al-Dı̄n Modern

� 272;16,33◦ 272;9,9◦
β −4;57,20 −5;14,13

Declination δ −28;25,53 [−28;26,7]1 −28;45,23
Co-latitude 90 − ϕ 52;39,30 52;36,14
Geocentric altitude hmax 24;13,37 [24;13,23] 23;50,51

Apparent altitude h′
max 22;48 22;58,41

Parallax Π 1;25,37 [1;25,23] 0;52,102

1 Our author’s calculation of the lunar declination, instead of taking its amount to be −ε − βmax, denotes
that he by no mean roughly assumed that the longitudinal component of parallax is zero at the instant of
the observation
2 This is, of course, not exactly the value of the parallax, owing to the effect of the atmospheric refraction
which increases the observed altitudes and amounts to 0;2,0◦ for the apparent altitude = 22;58,41◦, with
considering the weather conditions in this observation: temperature = 10◦ C and the atmospheric pressure
=850 mbar at Maragha with the elevation = 1,550 m from the sea level. Π is therefore approximately
equal to 0;54,10◦

In Talkhı̄s. VI, 3 (fols. 86r–87v), using h′
max = 22;48◦ and Π = 1;25,37◦, our author

found that the moon–earth distance at the instant of this observation was 36;59,53
terrestrial radii (tr). Using R = 60, e ≈ 9, and r = 5;12, he also calculated that this
distance is 37;37,42 in terms of R = 60. All of the dimensions of the lunar model
may then be expressed in the unit tr through multiplying them by the factor of

36;59,53/37;37,42 ≈ 0;59 (54)

as Ptolemy held in Almagest V, 13. In Talkhı̄s. VI, 4 (fols. 87v–91v), our author con-
structed the table of the lunar parallax like Almagest V, 18 for the following four limits
on the basis of the dimensions computed from his new values for e and r :

η̄(◦) ᾱ(◦) Distance (tr)

0 0 64;6,48
0 180 53;53,12
90 0 46;24,48
90 180 36;11,12

Then, he instructed the operator how to calculate the lunar parallax from its geo-
centric altitude, elongation, and anomaly by the aid of the table. The table is given for
the steps of 3◦, as in the Handy Table (an extract of this is shown in Table 8).

In the rest of the book VI, there is nothing else new except three interesting points
as follows. Like Ptolemy, Muh. yı̄ al-Dı̄n held the opinion that the angular diameters
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Table 8 Muh.yı̄ al-Dı̄n’s table of the lunar parallax (fol. 90r)

Argument Parallax in Difference in Parallax in Difference in Epicycle Eccentric
first limit second limit third limit fourth limit sixtieths sixtieths

3 2′52′′(+1′′) 0′33′′ 0◦3′59′′(+1′′) 1′ 9′′ 0 0

15 14 5 2 44 (+1′′) 19 35 5 42 (+1′′) 4 5

30 27 11 5 14 37 44 10 55 14 17

45 38 20 7 22 53 11 15 18 (−2′′) 28 33

60 46 49 (+1′′) 8 57 (−1′′) 1 4 50 18 29 (−5′′) 43 47

75 51 59 (−1′′) 9 56 (+1′′) 1 11 56 20 14 (−14′′) 55 55

90 53 37 (+2′′) 10 10 1 14 4 (+1′′) 20 56 (+1′′) 60 60

of the sun and moon are equal at their greatest distances from the earth. Neverthe-
less, he found that the minimum apparent diameters of the sun and moon are about
0;31,8◦, instead of Ptolemy’s value 0;31,20◦. This is not, of course, an observational
achievement, but the result of a remedy of Ptolemy’s computations in Almagest V, 14.
Ptolemy calculated the apparent diameter of the moon from the data obtained from the
Babylonian observations of the two lunar eclipses on April 21/22, 621 BC and July
16/17, 523 BC, and arrived at 0;31,20◦ as the minimum value.51 Muh. yı̄ al-Dı̄n realized
that on the basis of the data given by Ptolemy, in both the eclipses, the moon was not
at its maximum distance from the earth. As a result, 0;31,20◦ cannot be the minimum
amount of the lunar apparent diameter. Based on Ptolemy’s data, in these eclipses, the
lunar anomaly was, respectively, 20◦ and 28◦. Simply adopting the mean value 24◦
results that the moon was in the distance of 64;50 (R = 60) from the earth. Thus, the
moon’s apparent diameter at its greatest distance from the earth should be equal to
64;50 × 0;31,20/65;15 = 0;31,8◦ (Talkhı̄s. , VI, 6: fols. 94r–v). I do not know another
medieval astronomer objecting Ptolemy at this point. An indispensable consequence of
the value 0;31,8◦ is that the sun’s greatest distance from the earth is 1420.5tr (Talkhı̄s. ,
VI, 7: fols. 95r–v) while Ptolemy has 1260tr. The last issue that is worth mentioning
is the existence of a comprehensive account of the annular solar eclipses (Talkhı̄s. , VI,
17: fol. 106r). Some scatter (either incidental or passing) allusions to this phenomenon
prior to al-Maghribı̄ can be addressed; e.g., Simplicius (6th ct.), Bı̄rūnı̄ (11th ct.), and
al-Khāzinı̄ (12th ct.), among others.52

4 Some technical and historical comments

4.1 Process of measurements

The way in which our author presented his process of observations and computations
for measuring the lunar parameters most likely does not cover all of what he in reality
did to obtain them. It is quite possible that other observations that he performed (esp.

51 Toomer (1998, pp. 253–254); Pedersen (1974, pp. 208–209).
52 Simplicius (1894), pp. 504–506 (cf. Bowen 2008, pp. 89–90); Bı̄rūnı̄, al-Qānun, Vol. 2, p. 632;
al-Khāzinı̄, Wajı̄z, fol. 28r.
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the other nine lunar eclipses that he may have witnessed; see the quotation in the end
of Sect. 2), some intervening turns of computation, and/or intermediate results have
been discarded. He should have started his final computations after he observed the
third lunar eclipse in 1274. The basic parameters r, ωt , and could then be computed
(Sects. 3.1, 3.2). After doing that, having referred to his recorded observations of 1264
(Tables 2 and 3), he first calculated e and ωa and then examined the Ptolemaic model.
He most likely dealt with the last computations documented in the Talkhı̄s. in the
period from August 1274 to December 1276, during which he was also busy with the
preparation of the tables of second zı̄j, the Adwār. Meanwhile, he had thus to work with
a preliminary set of parameters which resulted from his earlier unrecorded observations
and undocumented computations at Maragha, were taken from his previous zı̄j, the Tāj
al-azyāj, or were borrowed from his predecessors. It seems our author was utilizing his
earlier parameters as well as Ptolemy’s.53 He refers to his Islamic predecessors very
rarely; besides the observations of the autumnal equinoxes by Yah. yā b. Abı̄ Mans.ūr
(Baghdad) and by al-Marwarūdhı̄ and Sanad b. ‘Alı̄ (Damascus), which he compared
with his autumnal equinox observation of September 15, 1264 in order to determine
the length of the tropical year (365;14,30 days),54 no further allusion to his Islamic
predecessors may be found in the Talkhı̄s. .55

4.2 Lunar maximum latitude

Our author’s step of measurement devoted to determine the value of the maximum
latitude or the inclination of the orbit of the moon βmax = i = 5◦ (Sect. 3.5) does not
seem so reasonable because, in order to measure (Sect. 3.2), the value βmax = 5◦
has already been used to compute in the lunar eclipse no. 3. Now, using the table
of − , the same value for has in fact been redeployed in order to compute βmax.
Thus, the procedure is indeed circular. It seems our author has only tried to justify
why he has used the value βmax = 5◦ which had been accepted from the antiquity to
the medieval period, and he himself did not attempt to measure this value.

53 For example, the amounts our author gave for the difference in mean anomaly between the two lunar
eclipses (cf. Sect. 3.1) are better matched with taking Ptolemy’s value for ωa to compute them while those
given for the difference in mean longitude are in better agreement with taking the value adopted in Tāj
al-azyāj for ωt (the differences are in parentheses):

54 The medieval astronomers measured the length of the tropical year with taking the autumnal equinox
as the zero-point over the long periods. Thus, the result achieved should be considered as a “mean” value.
The mean value for the length of the tropical year between the two consecutive autumnal equinoxes in the
period from AD 0 to 2000 is 365;12,32 days (cf. Meeus 2002, pp. 357–366). Muh.yı̄ al-Dı̄n’s value is thus
more exact than those given, say, by Hipparchus/Ptolemy (365;14,48d), Thābit b. Qurra (365;14,24d), and
al-Battānı̄ (365;14,26d); cf. Mozaffari (2013a).
55 As far as the present author knows, in his mathematical treatises as well as his treatise on the astrolabe,
he refers to Avicenna (e.g., Hogendijke 1993, p. 134).
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In order to determine the moon’s maximum latitude, one has to measure the apparent
meridian altitude h′

max of the moon when its longitude is around 90◦ and its ascending
node is near the vernal equinox, because, only under this condition, the lunar parallax
will have its minimum amount. Then, the maximum latitude will be obtained as βmax =
h′ + Π − (90◦ − ϕ + ε).56 One attempt made during the medieval Islamic period for
measuring βmax is that of the Banū Mūsā at Baghdad, which has been documented in
Bı̄runı̄’s al-Qānūn al-mas‘ūdı̄:57

Date h′ ε ϕ Π β

Monday, 28 Ābān 239 Y Banū Mūsā: 84;53◦ 23;33◦ 33;20◦ 0;5◦ 4;45◦ 90-0;3◦
11 Dec. 870 AD, JDN 2039170 Modern: 84;56 23;35 33;20 0;5 4;56 ∼81

The altitude value is expressed as 84 + 1/2 + 1/3 + 1/20, which gives the impres-
sion that the instrument used had maybe been graduated for each 3′. The input data
are relatively correct and even the parallax had been calculated based on a horizon-
tal parallax 0;56◦ found in Indian sources, which is more accurate than Ptolemy’s
1;26◦.58 Nevertheless, the measured β is not βmax, simply because at the instant of the
observation, the moon was not in � = 90◦, but in � ≈ 83;26◦, and also ≈ 2;36◦.

4.3 Lunar parallax in the observations nos. 4 and 5

Another example to show Muh. yı̄ al-Dı̄n working with pre-existing parameters is the
problem of the lunar parallax confronted in the observations nos. 4 and 5. In order
to measure the eccentricity as well as to test the Ptolemaic lunar model, one of our
author’s input observational data is the amount of the parallax while it can be calculated
if and only if the lunar eccentricity, and thus the moon-earth distance are known. In the
end of his computations as presented above in Sects. 3.3 and 3.4, our author computed
the amounts of the lunar parallax for the instants of the observations nos. 4 and 5 from
the distances resulting from the new value e = 9 in order to verify that his input data
in both observations are correct. The argument appears to be circular again.

In order to neutralize the effect of parallax on the lunar longitude, the observation
should be made when the moon’s longitude equals the culminating point of the ecliptic.
In such a situation, the ecliptic will be perpendicular to the lunar altitude circle and
thus the longitudinal component of parallax becomes zero. As we have already seen
in Sects. 3.3 and 3.4 and it will also be discussed below (cf. Sect. 4.6), our author
did not directly measure longitudes, rather he measured the meridian altitude and
time, and then converted them to the ecliptical coordinates. As a result, in order to
neutralize the effect of parallax along with utilizing our author’s special method, the
observation should be made when both the ecliptic is perpendicular to the meridian

56 Cf. Almagest V, 12: Toomer (1998, pp. 246–247), Neugebauer (1975, Vol. 1, p. 101).
57 Bı̄runı̄, al-Qānūn al-mas‘ūdı̄, Vol. 2, p. 779.
58 Cf. Pedersen (1974, p. 206).
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and the moon is appreciably near the points of the solstices, i.e., when the culminating
point of the ecliptic, the mid-heaven, and the longitude of the moon are all equal. This
situation occurs in observations like those employed to determine the maximum lunar
latitude or parallax (e.g., the observation no. 6). Of course, it should also satisfy the
other two conditions mentioned in the beginning of Sect. 3.3. Such a situation occurs
very rarely and also gathering all conditions to allow doing such a measurement is
very hard to achieve. For instance, in the observation no. 6 (Table 7), the moon was
near, but not exactly in � = 270◦ and so the ecliptic was not firmly perpendicular
to the local meridian. Moreover, at that instant, the moon’s anomaly was α ≈ 156◦,
far from the epicyclic quadrature. This observation could thus not serve for such a
purpose.

Nevertheless, there may be an explanation for decoding the text at this point. It
comes from our author’s style of rounding in the case of the value obtained for the
minimum distance between the lunar epicycle center and the earth: he computed
BD = 41;51 (Fig. 7) and rounded it to 42 and, as a result, e = 9 is given instead of
e = 9;4,30 (R = AD = 60). This gives impression that he started out the computation
from some already-existed values for the lunar parallax to obtain an estimate for, or
to find the amplitude of the variation in, e. It may simply be shown that the Ptolemaic
value for the lunar parallax in the altitude circle in a situation similar to the observations
no. 4 is not more than Π = 1;19◦.59 Working with the latter value (i.e., more than
our author’s value by 4′) makes a difference of +0;3,11◦ in [cf. (38)] and so a
difference of −0;3,11◦ in ; i.e., 7;4,21◦ instead of 7;7,32◦ (cf. (43)). Therefore,
B D = 42;9,29 ≈ 42 and hence e = 8;55,16 ≈ 9. (Note that working even with
the drastically deviated values like Π = 1;0◦ and 1;30◦, making the differences of
−0;0,17◦ and +0;5,11◦ in , respectively, do not result in a rounded value other than
e ≈ 9, i.e., 9;5 and 8;49, respectively.) This could make our author confident that e
should be around 9, but he was probably and naturally not certain about its sexagesimal
fractions. This appears to be the reason why our author gave the final result only in
an integer number. It is deserved to notice that our author was likely aware of the fact
that any change in the value of e by some minutes has a negligible effect on the lunar
longitude.

4.4 Equation of time

The mean time intervals between the two eclipses [cf. Sect. 3.1 and 3.2(21)] contain
the amounts due to the equation of time60, which must be taken into account in order
to compute the true time intervals between them. The longitude values should also
be modified by the correction amounts resulting from the equation of time. We have
already shown that �� recalculated for the instant of the maximum phase of the eclipse

59 The center of the epicycle is at the perigee of the eccentric deferent (mean quadrature), and the moon
is near its maximum elongation from it; so, the moon–earth distance Δ = 0;59 × ((60 − 2 × 10;19)2 −
5;152)1/2 = 38;21,53 terrestrial radii. Thus, with h′ = 28;34◦, Π = sin−1(cos h′/Δ) ≈ 1;19◦.
60 Equation of days (Ar. ta‘dı̄l al-ayyām, La. equatio dierum) in the medieval astronomical context. How-
ever, it may be noted that the modern term “equation of time” (Ar. ta‘dı̄l al-zamān) may be found in Ibn
Yūnus, p. 92 (line 13) and Bı̄rūnı̄, Vol. 2, p. 720; cf. Neugebauer 1975, Vol. 1, p. 61 (n. 2).
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no. 1 based on our author’s tables coincides precisely with the value given by him (cf.
note 22) as well as appreciably with the modern one. Following the same procedure
to calculate �� for the other two eclipses results in the values given by our author
(Col. 6 of Table 1). It thus seems that the correction due to equation of time has been
neglected in each instance. This is apparently a consequence of the fact that our author
did not believe that the equation of time exists. Wābkanawı̄ reports that “if the day is
counted from one midday to the next, the difference occurring in the [length] of days is
only due to the equation of days [i.e., equation of time] according to the opinion of the
majority of astronomers, except Mawlānā [i.e., our master] Muh. yı̄ al-Dı̄n al-Maghribı̄.
He believed that it does not exist. In his Majist. ı̄, he has presented a proof for his claim.
And [in this case,] the opinion of the majority [of the astronomers] is correct.”61

Accordingly, a table of the equation of time is found neither in the Talkhı̄s. , nor in the
Adwār. Although such a crude opinion indeed appears to be unjustifiable, it may be
found at least in one other work from the thirteenth century: Kamāli reports concerning
the Zı̄j al-Mughnı̄ written by a certain Muntakhab al-Dı̄n Sakkāk (or Hakkāk) of Yazd
(a city in central Iran) that its author did not put any difference between the mean and
true solar days.62

4.5 Instruments

As we have already seen, our author’s observational data are altitudes and times of
day. The majority of our author’s meridian altitude measurements, as explicitly men-
tioned by him in each case, were performed by the aid of the central quadrant of the
observatory63 (engraved for each 0.5′), and most of the times by a clepsydra (see
below).

Our author does not specify the instrument utilized for measuring the altitudes in the
observations nos. 4–6. Although four of the large-sized instruments constructed in the
observatory were altitude-azimuthal, only one of them, the so-called having the two
quadrants, could be used for simultaneous observations of the horizontal coordinates
of two celestial objects that appear in any angular distant from each other in the sky,
as it is the case with the observations nos. 4 and 5.64 We may thus suggest that the
instrument “having the two quadrants” was utilized in the observations nos. 4–6, and

61 Wābkanawı̄, II, 1, 1: T: fol. 16r; Y: fol. 26v. The Majist. ı̄ to which Wābkanawı̄ refers is probably Muh.yı̄
al-Dı̄n’s Khulās. a al-majist. ı̄ which is now lost.
62 Kamālı̄, fol. 52v. In other sources, the work has been ascribed to ‘Abd al-Karı̄m al-Fahhād (cf. Kennedy
1956, no. 64). The two works may, however, be independent from each other.
63 Muh.yı̄ al-Dı̄n appears to have been so interested in the central quadrant that composed a poem during
the observations of 1265–6 AD to praise it, which a certain The Astrologer Majd al-Dı̄n Abū Muh.ammad
al-H. asan b. Ibrāhı̄m b. Yūsūf al-Ba‘albakı̄ had engraved on the instrument (cf. Ibn al-Fuwat.ı̄ 1995, Vol. 4,
pp. 413–414):

.
64 Cf. Seemann (1929). The other two instruments could be used in order to measure simultaneously
the horizontal coordinates of the two celestial objects having the diametrical opposed azimuths. The last
instrument was solely applicable to the measurement of the coordinates of one object in a given time.
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more likely in other similar cases. Based on the times that our author gives for the
observations nos. 4–6 (Tables 2, 3, and 7), it is evident that the moon had yet about
one–two degrees of azimuth to travel until it reached the meridian of Maragha. This
type of systematic error suggests the occurrence of a misalignment of about one degree
toward the east in the meridian line marked on the azimuth circle of the instrument
“having the two quadrants.” The error in the altitude of the sun and of the moon in
observations nos. 4 and 5 was around ±10′ and ±20′, respectively, and that of the
moon in observation no. 6 around −10′.

Muh. yı̄ al-Dı̄n frequently referred to the application of a clepsydra or water-clock in
his systematic observations. In Persian, the term pangān was used to refer to clepsy-
dra,65 which was Arabicized both as bankām and as fankān in the Islamic period; the
first was utilized to name “water-clock,” in particular, and the latter was employed to
call “clock,” in general. Al-Maghribı̄, however, mentions the name of the clepsydra as
mankām which seems to be a corruption of bankām. Based on the information given
by al-Maghribı̄, one may only speculate about its calibrations, but nothing more is
known on its structure. The clepsydra used in al-Maghribı̄’s observations, of course,
appears to have been of a good accuracy, so that it could fix the time intervals with
a precision of only a few minutes (in the case of the lunar eclipses: error ≈ +5 min;
cf. Sect. 2). It may be mentioned that the use of the clepsydras having compound
mechanical components was well established in Chinese astronomy since, at least, the
eleventh century.66 Due to the verified cultural relations between the two realms of
Mongolian empire (i.e., Iran and China) and, especially, considering the fact that the
Chinese astronomers (at least, a Fu Mengchi or Fu Muzhai) worked at the Maragha
observatory,67 perhaps, there was a connection between the clepsydra of the Maragha
observatory and the Chinese elaborated technology of making time-measuring
devices.

4.6 Al-Maghribı̄’s method of obtaining the ecliptical coordinates

The observational data achieved were converted to the ecliptical coordinates which
served as the input data for the computation (cf. Sects. 3.3 and 3.4). We are not told
the reason why our author preferred coping with this relatively lengthy process of
doing computations over utilizing an armillary sphere through which he could read
off the ecliptical coordinates directly. It is probable that he saw some difficulties in
working with the instrument.68 Throughout the treatise, the use of the armillary sphere
is only mentioned in a passage in VII, 4, which is in fact a quotation from Almagest IX,
269 related to the observations of the planetary conjunctions with the stars. We know

65 Pangān was originally a simple inflow clepsydra (cf. Mozaffari 2013b, p. 256, n. 80); Wābkanawı̄ uses
this term to refer to the clepsydra; see below, Sect. 5; also, cf. Mozaffari (2013b, pp. 256–257).
66 E.g., cf. Needham (1981, p. 136).
67 Cf. van Dalen 2002a, esp. p. 334, 2002b; 2004b.
68 In the Ghāzān’s treatise on observational instruments (see note 20), the adequacy of the classic instru-
ments described in the Almagest is rejected for the various reasons; in the case of the armillary sphere,
cf. Mozaffari and Zotti (2012, pp. 400–401).
69 Toomer (1998, p. 423, lines 10–13).

123



104 S. M. Mozaffari

that a model of the armillary sphere had more likely been built in the observatory
(radius of its ecliptic ring ≈ 200 cm). Muh. yı̄ al-Dı̄n’s specific treatment produced
some restrictions on his measurements. For instance, when dealing with the stellar
measurements in the Talkhı̄s. , he complains that

“it is not possible for us to observe either Vega (α Lyrae) or Capella (α Aurigae),
both of which transit the circle of meridian in its northern direction, because
there is no northern quadrant [established] on the meridian line in this auspicious,
blessed observation[-al program].”70

4.7 Historical values

The more important values obtained for the lunar parameters by medieval Islamic
astronomers in the Middle East are summarized in Table 9. As it may evidently
be seen, some of these astronomers obtained values around Muh. yı̄ al-Dı̄n’s r =
5;12 (corresponding to max(c4) = 4;58◦). Accordingly, it should not be con-
sidered as a sheer novel value (however, the independent result of a new set
of observational data). Ibn al-A‘lam’s max(c4) = 4;51◦ is found in Muh. yı̄ al-
Dı̄n’s Tāj al-azyāj.71 Although it is possible that he adopted it from Ibn al-
A‘lam, it may also be the fruit of an independent observation done in Damas-
cus, like his independently measured value max(c4) = 4;58◦. The existence of
other new parameters in the Tāj al-azyāj gives a preference to the latter possibil-
ity.

To my best knowledge, only two Islamic astronomers besides our author presented
their observational data of a trio of lunar eclipses and explained how a value for r
could be computed from them: al-Bı̄rūnı̄ in al-Qānūn al-mas‘ūdı̄ (the lunar eclipses
of AD 1003–4)72 and al-Kāshı̄ in Khāqānı̄ zı̄j (the lunar eclipses of AD 1406–7).73

Considering the new values for e in the Islamic period, it may be mentioned that
Bı̄rūnı̄’s e = 10;51 is not a value obtained from independent observations, but is the
fruit of a remedy of Ptolemy’s computations in Almagest V, 3 (see below). The other
value is e = 10;23 adopted in Ulugh Beg’s Sult.ānı̄ zı̄j. Nevertheless, other than Muh. yı̄
al-Dı̄n’s, no account of the measurement of e from independent observational data
appears to exist.

70 Al-Maghribı̄, Talkhı̄s. , fol. 114v. The declinations of Vega and Capella were about, respectively, +44◦
51.5′ and +38◦ 17.5′ at the time, and thus both transited the Maragha’s meridian (ϕ = 37;23,46◦) in its
northern half. The non-Ptolemaic star table of Īlkhānı̄ Zı̄j includes the coordinates of both Vega and Capella
(al-T. ūsı̄, C: p. 195, T: fol. 100r).
71 Dorce (2003, p. 203).
72 Bı̄rūnı̄, al-Qānūn al-mas‘ūdı̄, Vol. 2, pp. 742–743. For the analysis these eclipses (nos. 07224, 07225,
and 07227 in NASA’s Five Millennium Catalog of Lunar Eclipses), cf. Said and Stephenson (1997, pp.
45–46), Stephenson (1997, pp. 491–492). The analysis of Bı̄rūnı̄’s lunar measurements will appear in a
separate paper.
73 Kāshı̄, IO: fols. 4r–6r, P: pp. 24–28. The eclipses nos. 08220, 08221, and 08222 in NASA’s Five Mil-
lennium Catalog of Lunar Eclipses. The analysis of Kāshı̄’s lunar measurements will come in a separate
paper.
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Table 9 The non-Ptolemaic
lunar parameters from medieval
Islamic astronomy

The values within brackets are
those explicitly mentioned
nowhere but extracted from the
corresponding values for
max(c4). ‘Pt.’ indicates the
values used in the Almagest

max(c4) r max(c3) e

1 Banū Mūsā 5;8 [5;22]

2 Ibn al-A‘lam 4;51 [5;5]

3 Ibn Yūnus 4;48 [5;1] 13;8 Pt. 10;19 Pt.

4 Bı̄rūnı̄ 4;58,5 5;11,45,17 13;50 10;51

5 Muh.yı̄ al-Dı̄n 4;58 5;12 10;51 9;0

6 al-Kāshı̄ 5;2,53 5;16,46,36 13;8 Pt. 10;19 Pt.

7 Ulugh Beg 4;58,42 5;12,24 13;15,34 10;23

[1] and [2] Kamālı̄, fols. 49r and 229v–230r. He also attributes max(c4) = 4;56◦ to
Indians and 5;0◦ to Buzarjumihr denoting pre-Islamic Persian astronomy (the tradition
of the Shāh zı̄j?).

[3] Ibn Yūnūs, pp. 121/176. From max(c4) = 4;48◦, r = 5;1,14 ≈ 5;1. Ibn Yūnus
has max(c) = 7;38,34◦ (the sum of c4(98) = 4;47,34 and max(c5) = c5(98) =
2;51). Note that these numbers are not in agreement with each other because one
simply obtains from max(c4) = 4;48◦ and max(c) = 7;38,34◦, e ≈ 11;7 rather than
e ≈ 10;19. It seems that Ibn Yūnus accepted the value max(c5) = 2;51◦ to keep
the maximum amount of the lunar epicyclic equation near the Ptolemaic value 7;40◦
without examining carefully whether or not they are in agreement with each other. See
also below, Table 12, for Ibn Yūnus’ values for the lunar mean motions.

[4] Bı̄rūnı̄ computed r = 5;11,43,36 from his observations of the three lunar
eclipses occurred in the period of AD 1003–4 (al-Qānūn, Vol. 2, pp. 742–743, mis-
printed as 4; . . .) and obtained r ≈ 5;13,45 from the data preserved by Ptolemy
for the three Babylonian eclipses (Almagest IV, 11) (ibid., pp. 736/746, misprinted
as 4;18,…and 5;38,…, respectively). He, however, gave r = 5;11,45,17 (ibid.,
p. 747, misprinted as 5;41,…) as his last result, from which he derived max(c4) =
4;58,4,38◦ and rounded it to 4;58,5◦ (ibid., p. 792). His tables are asymmetrical, giv-
ing Min = 0;1,55◦ and Max = 9;58,5◦, from which max(c3) = 4;58,5◦ is indeed
resulted. Bı̄rūnı̄ did not attempt to measure the lunar second anomaly and thus its
eccentricity. He, who shows the considerable reliance upon the observations of the
Banū Mūsā, mentions that it was not possible to the Banū Mūsā to measure carefully
the lunar second anomaly, presumably because at the instant of the observation, “the
moon was far distant from the qudrature.” Nevertheless, the value of the lunar second
anomaly was roughly determined to be 2;40 ± 0;48◦. Thus, “since we do not find,”
Bı̄rūnı̄ says, “the amount on which we can rely, we return back to Ptolemy’s com-
putation and scrutinize it in the Almagest.” He examined Ptolemy’s calculations to
determine the amount of the second lunar anomaly on the basis of the two observa-
tions made by Hipparchus and Ptolemy himself (Almagest V, 3) and obtained a value
different from Ptolemy’s, i.e., max(c) = 7;48,8◦, and hence a “non-Ptolemaic” value
e ≈ 10;51 (ibid., pp. 793–794). He then computed qmax = 13;50,2◦ (ibid., p. 803; the
correct amount is 14;10◦).74 From his asymmetrical table with Min = 1;2,48◦ and
Max = 28;50,2◦, qmax = 13;53,37◦ resulted, however.

74 Based on the wrong assumption (likely from the false analogy drawn between the Ptolemaic lunar and
planetary models) that q reaches its maximum when the line dropped from the epicycle’s center to the
prosneusis is perpendicular to the apsidal line.
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Table 10 The table of the lunar equation of center in Ulugh Beg’s Sult.ānı̄ zı̄j

2η̄ ◦ ′ ′′ 2η̄ ◦ ′ ′′ 2η̄ ◦ ′ ′′ 2η̄ ◦ ′ ′′

0 13 15 34

5 13 59 49 95 25 44 39 185 11 28 2 275 1 38 50

10 14 44 3 100 26 4 36 190 9 43 4 280 2 10 2

15 15 28 14 105 26 19 30 (+1′′) 195 8 3 7 (+1′′) 285 2 43 50 (−3′′)
20 16 12 20 110 26 28 34 200 6 30 10 290 3 19 57

25 16 56 19 115 26 31 3 205 5 5 56 295 3 57 49

30 17 40 8 120 26 26 7 210 3 51 33 300 4 37 10

35 18 23 42 (+1′′) 125 26 12 55 (−1′′) 215 2 47 46 (+2′′) 305 5 17 42

40 19 6 55 (−1′′) 130 25 50 42 220 1 54 43 (+1′′) 310 5 59 11

45 19 49 44 135 25 18 44 225 1 12 23 (−1′′) 315 6 41 24

50 20 31 57 140 24 36 25 (−1′′) 230 0 40 26 320 7 24 13 (+1′′)
55 21 13 26 145 23 43 22 (−2′′) 235 0 18 13 (+1′′) 325 8 7 26 (−1′′)
60 21 53 58 150 22 39 35 240 0 5 1 330 8 51 0

65 22 33 19 155 21 25 12 245 0 0 5 335 9 34 49

70 23 11 11 160 20 0 58 250 0 2 34 340 10 18 48

75 23 47 15 165 18 28 1 (−1′′) 255 0 11 38 (−1′′) 345 11 2 54

80 24 21 6 170 16 48 4 260 0 26 32 350 11 47 5

85 24 52 18 175 15 3 6 265 0 46 29 355 12 31 19

90 25 20 20 (−1′′) 180 13 15 34 270 1 10 48 (+1′′) 360 13 15 34

[6] Kāshı̄, IO: fols. 132v–133r; P: pp. 132/135. His tables gives max(c) ≈ 7;42,19◦
(= the sum of c4(98) = 5;2,26◦ and c5(98) = 2;39,53◦), nearly in agreement with the
desired value 7;42,27◦.

[7] There is a table in Ulugh Beg’s Sult. ānı̄ zı̄j giving the distance Δ of the moon from
the earth when η̄ = 0 : Δmax = 65;12,24 and Δmin = 54;47,36, then r = 5;12,24 (P1:
fol. 131v; P2: fol. 150v). The table for c3 (P1: fol. 128r; P2: fol. 143v) is asymmetrical,
giving c′

3(0) = 13;15,34◦, c′
3(114) = 26;31,8◦ and c′

3(246) = 0. It is obvious that
the constant k = 13;15,34◦ has been added to all of the entries of the correspond-
ing symmetrical table, c3, to produce the asymmetrical table: c′

3 = c3 + k. Thus,
max(c3) = c3(116) = 13;15,34◦, and hence e ≈ 10;23. A re-computation of the
table with e ≈ 10;23 as the underlying parameter produces the results which are in
excellent agreement with the entries of the original table (see Table 10; wherever there
is a divergence between the tabulated and the corresponding true values, the difference
(although all are about a few arc-seconds) is given within parentheses).

5 The historical and the modern testing of the times of the lunar synodic
phenomena computed from the parameters of the zı̄jes of the Maragha
tradition

Table 11 presents the ecliptical coordinates of the moon calculated based on Muh. yı̄
al-Dı̄n’s tables, i.e., taking the tabulated accumulation of the mean motions and inter-
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ᾱ

η̄
−

c 3
(2

η̄)
α

c 4
( α

)
c 5

( α
)

c 6
(2

η̄)
c

1
5/

13
/6

00
Y

17
Ja

n.
12

32
22

1;
14

,2
0

24
9;

12
,5

9
27

8;
14

,6
14

2;
4,

46
−

4;
14

,5
7

24
4;

58
,2

4;
53

,4
3

2;
9,

58
0;

58
+

6;
59

,2
1

2
1/

1/
60

1
18

23
4;

24
,5

5
26

2;
16

,5
3

29
0;

25
,3

3
14

2;
7,

57
−

8;
56

,4
0

25
3;

20
,1

3
4;

51
,5

5
2;

9
0;

52
+

6;
43

,4
3

3
2

19
24

7;
35

,3
0

27
5;

20
,4

6
30

2;
36

,5
9

14
2;

11
,7

−
10

;4
7,

14
26

4;
33

,3
2

4;
57

,5
9

2;
9

0;
40

;4
6

+
6;

25
,3

8

4
3

20
26

0;
46

,5
28

8;
24

,4
0

31
4;

48
,2

6
14

2;
14

,1
8

−
10

;1
6,

27
27

8;
8,

13
4;

51
,3

6
2;

1,
52

0;
28

,3
7

+
5;

49
,4

3

5
4

21
27

3;
56

,4
0

30
1;

28
,3

4
32

6;
59

,5
3

14
2;

17
,2

9
−

8;
13

,1
29

3;
15

,3
3

4;
24

,4
9

1;
48

,4
4

0;
16

,0
+

4;
53

,5
0

6
5

22
28

7;
7,

15
31

4;
32

,2
7

33
9;

11
,1

9
14

2;
20

,3
9

−
5;

31
,2

2
30

9;
1,

5
3;

39
,4

5
1;

27
,5

8
0;

7,
23

+
3;

50
,3

4

7
6

23
30

0;
17

,5
0

32
7;

36
,2

1
35

1;
22

,4
6

14
2;

23
,5

0
−

2;
17

,5
6

32
5;

18
,2

5
2;

38
,3

1
1;

1,
42

0;
1

+
2;

39
,3

3

8
7

24
31

3;
28

,2
5

34
0;

40
,1

5
3;

34
,1

3
14

2;
27

,0
+

0;
57

,7
34

1;
37

,2
2

1;
27

,1
0

0;
33

,4
5

0;
0

+
1;

27
,1

0

9
8

25
32

6;
39

,0
35

3;
44

,9
15

;4
5,

39
14

2;
30

,1
1

+
4;

12
,1

0
35

7;
56

,1
9

0;
9,

54
0;

4,
7

0;
4

+
0;

10
,1

0

10
9

26
33

9;
49

,3
5

6;
48

,2
27

;5
7,

6
14

2;
33

,2
2

+
7;

10
,1

9
13

;5
8,

21
1;

5,
52

0;
25

,5
7

0;
11

,5
4

−
1;

11
,1

11
10

27
35

3;
0,

10
19

;5
1,

56
40

;8
,3

3
14

2;
36

,3
2

+
9;

34
,8

29
;2

6,
4

2;
16

,2
2

0;
51

,3
1

0;
52

,2
6

−
2;

36
,4

3

12
11

28
6;

10
,4

5
32

;5
5,

50
52

;1
9,

59
14

2;
39

,4
3

+
10

;4
5,

40
43

;4
1,

30
3;

13
,5

6
1;

16
,2

3
0;

35
,4

0
−

3;
59

,2
0

13
12

29
19

;2
1,

20
45

;5
9,

43
64

;3
1,

26
14

2;
42

,5
4

+
10

,2
,4

6
56

;2
,2

9
3;

55
,5

4
1;

35
,3

0;
48

−
5;

11
,5

6

14
13

30
32

;3
1,

55
59

;3
,3

7
76

;4
2,

53
14

2;
46

,4
+

6;
29

,5
1

65
;3

3,
28

4;
22

,0
1;

47
,7

0;
56

−
6;

1,
59

15
14

31
45

;4
2,

30
72

;7
,3

1
88

;5
4,

19
14

2;
49

,1
5

+
0;

35
,2

72
;4

2,
33

4;
37

,2
7

1;
54

,4
3

1;
0

−
6;

32
,1

0

16
15

1
Fe

b.
58

;5
3,

5
85

;1
1,

24
10

1;
5,

46
14

2;
52

,2
6

+
5;

33
,3

0
79

;3
7,

54
4;

48
,4

8
2;

0
0;

57
−

6;
42

,4
8

17
16

2
72

,3
,4

0
98

;1
5,

18
11

3;
17

,1
3

14
2;

55
,3

6
−

9;
37

,2
7

88
;3

7,
51

4;
56

,5
1

2;
6

0;
50

−
6;

41
,5

1

18
17

3
85

;1
4,

15
11

1;
19

,1
2

12
5;

28
,3

9
14

2;
58

,4
7

−
10

;5
0

10
0;

29
,1

2
4;

57
,1

0
2;

10
0;

38
−

6;
19

,3
0

19
18

4
98

;2
4,

50
12

4;
23

,6
13

7;
40

,6
14

3;
1,

58
−

9;
52

,3
9

11
4;

30
,2

7
4;

41
,1

0
2;

6,
30

0;
25

,4
0

−
5;

35
,1

7

20
19

5
11

1;
35

,2
6

13
7;

26
,5

9
14

9;
51

,3
4

14
3;

5,
8

−
7;

38
,4

2
12

9;
48

,1
7

4;
2,

46
2;

54
,1

2
0;

13
,1

7
−

4;
41

,2
0

21
20

6
12

4;
46

,1
15

0;
30

,5
3

16
2;

3,
0

14
3;

8,
19

−
4;

47
14

5;
43

,5
3

3;
1,

12
1;

27
,3

2
0;

5,
0

−
3;

8,
30

22
21

7
13

7;
56

,3
6

16
3;

34
,4

7
17

4;
14

,2
7

14
3;

11
,3

0
−

1;
32

,9
16

2;
2,

38
1;

40
,2

5
0;

49
,5

5
0;

0
−

1;
40

,2
5

23
22

8
15

1;
7,

11
17

6;
38

,4
0

18
6;

25
,5

3
14

3;
14

,4
0

+
1;

42
,5

4
17

8;
21

,3
4

0;
9,

22
0;

4,
55

0;
52

−
0;

9,
26

123



108 S. M. Mozaffari

Ta
bl

e
11

co
nt

in
ue

d

N
os

.
D

at
e

β
c 7

(
β

)
ta

bl
e

co
m

pu
te

d
m

od
er

n
er

r.
β

∼
∼

β m
od

er
n

er
r.

1
5/

13
/6

00
Y

17
Ja

n.
12

32
10

;1
8,

27
−

0;
2,

17
22

8;
11

,2
4

22
7;

53
,5

5
22

8;
2,

11
+

9
+

0;
53

,4
1

+
0;

52
,2

9
+

1

2
1/

1/
60

1
18

23
;1

6,
35

−
0;

4,
51

24
1;

3,
47

24
1;

02
,3

0
24

1;
5,

58
−

2
+

1;
58

,2
3

+
1;

58
,2

9
0

3
2

19
36

;1
2,

15
−

0;
6,

19
25

3;
54

,4
9

25
3;

53
,5

2
25

3;
54

,3
1

0
+

2;
57

,1
2

+
2;

57
,5

0

4
3

20
48

;5
0,

6
−

0;
6,

36
26

6;
29

,1
2

26
6;

26
,0

7
26

6;
30

,3
0

−
2

+
3;

45
,5

1
+

3;
45

,5
4

0

5
4

21
61

;7
,5

9
−

0;
5,

53
27

8;
44

,3
7

27
8;

43
,1

1
27

8;
56

,8
−

11
+

4;
22

,4
3

+
4;

23
,9

0

6
5

22
73

;1
8,

28
−

0;
3,

55
29

0;
53

,5
4

29
0;

51
,3

7
29

1;
13

,0
−

19
+

4;
47

,2
1

+
4;

47
,3

7
0

7
6

23
85

;2
1,

13
−

0;
1,

10
30

2;
56

,1
3

30
2;

55
,5

4
30

3;
22

,1
4

−
26

+
4;

59
,0

+
4;

58
,3

9
0

8
7

24
97

;2
2,

35
+

0;
1,

49
31

4;
57

,2
4

31
4;

57
,0

4
31

5;
24

,4
2

−
28

+
4;

57
,3

1
+

4;
56

,1
1

+
1

9
8

25
10

9;
19

,2
1

+
0;

4,
27

32
6;

53
,3

7
32

6;
53

,5
1

32
7;

21
,2

1
−

27
+

4;
43

,5
+

4;
40

,3
9

+
2

10
9

26
12

1;
11

,5
6

+
0;

6,
9

33
8;

44
,4

3
33

8;
44

,5
4

33
9;

13
,2

5
−

28
+

4;
16

,3
8

+
4;

12
,5

7
+

4

11
10

27
13

2;
59

,5
9

+
0;

6,
39

35
0;

30
,6

35
0;

31
,1

5
35

1;
2,

44
−

33
+

3;
38

,5
2

+
3;

34
,2

0
+

5

12
11

28
14

4;
51

,8
+

0;
6,

15
2;

17
,4

0
2;

18
,2

9
2;

51
,5

1
−

34
+

2;
52

,4
3

+
2;

46
,2

2
+

6

13
12

29
15

6;
52

,1
8

+
0;

4,
49

14
;1

4,
13

14
;1

6,
07

14
;4

4,
9

−
30

+
1;

57
,5

0
+

1;
50

,5
1

+
7

14
13

30
16

9;
16

,0
+

0;
2,

23
26

;3
2,

19
26

;3
3,

09
26

;4
3,

47
−

12
+

0;
55

,5
3

+
0;

49
,4

5
+

6

15
14

31
18

1;
59

,3
5

−
0;

0,
27

39
;9

,5
3

39
;1

1,
46

38
;5

5,
36

+
14

−
0;

10
,2

6
−

0;
14

,4
4

+
3

16
15

1
Fe

b.
19

5;
2,

43
−

0;
3,

19
52

;6
,5

8
52

;0
7,

34
51

;2
4,

47
+

42
−

1;
17

,5
2

−
1;

20
,3

+
2

17
16

2
20

8;
17

,2
5

−
0;

5,
35

65
;1

6,
14

65
;1

8,
39

64
;1

6,
29

+
60

−
2;

22
,1

0
−

2;
23

,1
6

+
1

18
17

3
22

1;
53

,3
2

−
0;

6,
37

78
;4

8,
8

78
;5

0,
27

77
;3

5,
12

+
73

−
3;

20
,1

9
−

3;
20

,5
8

0

19
18

4
23

5;
51

,3
2

−
0;

6,
40

92
;4

2,
54

92
;4

7,
14

91
;2

3,
52

+
79

−
4;

8,
18

−
4;

9,
11

+
1

20
19

5
24

9;
59

,1
4

−
0;

4,
35

10
6;

49
,3

1
10

7;
05

,4
6

10
5;

42
,5

8
+

67
−

4;
41

,5
4

−
4;

43
,4

5
+

2

21
20

6
26

4;
45

,5
0

−
0;

1,
19

12
1;

36
,1

2
12

1;
38

,2
3

12
0;

29
,3

2
+

67
−

4;
58

,4
4

−
5;

0,
44

+
2

22
21

7
27

9;
27

,4
1

+
0;

2,
6

13
6;

18
,1

7
13

6;
18

,2
7

13
5;

36
,5

2
+

41
−

4;
56

,3
9

−
4;

57
,2

4
+

1

23
22

8
29

4;
12

,2
5

+
0;

5,
16

15
1;

3,
1

15
1;

02
,2

8
15

0;
55

,7
+

8
−

4;
33

,3
6

−
4;

32
,5

4
−

1

123



Lunar measurements at the Maragha observatory 109

Ta
bl

e
11

co
nt

in
ue

d

N
os

.
D

at
e

¯
ᾱ
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polating in the tables of the equations, for a month since the epoch (i.e., from 17
January through February 16, 1232). Table 12 summarizes the epoch values for the
mean longitude and mean anomaly of the moon and the longitude of its orbital ascend-
ing node as given by al-Maghribı̄ (for mean noon of 5/13/600 Y, 17 January 1232,
JDN 2171062, at Maragha; cf. above, (32)) as well as in the Īlkhānı̄ zı̄j (for mean
noon of 1/1/601 Y, 18 January 1232 at Maragha). The lunar mean positions of the
Īlkhānı̄ zı̄j for January 17, 1232 are simply produced by subtracting the daily mean
motions given in the zı̄j from its mean positions at the epoch. The comparison with
the modern values obviously shows that both the epoch values for the lunar mean
longitude are nearly of the same accuracy (error ≈ −11′ in the case of Muh. yı̄ al-
Dı̄n and −9′ in the case of the Īlkhānı̄ zı̄j). But the Īlkhānı̄ zı̄j has a better value
for the lunar mean anomaly at the epoch (error ≈ −23′) than al-Maghribı̄ (error
≈ +3◦ 44′). Considering the epoch values for the longitude of the lunar ascending
node, al-Maghribı̄ has a bit more accurate value (error ≈ +7′) than the Īlkhānı̄ zı̄j (error
≈ +14′).

The underlying parameters of the Īlkhānı̄ zı̄j, as its author clearly says in the
prologue,75 had been borrowed from the zı̄jes of Ibn al-A‘lam and Ibn Yūnus. Of
course, both r and e in the Īlkhānı̄ zı̄j are Ptolemaic,76 and thus none of the ‘new’
values observed by Ibn Yūnus and Ibn al-A‘lam (cf. Table 9, nos. 2 and 3) are
employed in it. It thus seems that al-T. ūsı̄ refers to the mean motions adopted in
the Īlkhānı̄ zı̄j. Table 13 summarizes Ibn Yūnus’s solar and lunar mean motions in a
Persian/Egyptian year given in the canons of his zı̄j, the daily mean motions result-
ing from them (I), and the rounded values tabulated in his zı̄j (II)77 in comparison
with the Īlkhānı̄ zı̄j (III), Ptolemy (IV), and Muh. yı̄ al-Dı̄n (V). Therefore, the mean
motions of the sun and moon in the Īlkhānı̄ zı̄j appear to have been borrowed from Ibn
Yūnus. However, this conclusion needs a further mathematical analysis to be verified
completely.78

75 Al-T. ūsı̄, C: p. 7, T: fol. 3r.
76 All of the tables for the lunar equations are asymmetric giving (i) max(c′

3) = 13;8◦, (ii) c′
4 = 7;40◦ for

the arguments 0, 180◦, and 360◦ and max(c′
4) = c′

4(265) = 12;41,0◦ (thus, max(c4) = 5;1◦), and (iii)
max(c5) = 2;39◦. Cf. al-T. ūsı̄, C: pp. 67–85; P: fol. 23v–28v; M: fols. 40r–50v.
77 Ibn Yūnus, pp. 120, 158, 160, 162.
78 For the solar daily mean motion, Wābkanawı̄’s Zı̄j has evidentially the same value obtained by al-
Maghribı̄, i.e., ω� = 0;59,8,20,8,4,36,38◦/d (cf. Wābkanawı̄, T: fol. 149r). Also, al-Kāshı̄’s value for ω�
is Ibn Yūnus’ (Khāqānı̄ zı̄j, IO: fol. 128v, gives the solar mean motion in a Persian year as 359;45,40,4◦;
cf. Table 14). Al-Kāshı̄’s adoption of this value appears to be a consequence of his project of the revision
of the Īlkhānı̄ zı̄j. Support comes from the fact that the solar maximum equation of center and eccentricity
in al-Kāshı̄’s zı̄j (IO: fol. 131r, 157r) are Ibn Yūnus’, as is in the Īlkhānı̄ zı̄j. Al-Kāshı̄ did not, of course,
mention his source.
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Table 12 The lunar mean positions at the epoch as given by al-Maghribı̄ and the Īlkhānı̄ zı̄j in comparison
with the modern values

�̄◦ ᾱ
(1)◦ ◦

Muh.yı̄ al-Dı̄n 17 January 221;14,20◦ 249;12,59◦ 217;55,14◦
Īlkhānı̄ zı̄j 17 221;15,47 245; 5,33 218; 2,23

18 234;26,22(2) 258; 9,27(3) 218; 5,34

Modern 17 221;25,18 245;28,46 217;48,12

(1) Counted from the apogee. (2) The table has 226;46,22◦, but since the table for
c4 is asymmetric giving c′

4(0) = +7;40◦, it is evident that all of the mean longitudes
were decreased by 7;40◦ and then tabulated; thus, 226;46,22 + 7;40 = 234;26,22◦.
This is in agreement with the tabulated value for the double mean elongation at the
epoch, 220;50,31◦, because the Īlkhānı̄ zı̄j has the solar mean anomaly at the epoch =
215;36,15◦ and the longitude of the solar apogee at the epoch = 86;24,21◦ and gives an
asymmetric table for the solar equation of center, whose maximum value is +2;0,30◦.79

Then, the sun’s mean position at the epoch is 304;1,6◦. Therefore, the moon’s double
mean elongation at the epoch is 2 × (234;26,22 − 304;1,6) = 220;50,31◦. (3) Table
has 245;1,27◦ and the table for c3 is asymmetric giving c′

3(0) = +13;8◦. It is then
known that all of the entries of the table for the lunar mean anomaly were decreased
by 13;8◦ and then tabulated; therefore, 245;1,27 + 13;8 = 258;9,27◦.

A good time after the two zı̄jes, i.e., al-Maghribı̄’s Adwār and the Īlkhānı̄ zı̄j,
appeared, al-Zı̄j al-muh. aqqaq al-sult.ānı̄ (completed between 1316 and 1324) was
written by Shams al-Dı̄n Muh. ammad al-Khwāja Shams al-Munajjim al-Wābkanawı̄
al-Bukhārı̄ at the Maragha observatory.80 The period of Wābkanawı̄’s observations,
as he himself says, extended over 40 years. The first observation documented in his
zı̄j is the measurement of the lunar altitude on 3 December 1272, which, as he explic-
itly mentioned, had been done at Maragha and shows that he was there at least since
1272.81 The last observation documented is that of the triple conjunctions of the two
superior planets, i.e., Jupiter and Saturn, in 1305–6 (we are not told the place of this
observation).82 Meanwhile, he mentioned the observation of the annular eclipse of
30 January 1283 in Mughān83 and that of the great conjunction of 1286 (the place
of the observation was not given).84 Based on the explanations given in the prologue

79 It is borrowed from Ibn Yūnus’ zı̄j (p. 174), corresponding to the solar eccentricity = 2;6,10 (R = 60).
80 For a biographical outline of him, cf. van Dalen (2007). About his zı̄j and some studies of it, cf. Kennedy
1956a, no. 35, King et al. (2001, p. 46), Kennedy (1958, p. 251), Haddad and Kennedy (1971, p. 91),
Kennedy (1964, p. 443), King (1986, pp. 138–140), Kunitzsch (1964, pp. 398–399). Kennedy (1960, p.
211) employed the explanations given by Wābkanawı̄ as regards the Maragha observatory to verify some
remarks by al-Kāshı̄ in a letter to the latter’s father and, in another paper (1962, p. 24), quoted a section of
the zı̄j related to chronology and astrology.
81 Wābkanawı̄, T: fol. 89v–90r, Y: fol. 155r.
82 Wābkanawı̄, T: fol. 125r; Y: fol. 235r.
83 Cf. Mozaffari (2009, 2013b).
84 Wābkanawı̄, T: fol. 3r, Y: fol. 4v.

123



112 S. M. Mozaffari

Table 13 The historical values for the mean motions of the sun and moon

I II III IV V
Ibn Yūnus Īlkhānı̄ zı̄j Ptolemy al-Maghribı̄

Mean motion Per Canons Tables

� P/E year(1) 359;45,40,3,45◦ 359;45,40,4◦ 359;45,40◦(2) 359;45,25◦ 359;45,42◦
day 0;59, 8,19,44 0;59, 8,20 0;59, 8 0;59, 8 Cf. Sect. 3.3

in longitude P/E year 129;23,1,58,50,34 129;23,1,59 129;23,2 129;22,46 129;23,6

day 13;10,35,1,8,51 13;10,35,1 13;10,35 13;10,35 Cf. (22)

in anomaly P/E year 88;43,7,28,41 88;43,7,29 88;43,7 88;43,7 88;41,46

day 13;3,53,56,18 13;3,53,56 13;3,54 13;3,54 Cf. (26)

of asc. node P/E year 19;19,44,21,48 19;19,44,21 19;19,44 19;20,1 19;19,39

day 0;3,10,38,32 0;3,10,39 0;3,11 0;3,11 Cf. (31)

(1) P/E: Persian or Egyptian. (2) Īlkhānı̄ zı̄j gives the solar motion relative to the apogee as 359;44,49◦ per
Persian year and the solar apogee’s yearly motion as 0;0,51◦ (C: p. 59); therefore, the solar motion per
Persian year = 359;45,40◦

of the zı̄j, these observations were mainly focused on testing the data derived from the
various zı̄jes against observations. With regard to his explanations, it appears he paid
considerable attention to test the Īlkhānı̄ zı̄j, which was regarded as the main achieve-
ment of the observatory, and Muh. yı̄ al-Dı̄n’s Adwār against the observations. He gives
the numerical results concerning his comparative studies. He finally was convinced
that the times of the occurrence of the astronomical phenomena such as conjunctions
and oppositions as well as the planetary ecliptical coordinates calculated based on the
Īlkhānı̄ zı̄j did not coincide with the data derived from the observations, and added
that, especially in the case of magnitudes and the instants of the eclipses’ phases,
heavy disagreements and evident differences were observed.85 Conversely, the Adwār
al-anwār gave the results in good agreement with the observations, which persuaded
him to adopt all of Muh. yı̄ al-Dı̄n’s new values for the Ptolemaic parameters in his
zı̄j: “we observed all of them [i.e., the previously mentioned phenomena] based on
the principles established in this zı̄j and found the calculated [position and/or time] in
agreement with the observed [position and/or time].”86 He also strictly criticized the
Īlkhānı̄ zı̄j especially for the reason that its fundamental planetary parameters were
adopted from earlier zı̄jes. He referred to Muh. yı̄ al-Dı̄n’s Adwār as based on “the
New Ilkhanid Observations” (i.e., Muh. yı̄ al-Dı̄n’s own observations) for the sake of
making a distinction between it and the Īlkhānı̄ zı̄j which was assumed to be obtained
through the “Ilkhanid Observations” (i.e., the observational program supervised by

85 Wābkanawı̄, T: fol. 2v, Y: fol. 3v. Concerning the conjunctions, the differences that Wābkanawı̄ found are:

Mars and Saturn: in the period of direct motion of Mars: 6 days
in the period of retrograde motion of Mars: 8 days

Mars and Jupiter: in the period of direct motion of Mars: 5 days
86 Wābkanawı̄, T: fol. 2v, Y: fol. 3v.
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al-T. ūsı̄ and performed by his colleagues).87 Wābkanawı̄, as he himself says in his zı̄j’s
introduction, attempted to correct the minor disagreements found in “the principles of
the Ilkhānı̄d observations” (i.e., al-Maghribı̄’s parameters) with regards to the results
which, our author claims, had been obtained from observations during his 40-year
career. One of them is the increase in Muh. yı̄ al-Dı̄n’s value for the mean longitude
of the moon by 0;13,11◦, which is equivalent to a difference of about 24 min in the
arrival of the mean moon at a specific longitude between the times computed from
al-Maghribı̄’s and Wābkanawı̄’s zı̄jes.88 As a result, for the synodic phenomena such
as new moons or full moons, it is expected that the times computed from Wābkanawı̄’s
zı̄j precede those obtained from al-Maghribı̄’s.

That the author has presented such quantitative conclusions is significant and here
is an appropriate opportunity to check them by means of testing the values derived
from Īlkhānı̄ zı̄j and al-Maghribı̄’s Adwār/Talkhı̄s. against the true modern values.89

In doing so, the times of the new moons for 135 lunations during the 1270s (from
December 24, 1269 through November 24, 1280) were computed from the three zı̄jes,
Muh. yı̄ al-Dı̄n’s, Īlkhānı̄ zı̄j, and Wābkanawı̄’s, and then the found errors were plotted
in the graphs of Fig. 10a–c, respectively.90 The mean values of the errors are, respec-
tively, +18.3, +21.3, and −7.3 min. In 85 cases (i.e., 62.5 percent), Wābkanawı̄ has
considerably better values than al-Maghribı̄. Accordingly, Wābkanawı̄’s modification
of al-Maghribı̄’s value for the mean longitude of the moon seems to have improved
the times computed.

Wābkanawı̄ could test the theoretical values against the observations of the lunar
eclipses in a sufficiently long period. He did so, as he claims, during his 40-year
career. From the early 1270s to the end of the 1310s, the 15 lunar total eclipses were
observable at their maximum phases from Maragha (cf. Table 14). Let us assume that
Wābkanawı̄ had observed them. What could he find then? We know that he had access
to a clepsydra called Pangān, maybe the same model of which al-Maghribı̄ made use.
We already estimated its accuracy to be about 5 min (cf. Sect. 4.5). In his zı̄j (IV, 15,

87 E.g., Wābkanawı̄, III, 3, 1: T: fol. 53r, Y: fol. 96r; III, 9, 5: T: fol. 60r, Y: fol. 108v; III, 13, 6: T: fol. 67r,
Y: fol. 120v. Since Wābkanawı̄ contends the Īlkhānı̄ zı̄j to be majorly based on earlier astronomical tables,
rather than obtained from making independent observations, he goes further to call only Muh.yı̄ al-Dı̄n’s
Adwār as the “Īlkhānīd Observations.” Cf. Wābkanawı̄, T: fol. 3r, Y: fol. 4v.
88 The other three modifications made by Wābkanawı̄ are concerning (1) the mean longitude of Mars
(increased by 1;5◦), (2) the mean anomaly of Venus (increased by 2;30◦), and (3) the latitudes of the two
inferior planets; cf. Wābkanawı̄, T: fol. 3r; Y: fol. 4v; P: fols. 4r–v. Wābkanawı̄ also differently arranged
the entries of al-Maghribı̄’s equations tables.
89 The modern values in this paper are extracted from the software Alcyone, applying the estimates of
Morrison and Stephenson 2004 for �T (the difference between the Dynamical Time and Universal Time).
90 For the present study, a PC-program was used, which can compute the solar, lunar, and planetary ecliptical
coordinates; the times of the synodic phenomena; etc, from the three zı̄jes of the Maragha tradition. In this
program, the equations, of course, are computed from the corresponding trigonometric formulas, instead
of interpolating in the equations tables of these zı̄jes. The differences, however, are small enough to be less
effective when testing a historical claim. In addition, rendering ineffective the errors and/or differences in
the equations tables, this procedure makes a unified scale in order to make the comparison merely between
the two sets of the parameter values adopted in these three zı̄jes.
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Table 14 The lunar eclipses observable at their maximum phases from Maragha during the 1270s–1310s

Date Modern Muh.yı̄ al-Dı̄n Īlkhānı̄ zı̄j Wābkanawı̄

Max. Ecl. Oppos.

1273-02-03 17:33 17:30 18: 7 17:57 17:40

1276-11-23 5:29 5:26 6: 0 6:10 5:34

1277-05-18 21:32 21:34 21: 5 21:18 20:41

1280-03-18 3:49 3:47 3:58 3:48 3:31

1287-10-23 1:53 1:49 2:49 2:35 2:21

1291-02-15 1:31 1:28 1:59 1:51 1:32

1298-09-21 21: 7 21: 4 21:19 21:49 20:55

1302-01-15 0:32 0:30 0:22 1: 1 11:58 (−1 day)

1302-07-10 19:42 19:41 20:34 20: 0 20: 6

1305-05-09 22:13 22: 9 21:58 22:18 21:34

1309-08-22 1: 4 1: 2 1:32 1:36 1: 5

1312-12-14 22: 9 22: 6 22:34 22:51 22: 7

1316-10-02 5:25 5:22 5:41 6:12 5:18

1317-09-21 21:39 21:43 22:24 22:52 22: 0

1320-07-21 2:17 2:15 3: 6 2:38 2:38

Note 1: Due to the 5◦ inclination of the moon’s orbit to the ecliptic, the maximum phase of a lunar eclipse
does not always occur exactly at the time when the moon is in opposition to the sun, except in the case of
central lunar eclipses when the lunar latitude is zero (cf. Meeus 2002, p. 397). Jābir b. Aflah. noticed this
difference (cf. Bellver 2008, p. 63). Some medieval astronomers instructed how to take the inclination of
the lunar orbit into account in order to compute a more accurate value for the duration of the phases of an
eclipse (e.g., Wābkanawı̄, III, 11, 4: T: fol. 63r, Y: fol. 114r, P: fol. 96r)
Note 2: The computation of the parameters of the lunar eclipse May 30, 1295, for the latitude of Tabriz
may be found in the chapter 36 of the Greek translation of Ibn al-Fahhād ‘Alā’ı̄ zı̄j (c. 1172) made based
on the oral instructions of a Persian astronomer called (=Shams al-Bukhārı̄, who may
perhaps be identified as Wābkanawı̄) to Gregory Chioniades (cf. Pingree 1985, 352ff). The computation
of the parameters of this lunar eclipse (and that of November 23, 1295 as well) may also be found in the
anonymous Sult.ānı̄ zı̄j (fols. 137r–138r) for the latitude of Yazd. The computation of the parameters of the
lunar eclipses of May 9, 1305 and December 14, 1312 (and that of January 4, 1303 as well) can be found
in the Ashrafı̄ zı̄j (fols. 133v–134r, 145v–146r) for the latitude of Shiraz

8–9),91 Wābkanawı̄ mentions the two methods in order to measure the times of the
phases of an eclipse: (1) the standard method of computing the time from the altitude
of the sun (in the case of a solar eclipse) or the moon and reference stars (in the case of a
lunar eclipse) and (2) using the clepsydra. They together, as Wābkanawı̄ emphasized,
constituted a method that might reduce the probable errors in measuring time. In
Table 14, the times of the maximum phases of these 15 lunar total eclipses calculated
based on these three zı̄jes were compared with the true modern values. Comparing
al-Maghribı̄’s times with those given by the Īlkhānı̄ zı̄j shows that each set have more
accurate values for about half number of the eclipses; the mean values of errors are

91 Wābkanawı̄, T: fols. 92r–v, Y: fols. 159r–160r, P: fols. 139r–140r. The passage in question may also be
found in the “Ghāzān’s treatise on the observational instruments” (cf. note 20). In it, the time-measuring
device is, however, called the “time-glass” (shı̄sha-i sā‘at).
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about +24 and +30 min, respectively. Wābkanawı̄ has nine values more accurate
than the Īlkhānı̄ zı̄j, while for the two eclipses (i.e., 1302-01-15 and 1320-07-21), the
errors of the two zı̄jes (regardless of sign) are equal. Comparing with Muh. yı̄ al-Dı̄n,
Wābkanawı̄ has 11 more accurate values. In the case of Wābkanawı̄, the mean value
of the errors is only −2 min. Therefore, it can obviously be seen that Wābkanawı̄’s
modification of al-Maghribı̄’s value for the mean longitude of the moon significantly
resulted in reducing errors by a mean value of 22 min. I believe that this statistically
suggests that his correction of al-Maghribı̄’s value for the lunar mean longitude at
the epoch was the result of doing observations. The similar conclusion may be drawn
from the computation of the annular solar eclipse of January 30, 1283. The error in the
time of the maximum phase of this eclipse as computed by Wābkanawı̄ in his zı̄j for
the latitude of Mughān (northwestern Iran, ϕ ≈ 39◦) in comparison with the modern
data is −4 min while the time computed according to al-Maghribı̄’s parameter values
(i.e., only neglecting Wābkanawı̄’s modification of al-Maghribı̄’s value for the lunar
mean longitude at the epoch) is +28 min.92

6 Concluding remarks

In this paper, we presented Muh. yı̄ al-Dı̄n al-Maghribı̄’s determination of the parame-
ters of the Ptolemaic lunar model at the Maragha observatory in the 1270s and 1280s
based on the contents of books V and VI of his Talkhı̄s. al-majist. ı̄. As we already men-
tioned, besides al-Bı̄rūnı̄ (11th ct.) and al-Kāshı̄ (15th ct.), who documented their deter-
minations of the size of the lunar epicycle and the lunar mean motions, al-Maghribı̄
is the only Islamic astronomer who gave the account of his determination of all of the
lunar parameters on the basis of the data obtained from observations. His observations
and computations were explained in Sect. 3, and some of their distinct features were
commented upon in Sect. 4. The results were compared with the values preserved from
other medieval Middle Eastern astronomers (4.7). Al-Maghribı̄ obtained new values
for the lunar mean motions (3.2), eccentricity (3.3), and parallax (3.6). The value 5;12
our author found for the size of the epicycle (3.1) dates, at least, back to the early
tenth century, and in the case of the inclination of the lunar orbit, he preferred to stay
with the ancient value 5◦ (3.5). Our author also tested the Ptolemaic lunar model and
verified that the distance between the point of prosneusis and the earth’s center is equal
to the eccentricity.

Muh. yı̄ al-Dı̄n, as the contents of the Talkhı̄s. illustrate, was a well-experienced
astronomer who knew when and under what conditions he could find what he sought
after. For example, the lunar observation no. 6 was done when only three years had
been elapsed after laying of the cornerstone of the observatory while its buildings
and instruments had not yet been constructed completely; as already discussed (cf.
Sect. 3.6 and note 50), the specific situation concerning the positions of the moon
in connection with the ecliptic and the position of the ecliptic with respect to the
local horizon at the instant of this observation, which satisfied the essential condi-

92 Cf. Mozaffari (2013b, Section 4.III).
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tions for measuring the lunar parallax, did not occur again at Maragha until nine
years later.

We also dealt, as a case study, with Wābkanawı̄’s attempts for reconciling theory
and observation as regard the times of the lunar synodic phenomena computed from the
zı̄jes of the Maragha tradition. It was concluded that al-Maghribı̄’s parameter values
resulted in times that agree only a bit better with the true modern values than those
computed from the Īlkhānı̄ zı̄j. But Wābkanawı̄’s modification of al-Maghribı̄’s value
for the lunar mean longitude appears to make a remarkable improvement on times
computed from al-Maghribı̄’s values for the lunar parameters that were determined at
the Maragha observatory.
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Bellver, J. 2006. Jābir b. Aflah. on the four-eclipse method for finding the lunar period in anomaly. Suhayl

6: 159–248.
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Al-Shı̄rāzı̄, Qut.b al-Dı̄n. Ikhtı̄yārāt-i Muz. affarı̄. MS. Iran, National Library, no. 3074f.
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Zotti, G., and S.M. Mozaffari. 2010. Ghāzān Khān’s astronomical instruments at Maragha Observatory. In
Astronomy and its instruments before and after Galileo, ed. Luisa Pigatto, and Valeria Zanini, 157–168.
Padova: Cooperativa Libraria Editrice Università di Padova (CLEUP).

123


	Muhyī al-Dīn al-Maghribī's lunar measurements  at the Maragha observatory
	Abstract
	1 Introduction
	2 The observations of the lunar eclipses at the Maragha observatory
	3 Muhyī al-Dīn's lunar measurements
	3.1 The measurement of the radius r of the lunar epicycle
	3.2 The measurements of ωt,ωa, and ωΩ
	3.3 The measurement of the Ptolemaic lunar eccentricity e
	3.4 Prosneusis and the mean epicylic apogee in the Ptolemaic lunar model
	3.5 The measurement of the inclination of the lunar deferent (= maximum latitude)
	3.6 The measurement of the lunar parallax

	4 Some technical and historical comments
	4.1 Process of measurements
	4.2 Lunar maximum latitude
	4.3 Lunar parallax in the observations nos. 4 and 5
	4.4 Equation of time
	4.5 Instruments
	4.6 Al-Maghribī's method of obtaining the ecliptical coordinates
	4.7 Historical values

	5 The historical and the modern testing of the times of the lunar synodic phenomena computed from the parameters of the zījes of the Maragha tradition
	6 Concluding remarks
	Acknowledgments
	References


