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Abstract We reconstruct essential features of Lagrange’s theory of analytical func-
tions by exhibiting its structure and basic assumptions, as well as its main short-
comings. We explain Lagrange’s notions of function and algebraic quantity, and we
concentrate on power-series expansions, on the algorithm for derivative functions, and
the remainder theorem—especially on the role this theorem has in solving geometric
and mechanical problems. We thus aim to provide a better understanding of Enlight-
enment mathematics and to show that the foundations of mathematics did not, for
Lagrange, concern the solidity of its ultimate bases, but rather purity of method—the
generality and internal organization of the discipline.

1 Preliminaries and proposals

The foundation of mathematics was a crucial topic for 18th-century mathematicians.
A pivotal aspect of it was the interpretation of the algorithms of the calculus. This was
often referred to as the question of the “metaphysics of the calculus”1 (see, Carnot
1797, as an example).

1 We use double inverted commas for quotations and simple ones for mentions. We never use inverted
commas for other purposes, such as emphasizing a term or phrase.
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96 G. Ferraro, M. Panza

Around 1800 Lagrange devoted two large treatises to the matter, both of which
went through two editions in Lagrange’s lifetime: the Théorie des fonctions analy-
tiques (Lagrange 1797, 1813; henceforth the Théorie); and the Leçons sur le calcul
des fonctions (Lagrange 1797, 1813; henceforth the Leçons). His aim was to provide
a new and non-infinitesimalist interpretation of these algorithms based on a general
theory of power series.2 He viewed the direct algorithm as a rule for transforming
functions, which—applied iteratively to any function y = f (x)—gives, apart from
numerical factors, the coefficients of the expansion of f (x +ξ) in a power series of the
indeterminate increment ξ .3 Lagrange called such coefficients ‘derivative functions
[fonctions dérivées]’ (Lagrange 1797, art. 17; 1801, p. 5; 1806, p. 5; 1813, Introduc-
tion, p. 2): a term whose meaning has since changed. In what follows, we shall use
this term in Lagrange’s sense.

Throughout his theory, Lagrange certainly pursued an ideal of conceptual clarity
involving the elimination of any sort of infinitesimalist insight. This has been often
noticed, and was emphasized by Lagrange himself in the very complete title of the
Théorie: Théorie des fonctions analytiques, contenant les principes du calcul différent-
iel, dégagés de toute considération d’infiniment petits, d’evanouissans, de limites et de
fluxions, et réduite à l’analyse algébrique des quantités finies. We shall not dwell on
this point, then. Rather, we shall argue that this ideal was part of a more general ideal
of purity of method4: the reduction of all mathematics to an algebraic, purely formal
theory5 centered on the manipulation of (finite or infinite) polynomials through the
method of indeterminate coefficients. 6

This was a sweeping project rooted in a mathematical program going back to the
early mathematical work of Newton (see Panza 2005), and whose manifesto was the
first volume of Euler’s Introductio in analysin infinitorum (Euler 1748).7 Its main

2 A few years earlier, Arbogast had proposed a similar interpretation in an unpublished treatise (Arbogast
(ESSAI); for a commentary, see: Zimmermann 1934; Panza 1985; Grabiner 1990, pp. 47–59). Accord-
ing to Grabiner 1981b, p. 316, this treatise was inspired by an even earlier paper by Lagrange himself
(Lagrange 1772; see footnote 3.2). Lagrange mentioned Arbogast’s treatise at the beginning of the Théorie
(Lagrange 1797, art. 7; 1813, Introduction, p. 5).
3 Some clearly indicated exceptions apart, we shall use the term ‘power-series expansion of f (x + ξ)’ for
referring to the expansion of f (x + ξ) in a power series of ξ . Lagrange used ‘ξ ’ to denote the increment
of x in his earlier paper mentioned in footnote 2. In the Théorie and the Leçon, he used the Latin letter ‘i’
(as ‘incrément’)—but we prefer to use ‘ξ ’ in order to avoid any possible confusion with the symbol that is
now used to denote

√−1. Our quotations from Lagrange’s treatises are altered accordingly.
4 On the notion of purity of method, see Arana (2008) and Detlefsen (2008)—which explicitly mentions
Lagrange’s “purification program,” in footnote 6, p. 182—, and Hallett (2008). In this article (ibid., p. 199),
M. Hallett describes as follows the concern for purity of method , by referring to Hilbert’s mention of such a
concern in Hilbert (1899, p. 199): “one can inquire of a given proof or of a given mathematical development
whether or not the means it uses are ‘appropriate’ to the subject matter, whether one way of doing things is
‘right’, whereas another, equivalent way is ‘improper’.”
5 The clarification of the exact sense in which the adjectives ‘algebraic’ and ‘formal’ have to be understood
here is one of the main purposes of our article.
6 The centrality of the method of indeterminate coefficients is the common denominator of Lagrange’s
foundational programs in both pure mathematics and mechanics. For the case of mechanics, see Panza
(1991–1992) and (2003).
7 An attempt to reconstruct the sources and evolution of this program up to Lagrange is made in Panza
(1992). This article is partly based on Chap. III.6.

123



Lagrange’s theory of analytical functions 97

purpose was the development of a fairly general and formal theory of abstract quan-
tities: quantities conceived merely as elements of a net of relations, expressed by
formulas belonging to an appropriate language and subject to appropriate transforma-
tion rules.

The interpretation of the calculus and its algorithms presented a crucial difficulty for
the complete accomplishment of such a program. The difficulty was not only concerned
with the conceptual inaccuracy of the current infinitesimalist or pseudo-infinitesimal-
ist accounts, but also, and above all, with their reliance on suppositions—like the
negligibility of infinitesimals—that could hardly be explained in purely formal terms.
The following passage, from a short report by Lagrange himself, clearly illustrates the
point:

[…] I do not deny that one could rigorously prove the principles of the differen-
tial calculus through the consideration of limits envisaged in a particular way, as
Maclaurin, d’Alembert and several others after them did. But the kind of meta-
physics that has to be applied for this purpose is, if not contrary, at least foreign to
the spirit of analysis, which should have no metaphysics but that which consists
in the first principles and in the fundamental operations of calculation.

[…] je ne disconviens pas qu’on ne puisse, par le considérations des limites envisagées d’une
manière particulière, démontrer rigouresement les principes du calcul différentiel, comme
Maclaurin, d’Alembert et plusieurs autres auteurs après eux l’ont fait. Mais l’espèce de métaphy-
sique qu’on est obligé d’y employer, est sinon contraire, du moins étrangère à l’esprit de l’ana-
lyse, qui ne doit avoir d’autre métaphysique que celle qui consiste dans les premiers principes
et dans les opérations fondamentales du calcul.

(Lagrange 1799, p. 233.)

Hence, Lagrange wanted not only to provide a conceptually more convenient basis for
the calculus, his principal ambition was to incorporate it within a unitary conception
of mathematics based on the “spirit of analysis”: a notion we shall try to shed light
on.8

To do this, Lagrange had to show that derivative functions could effectively replace
differential quotients. Essentially, he had to show that, for any function y = f (x),
there exists an infinity of other functions f (k)(x) (k = 1, 2, . . . ) that provide, apart
from numerical factors, the coefficients of the power-series expansion of f (x + ξ),

and formally coincide with the differential quotients dk y
dxk . We shall come to this in

Sect. 3, bearing in mind Lagrange’s notion of function, which we shall deal with in
Sect. 2. For the time being, it is only important to remark that both the Théorie and
the Leçons begin with an argument that, if correct, would have convinced anybody
already familiar with the differential calculus that this condition is met (even if it
cannot really be stated, as such, within Lagrange’s theory, since it involves the notion

8 If Lagrange’s program is so understood, it is not surprising that, after 1797, he often relied on infini-
tesimal devices, for example in the second edition of the Mécanique analytique (Lagrange, 1811–1815).
Concerning the internal organization of the subject, the Mécanique analytique is indeed quite close to the
frame of the Théorie, particularly its mechanical part (see Panza 1991–1992). And for Lagrange this was
certainly more relevant, in establishing the place of mechanics and its mathematical methods within the
mathematical corpus as a whole, than the local (and non-substantive) use of infinitesimals.
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of differential quotient, which has no place in this theory). For brevity let us call this
argument ‘Lagrange’s fundamental proof’.9

Mathematicians and historians of mathematics have often discussed this argument
(the relevant bibliographic references will be given). Still, in our view, the current
accounts, and, more generally, the usual interpretations of Lagrange’s theory, do not
insist enough on the connections between his technical achievements and his under-
standing of the crucial notions of quantity, function, and power-series expansion, on
which his foundational program is based. These achievements are rather often anach-
ronistically assessed and criticized according to a subsequent understanding of these
notions. This tendency has been accentuated by the fact that, during the nineteenth
century, several of Lagrange’s technical devices and results were isolated from his
foundational preoccupations, reinterpreted and used as basic elements of real analy-
sis. For instance, one can mention the notion of transformed function, the remainder
theorem, and proof techniques closely resembling the ε–δ method (see Sects. 3 and 5,
and footnote 102).

A comprehensive account of Lagrange’s theory in which technical achievements
are adequately studied in connection with foundational intents, methodological issues,
and philosophical perspectives is therefore still wanting.10 The main purpose of our
article is to offer such an account.

When the differences between Lagrange’s theory and 19th-century real analysis
are considered and the crucial notions of the former are appropriately explained, La-
grange’s arguments appear in a new light, and many alleged counter-examples no
longer apply. We shall see why this is so. However, in so doing we do not mean to
suggest that Lagrange’s theory has neither shortcomings nor discrepancies. Many of
his arguments are, on the contrary, flawed even when considered in the appropriate
context, and are far from constituting unquestionable proofs of the results they are
supposed to establish. Furthermore, the actual deployment of the theory is often at
odds with the ideal of purity that motivates it. We would like to draw attention to such
defects. They help explain why Lagrange’s theory was never really accepted by the
Continental mathematical community.

When he wrote and published the first editions of the Théorie and the Leçons, La-
grange was one of the most influential and respected mathematicians of the large inter-
national community to which he belonged, possibly the most influential and respected
one. His analytical reformulation of the mechanics of discrete systems, undertaken in
the Mécanique analytique (Lagrange 1788), for example, had been welcomed, a few
years before as a major achievement that significantly influenced the development of
the subject. The same can be said of the approach to algebraic equations outlined in
his treatise De la résolution des équations numériques de tous les degrés (Lagrange
1798), which came out a year after the first edition of the Théorie. The less significant

9 We shall use the term ‘proof’ and cognates for referring to arguments used, in the context of Lagrange’s
theory, to establish that something holds, regardless of whether these arguments are actually correct or
sound. Analogously, we shall use the term ‘theorem’ for referring to statements that are taken to hold within
this theory, or to re-formulations of these statements that we consider appropriate, regardless of whether
these statements actually hold.
10 Important exceptions are provided by C. Fraser’s accounts, especially in Fraser (1987) and (1989). Our
views derive, in many respects, from a development of points he makes.
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Lagrange’s theory of analytical functions 99

influence his theory of analytical functions had on the Continent11 therefore requires
an explanation.

On the received view, Lagrange’s theory is an algebraic treatment of real numbers,
both considered as such and as representatives of geometric and mechanical magni-
tudes. In this picture, the adjective ‘algebraic’ is intended to evoke two basic features
of the theory. On the one hand, it points to the understanding of these numbers as quan-
tities related by operational relations, to the pivotal role assigned to these relations,
and to the effort to make the theory as independent as possible both of geometric or
mechanical intuition, and of the respective magnitude of the relevant quantities, espe-
cially of their being infinitely small or large. On the other hand, it points to the attempt
to reduce any real function to polynomial form, so as to limit the use not only of tran-
scendental functions (and numbers), but also of irrational and fractional ones. This
double use suggests that Lagrange’s theory is algebraic insofar as it carries out a reduc-
tion of analysis (both finite and infinitesimal) to algebra, and depicts the latter as being,
for Lagrange, an elementary field of study, on which all mathematics should be based.

On this view, Lagrange’s failure to impose his theory is usually explained by observ-
ing that such a reduction was manifestly impossible, because of the impossibility of
expanding any function in a power series convergent to it. The failure would thus
be due to a genuine mathematical mistake: Lagrange’s fundamental proof would be
flawed insofar as it includes, as a lemma, a wrong theorem, according to which any
function has a power-series expansion.

This explanation is ineffective. Lagrange’s alleged mathematical mistake is actu-
ally a mistake only if his theorem is judged according to alien notions of function and
of power-series expansion. Hence, if his failure were to be blamed on this theorem, it
would depend more on the inappropriateness of the notions he relied on than on his
flawed generalizations. To account for this failure, one should then explain, first, why
Lagrange was working with such inappropriate notions, or rather what made other
mathematicians aware of their inappropriateness and pushed them to develop new and
more comprehensive notions.

We prefer then a radically different explanation, more intrinsically connected with
Lagrange’s ideal of purity, and with the general conceptions on which his theory is
based.

We do not take Lagrange’s theory to be about real numbers, neither as such, nor
as representatives of geometric and mechanical magnitudes. We rather argue that his
theory is founded on a peculiar notion of function which provides quantities that differ
fundamentally from both numbers and from geometric and mechanical magnitudes.
In our view, numbers and geometric and mechanical magnitudes are, for Lagrange,
quantities of a particular sort, whereas his theory of analytical functions is intended
to deal with quantities in general, or better in abstracto. We borrow Lagrange’s term
‘algebraic quantity’ to refer to quantities of this sort, and we describe them as relata of

11 For an account of the quite limited “Lagrangian tradition” in the foundation of the calculus, see Grattan-
Guinness (1990), vol. 1, Sect. 4.3, pp. 195–223. As is well known, Lagrange’s theory instead had a notable
influence on R. Woodhouse and his followers gathered around the Cambridge Analytical Society, especially
C. Babbage, J. Herschel and G. Peacock, who in turn had an important and also well-known influence on the
development of 19th-century British mathematics and on the birth of abstract algebra. On the Cambridge
Analytical Society, see for instance, Wilkers (1990).
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a net of operational relations lacking any particular intrinsic feature, and characterized
only by the sheaf of relations they are involved in (a more precise characterization
will of course be offered later). We also insist that, in Lagrange’s parlance, the term
‘analytical function’—often shortened to ‘function’ alone—is used with the same
meaning, though with a different emphasis. In ‘algebraic quantity’, the emphasis is on
what makes the entities at issue quantities, in a significant sense of this term, that is,
on what makes them share some essential features with numbers and geometric and
mechanical magnitudes. In ‘analytical function’, or ‘function’, the emphasis is on what
connects these entities to one another through operational relations displayed by the
expressions that denote them, which are of course nothing but the usual expressions

entering into mathematical analysis, like ‘x2’, ‘
√

x
a+x ’ ‘log x + e

a
x ’, etc.

It follows that, in our view, Lagrange’s theory is not algebraic insofar as it carries out
a reduction to algebra understood as a separate elementary field, considered more prim-
itive than this theory. Rather, it is algebraic insofar as it deals with algebraic quantities,
that is, insofar as it is not concerned with particular quantities, but with quantities in
general. And it is formal, insofar as these quantities are identified through the relations
they have with each other, which are in turn displayed by appropriate formulas.

This remains a broad description. It should be clear enough, however, to allow us
to raise a rather basic problem: what makes algebraic quantities be quantities in an
appropriately significant sense of the term? In other words, what makes the entities
denoted by the usual formulas of mathematical analysis behave the way quantities
are supposed to, namely to be linearly ordered, to stay in certain metric relations, and
to be subject to certain continuity conditions? In Lagrange’s framework (understood
as we suggest), this cannot be warranted by independent properties ascribed to the
referent of these formulas, that is, by the features of the intended model in which these
formulas are interpreted. For this would amount to reducing algebraic quantities to
particular quantities of some sort, thus, denying the very raison d’être of Lagrange’s
theory.

The problem is aggravated by the reductionist ambition of Lagrange’s program.
Indeed, he purposed not only to foster a particular branch of mathematics, but even to
reduce all mathematics to it. But for such a reduction to work, the theory of algebraic
quantities had to include general results capable of being interpreted in the particular
quantities that mathematics was taken to be about. So Lagrange could hardly avoid
requiring that algebraic quantities behave the way particular quantities are supposed
to, for otherwise his whole program would have been pointless. Still, reduction should
have gone, for him, together with foundation: his aim was to provide a ground for
mathematics as a whole, not just a simple framework for a nice reformulation of it.
Hence, this requirement had not merely to be imposed on algebraic quantities from the
outside, but met because of the very features possessed by algebraic quantities as such.

Our basic point in explaining Lagrange’s failure is precisely that his notion of alge-
braic quantity does not guarantee that algebraic quantities meet this crucial require-
ment, so much so that he cannot but surreptitiously suppose that they do meet it. Hence,
this notion appeared too weak to bear the weight of Lagrange’s reductionist purpose.
But once reinforced with this surreptitious assumption, it became too strong to play
the role of a starting point of his foundational program.
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Lagrange’s theory of analytical functions 101

Of course, this basic point has, in our view, different ramifications, capable of
accounting for a number of different difficulties to which Lagrange’s theory was sub-
ject, which made it quite unattractive. We shall come to the details later; what is
relevant for the time being is that Lagrange’s failure marked, at least on the Conti-
nent, the end of the program of eighteenth-century algebraic analysis begun by Euler.
By taking the ideal of purity pervading this program to its extreme consequences,
Lagrange’s theory made it clear that, if conceived as Euler and Lagrange suggested,
purity was incompatible with reductionism and foundationalism: if algebraic analysis
had to be pure in this sense, the goal of recovering the whole edifice of mathematics
within its limits and of grounding this edifice on it could never be reached. This makes
the historical interest of this failure and of its explanation clear. Such an interest does
not merely rest on the preeminent role Lagrange had in his time and continues to
have in the history of mathematics. It is also related to the fact that this failure brings
with it the end of a way of doing and conceiving mathematics that characterized a
long season of its history. Reacting to Lagrange’s foundational perspective and to his
ideal of purity was then also a way of promoting a new idea of what mathematics
should be.

This being said concerning the general purpose of our article, we can describe its
plan.

Before undertaking a detailed examination of Lagrange’s theory, we consider it
necessary to clarify his understanding of the crucial notions of quantity, function, and
power-series expansion, and, more generally, set out his foundational program and its
crucial difficulties. This will be done in Sect. 2.

In our view, Lagrange’s theory includes four main components:

(i) The fundamental proof;
(ii) The reformulation of the edifice of the calculus in terms of derivative functions

(independently of its geometric and mechanical applications);
(iii) The remainder theorem;
(iv) The applications of the algorithm of derivative functions to the solution of par-

ticular geometric and mechanical problems.

Section 3 is devoted to component (i).
The other three components are intended to show that the whole corpus of the

calculus—including all of its applications—can be reformulated in terms of deriv-
ative functions and their relations, without any appeal to differentials, integrals, or
variations.12 To carry this purpose out, Lagrange could not limit himself to offer-
ing his fundamental proof—thus, guaranteeing the formal coincidence between the
derivative functions f (ν)(x) (ν = 1, 2, . . .) of any function f (x) and the differential
quotients dν y

dxν (for y = f (x))—and then appeal to an appropriate translation rule for

12 In its first explicit formulation, due to Euler (1744), the calculus of variations involved a special kind
of differentials distinguished by usual differentials only for being independent of each other even if the
relative variables were functionally related. We call them ‘variations’. The reformulation of this calculus as
a formalism involving a new operator δ distinct from d is an important achievement of Lagrange himself,
obtained in one of his first scientific memoirs (Lagrange 1761). In the Théorie and the Leçons, he showed
then how to reformulate this calculus by relying on nothing but appropriate derivative functions, so as to
eliminate the δ-operator itself. On this matter, see Fraser (1985).
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transforming any statement including terms for differentials, integrals or variations
in a statement where these terms are replaced by terms for derivative and primitive
functions (the primitive function of a given function being, of course, the function hav-
ing this given function as its derivative). Much of the corpus of the calculus did not,
indeed, follow from the algorithm of differential ratios, but rather rested on infinitesi-
malist arguments, or, more generally, on arguments related to particular interpretations
of this algorithm. Thus, once he had provided the fundamental proof, Lagrange still
had to show how to recover anew the totality of this corpus by grounding it solely
on the place taken by the derivative functions f (ν)(x) of any function f (x) in the
power-series expansions of f (x + ξ).

Section 4 presents and discusses some examples of component (ii) especially con-
cerned with the reformulation of the theory of differential equations, which Lagrange
called ‘derivative equations’ (Lagrange 1797, arts. 33 and 54; 1801, p. 84; 1806, p. 112;
and 1813, arts. I.17 and I.41). This will allow us to illustrate other, more technical diffi-
culties associated with Lagrange’s program. We shall show in particular that his actual
treatment of derivative equations involves considerable departures from the ideal of
purity of method informing this program.

Section 5 deals with the remainder theorem (component (iii)), which is generally
considered the major mathematical achievement of the Théorie and the Leçons. To
understand how this theorem fits into Lagrange’s theory, we begin by considering
examples of component (iv) where it applies. We then go through Lagrange’s two
proofs of it.

Finally, Sect. 6 presents a short conclusion.
The Théorie and Leçons differ in many ways, of which the absence of component

(iv) in the Leçons is the most conspicuous. Also the two editions of each treatise
respectively differ in several details. But since the theory laid out in the four exposi-
tions is essentially the same, a systematic comparative study is unnecessary for our
purpose. The annex nonetheless provides information about the different editions and
the respective contents of both treatises. It includes four tables: the first shows the
place of components (i)–(iv) in these treatises and their respective editions; the three
others itemize the different topics included in components (ii) and (iv).

2 Functions and algebraic quantities

According to a classical way of thinking, dating back to Greek mathematics and phi-
losophy (see Aristotle, Metaphysics, �, 13, 1020a, 7–14, and Categories, part 6),
quantities are objects of a specific sort—numbers, for example, or segments or lapses
of time—meeting two distinctive requirements: additivity and order comparability.
The former specifies that the objects of each sort have to be capable of being added up
to each other, so as to give rise to other objects of the same sort. The latter specifies
that these objects have to be capable of being compared with respect to their size, to
the effect that for any two of them either they are equal, or one of them is greater than
the other (and then the latter smaller then the former).

In the Discours préliminaire of the Encyclopédie, d’Alembert made the following
claim:
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Lagrange’s theory of analytical functions 103

[…] though, properly speaking, one could only calculate with numbers and the
only measurable magnitude is extension (since we could not measure time with-
out space), by generalizing our ideas we reach such a principal part of mathemat-
ics and of all natural sciences which is called ‘science of magnitudes in general’,
which is the ground of any discovering that might be made about quantity, that
is, about all what is susceptible of increasing or decreasing.

[…] quoiqu’il n’y ait proprement de calcul possible que par les nombres, ni de grandeur me-
surable que l’étendue (car sans l’espace nous ne pourrions mesurer exactement le tems) nous
parvenons, en généralisant toûjours nos idées, à cette partie principale des Mathématiques, &
de toutes les Sciences naturelles, qu’on appelle Science des grandeurs en général; elle est le
fondement de toutes les découvertes qu’on peut faire sur la quantité, c’est-à-dire, sur tout ce qui
est susceptible d’augmentation ou de diminution.

(Alembert DIS 1751, pp. V–VI.)

This is far from providing a clear and unambiguous definition, but it at least sug-
gests the idea that there is a fundamental part of mathematics concerned with quantity
conceived in general: not with one or several particular sorts of quantities, but with
abstract quantities, so to say13. Mutatis mutandis, this is also Lagrange’s view. We
can try to gain a better understanding of it.

2.1 Lagrange’s definition of functions

The Théorie begins with an explicit definition of functions:

One calls a ‘function’ of one or several quantities any expression of calculation
into which these quantities enter in any way whatsoever combined or not with
other quantities which are regarded as having same given and invariable values,
whereas the quantities of the function may receive any possible value.

On appelle fonction d’une ou de plusieurs quantités toute expression de calcul dans laquelle
ces quantités entrent d’une maniè re quelconque, mêlées ou non avec d’autres quantités qu’on
regarde comme ayant des valeurs données et invariables, tandis que les quantités de la fonction
peuvent recevoir toutes les valeurs possibles.

(Lagrange 1797, art. 1; 1801, p. 6; 1806, p.6; 1813, Introduction, p. 1.)14

Lagrange’s definition is surprising for us, since, according to it, functions are expres-
sions and contain quantities. This looks incompatible with our familiar distinction
between syntactical items and the things some of these items refer to, or, in other
words (or more generally), between syntax and semantics.Expressions are syntacti-
cal items, indeed, while, in our view, quantities cannot but be things referred to by

13 D’alembert also said (DIS, p. XLIX) that “the object of mathematics is quantity” and repeated that
“one calls ‘quantity’ or ‘magnitude’ all that can be increased or diminished.” This makes clear that he used
‘quantity’ and ‘magnitude’ as synonyms. We shall be more precise and take all magnitudes to be quantities
(namely continuous ones), but some quantities (namely discrete ones, such as integer positive numbers) not
to be magnitudes. This agrees with Lagrange’s use of these terms.
14 Lagrange often left passages largely unchanged, going from the first edition of the Théorie to the Leçons,
and from these to the second edition of the Théorie. Where there are some slight changes (as in this case), we
quote the most recent version, but include bibliographical references to all the occurrences of the relevant
passages.
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appropriate expressions, to the effect that an expression might contain terms referring
to quantities, but it might not contain quantities as such.

One could blame inadvertence, and take ‘quantités’ in Lagrange’s definition to refer
not to quantities but to terms referring to quantities, in which case a function would
be an expression that includes terms like these. But there are at least two reasons for
discarding such an interpretation.

The first is straightforward: Lagrange’s definition resembles many others offered
by contemporary mathematicians,15 to the effect that inadvertence would then be a
quite widespread phenomenon.

The second reason is more complex. Lagrange could have understood functions
as expressions including terms referring to quantities only if he had been ready to
define quantities without relying on the notion of function. But in fact he was not
ready for that. Against this, one could retort that, following Greek mathematicians,
he could have taken quantities to be particular objects defined within appropriate the-
ories, somehow prior to the theory of functions, for example arithmetic, geometry,
or mechanics. But if that were the case, there would be arithmetical, geometric, or
mechanical functions according to whether they include terms referring to arithmeti-
cal, geometric or mechanical quantities. And this openly contradicts the idea that the
theory of functions is the most general part of mathematics, which includes all others:
an idea that Lagrange doubtless shared with many other 18th-century mathematicians
(see: Grabiner 1974, pp. 355–358; Fraser 1987; Fraser 1989; Panza 1992; Panza 1996;
Ferraro and Panza 2003).

Lagrange himself suggested an alternative understanding when he remarkeds,
against Newton’s theory of fluxions, that:

[…] introducing motion in a calculation whose object is nothing but algebraic
quantities is the same as introducing an extraneous idea [...].

[…] introduire le mouvement dans un calcul qui n’a que des quantité s algébriques pour objet,
c’est y introduire une idée étrangère […].

(Lagrange 1797, art. 5; 1813, Introduction, p. 3.)

This criticism suggests that the quantities which Lagrange referred to in his definition
of functions are algebraic ones. But what are algebraic quantities?

At first glance, the simplest answer would be that algebraic quantities are what
algebra deals with. The calculus would then relate to algebraic quantities insofar as it
is part of algebra. This was certainly Lagrange’s idea,16 but it is not enough to appeal

15 The most notable example is the definition occurring in Euler’s Introductio:

A function of a variable quantity is an analytical expression composed in any way whatever of this
variable quantity and numbers or constant quantities.

Functio quantitas variabilis est expressio analytica quomodocunque composita ex illa quantitate variabili, et
numeris seu quantitatibus constantibus.

(Euler 1748, vol. I, art. 4; here and later, we slightly modify Blanton’s English translation: Euler
(BLA), vol. I, p. 3.)

16 In presenting his course at the École Polytechnique for 1799 (Lagrange 1799, p. 232; see the annex),
Lagrange explicitly claimed that his aim was to “eliminate the difficulties that one meets in the principles
of the differential calculus […] by linking this calculus immediately to algebra […].”
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to it in order to understand his definition of functions. One should also explain, without
appealing to the notion of function, what he took algebra to be. One could consider
algebra to be a mere formalism, and algebraic quantities to be what appropriate for-
mulas of this formalism refer to, when they are taken to refer to something. If this were
Lagrange’s view, his theory would thus be concerned with two sorts of expressions:
algebraic formulas and functions. But it is a fact that in Lagrange’s treatises there is
no trace of such a duplication.

Rather, Lagrange openly admitted that functions are themselves quantities:

The word ‘function’ has been employed by the first analysts in order to designate
in general the powers of a same quantity. Then its meaning has been extended
to any quantity however formed by another quantity. Leibniz and the Bernoullis
employed it first in this general sense, and it is today generally adopted.

Le mot function a été employé par les premiers analystes pour désigner en general les puis-
sances d’une même quantité. Depuis, on a étendu la signification de ce mot à toute quantité
formée d’une manière quelconque d’une autre quantité . Leibniz et les Bernoulli l’ont employé
les premiers dans cette acception générale, et il est aujourd’hui généralement adopté.

(Lagrange 1797, art. 2; 1813, Introduction, pp. 1–2. See also: Lagrange 1801,
p. 4; 1806, p. 4.)

Lagrange clearly took his definition to be entirely consistent with this “generally
adopted” meaning; namely, he took it to be consistent with the idea that a function is
a “quantity formed in any way from another quantity”, as Johann Bernoulli had stated
in (1718, p. 241).17 In the second edition of the Théorie, he is explicit:

17 Here is Bernoulli’s definition:

[…] one calls ‘function of a variable quantity’ a quantity however composed by this variable quantity
and constants.

On appelle […] function d’une grandeur variable, une quantité composée de quelque manière que ce soit de cette
grandeur variable et de constantes.

More than fifty years earlier, James Gregory had already advanced a similar definition as being that of
quantities:

We say that a quantity is composed by [some] quantities when another quantity results from the
addition, subtraction, multiplication, division, root extraction of [these] quantities, or from any other
imaginable operation [on them].

Quamitatem dicimus à quantitatibus esse compositam; cum à quantitatum additione, subductione, multiplicatione,
divisione, radicum extractione, vel quacunque alia imaginabili operatione, fit alia quantitas.

(Gregory 1667, p. 9; see Youschkevitch 1976–1977, p. 58.)

According to Gregory, quantities so defined are analytically composed when the relevant operations are
algebraic (in modern sense):

When a quantity is composed by the addition, subtraction, multiplication, division, [or] root extrac-
tion of [some] quantities, we say that it is analytically composed.

Quandò quantitas componitur ex quantitatum additione, subductione, multiplicationr divisione, radicum extracti-
one; dicimus illam componi analyticè.

(Gregory 1667, p. 9.)

This use of the adjective ‘analytical’ and its cognates is thus more restrictive than Lagrange’s: see Sect. 2.3.
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Through the character ‘ f ’ or ‘F’ placed before a variable, we shall designate
in general any function of this variable, that is, any quantity depending on this
variable and which varies with it according to a given law.

Nous désignerons en général par la caractéristique f ou F , placée devant une variable, toute
fonction de cette variable, c’est-à-dire, toute quantité dépendante de cette variable, et qui varie
avec elle suivant une loi donnée.

(Lagrange 1813, art. I.1.)18

It thus seems that in Lagrange’s view a function is a quantity, and that it is so insofar
as it is an expression. But then the quantities contained by a function can, according
to his definition, in turn be identified with expressions or terms. They are not terms
that refer to quantities, but terms that are quantities.

This bring us back to the difficulty raised above, since this understanding is incom-
patible with our distinction between syntax and semantics. We nonetheless suggest
that Lagrange’s notion of function is foreign to such a distinction and can only be
understood if this distinction is dispensed with.

To see how, consider two further quotations, from the Leçons and a short paper
Lagrange published in 1799 in the Journal de l’École Polytechnique:

[...] one should regard algebra as the science of functions, and it is easy to see
that the solution of equations does not consist in general but in finding the val-
ues of unknown quantities as determined functions of known quantities. These
functions represent, then, the different operations that have to be performed to
the known quantities in order to get the values of those which are sought, and
they are properly only the last result of the calculation. But in algebra, one con-
siders functions only insofar as they result from the operations of arithmetic,
these operations having been generalized and transferred to letters, whereas in
the calculus of functions strictu sensu, one considers functions that result from
the algebraic operation of expansion in series when one assigns indeterminate
increments to one or several quantities of the function.

[…] on doit regarder l’Algèbre comme la science des fonctions; et il est aisé de voir que
la résolution des équations ne consiste, en général, qu’à trouver les valeurs des quantités in-
connues en fonctions déterminées des quantités connues. Ces fonctions représentent alors les
différentes opérations qu’il faut faire sur les quantités connues pour obtenir les valeurs de celles
que l’on cherche, et elles ne sont proprement que le dernier résultat du calcul. Mais, en Algèbre,
on ne considère les fonctions qu’autant qu’elles résultent des opérations de l’Arithmétique,
généralisées et transposées aux lettres, au lieu que dans le Calcul des fonctions proprement dit,
on considère les fonctions qui résultent de l’opération algébrique du développement en série
lorsqu’on attribue à une ou à plusieurs quantités de la fonction, des accroissements indéterminés.

(Lagrange 1801, p. 4; 1806, p. 4.)19

18 Lagrange did not enclose the argument of a function of one variable in parentheses when the argument
is expressed by an atomic symbol: he wrote ‘ f x’ when we would rather write ‘ f (x)’, but he wrote ‘ f (x2)’,
‘ f (x + ξ)’ and ‘ f (x, y)’ as we do. He furthermore wrote ‘ f ′(x)’ for the derivative of a function of sev-
eral variables with respect to x . For simplicity we adhere to modern notational conventions even in our
quotations from Lagrange.
19 This passage is quoted by J. L. Ovaert (1976, p. 172) to emphasize the “algebraic character” of Lagrange’s
notion of function.
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Strictly speaking, algebra in general is nothing but the theory of functions. In
Arithmetic, one looks for numbers according to given conditions between these
numbers and other numbers; and the numbers that are found meet these condi-
tions without conserving any trace of the operations that were needed in order to
form them. In algebra, instead, the sought after quantities have to be functions
of given quantities, that is, expressions representing the different operations that
have to be performed on these quantities in order to get the values of the sought
after quantities. In algebra stricto sensu, one only considers primitive functions
that result from ordinary algebraic operations; this is the first branch of the the-
ory of functions. In the second branch, one considers derivative functions, and
it is this branch that we simply designate with the name ‘theory of analytical
functions’, and that encompasses all that which pertains to the new calculi.

À proprement parler, l’Algèbre n’est en général que la théorie des fonctions. Dans l’Arithmétique,
on cherche des nombres par des conditions données entre ces nombres et d’autres nombres; et
les nombres qu’on trouve satisfont à ces conditions sans conserver aucune trace des opérations
qui ont servi à les former. Dans l’Algèbre, au contraire, les quantités qu’on cherche doivent être
des fonctions des quantités données, c’est-à-dire, des expressions qui représentent les différen-
tes opérations qu’il faut faire sur ces quantités pour obtenir les valeurs des quantités cherchées.
Dans l’Algèbre proprement dite, on ne considère que les fonctions primitives qui résultent des
opérations algébriques ordinaires; c’est la première branche de la théorie des fonctions. Dans la
seconde branche on considère les fonctions dérivées, et c’est cette branche que nous désignons
simplement par le nom de Théorie des fonctions analytiques, et qui comprend tout ce qui a
rapport aux nouveaux calculs.

(Lagrange 1799, p. 235.)20

These two quotations suggest that ‘algebra’ and ‘theory of (analytical) functions’ (that
we take to be synonyms of ‘science of functions’ and ‘calculus of functions’) are, for
Lagrange, two names for the same theory—also known as ‘analysis’ or better ‘alge-
braic analysis’, after the complete title of the Théorie (see 1)—, or at any rate, two
names of two intimately connected branches of this very theory.

This theory concerns quantities that, in Lagrange’s parlance, are viewed as “expres-
sions that represent operations” that are to be performed for passing from one quan-
tity to another.21 More precisely, it deals with the system of relations induced by
the indefinite composition of certain elementary operations applied to indeterminate
arguments.22 Though these arguments are indeterminate as such, they can be iden-
tified by looking at the net of relations in which they occur. Once this is done, they
become quantities, namely algebraic quantities. Hence, in Lagrange’ view, quantities

20 A similar claim is also made in manuscript 1323 of the library of l’École des Ponts et Chaussées (see
the annex):

Le calcul des fonctions […] n’a donc rien qui le distingue de l’algèbre proprement dite.
In the calculus of functions […] there is then nothing that or which it is distinguished from algebra strictu sensu.

(Pepe 1986, p. 31.)

21 The idea that an expression “represents operations ” seems already implied in Lagrange’s use of the term
‘expression of calculation’, as opposed to the term ‘expression’ tout court, in his definition of functions.
22 According to Grabiner (1990, p. 72): “if Lagrange said he would reduce the calculus to algebra, he meant
that its subject matter would be systems of operations which are expressible by symbolic formulas.” See
also Fraser (1987), p. 39.
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and expressions are not distinct because neither operations nor their arguments are
there before the corresponding symbols. First there are only symbols and the formulas
they make up, which are subject to rules of composition and transformation. Opera-
tions and quantities appear next, whenever these symbols and formulas are supposed
to express something. Thus, expressions do not refer to quantities or operations that
are there independently of them; they constitute, or rather generate, quantities and
operations. The universe of Lagrange’s theory of functions is a universe of symbols
governed by rules of composition and transformation, not a universe of objects and
relations which these symbols refer to.

In Lagrange’s parlance, the verb ‘to express’ should therefore not be taken to mean
the same as ‘to refer to’: an expression does not express a quantity insofar as it refers
to it, but rather insofar as it can be taken to be this very quantity, or, as Lagrange
admitted without any reluctance, insofar as it is this quantity. In the same vein, the
verb ‘to represent’ should not be taken to evoke a relation linking two items that might
be given independently of each other: an expression represents an operation insofar as
it expresses (or, better, is) a quantity which is viewed as the result of performing this
operation on another quantity. It follows that, in Lagrange’s view, a quantity is alge-
braic insofar as it is a quantity whose identity merely depends on its being expressed by
an appropriate expression, and is then to be conceived as nothing but a relatum of the
net of relations corresponding to the operations that this very expression represents.23

To take a simple example, insofar x is not taken to be a quantity of a certain par-
ticular sort, x2 is an algebraic quantity which stays in the two-place relation �(to be
the) square of � with the other algebraic quantity x . It is then characterized as such
(that is, as this very quantity rather than any other one) merely by its being expressed
by the expression ‘x2’, and is consequently to be conceived as nothing but a relatum
of this two-place relation (which links it to the other relatum x, and corresponds to
the operation of square power). Hence, the expression ‘x2’ makes different things at
once: it expresses the algebraic quantity x2, in the sense that it is this very quantity;
it expresses the relation that links this quantity to x ; it furthermore represents the
operation of square power insofar as it is applied to x and gets x2.

Once this is accepted, Lagrange’s definition of functions becomes clear. Insofar
as expressions are quantities, for him, and quantities are to be taken, in the context
of (the pure part of) his theory of analytical function, as algebraic (rather than as
particular) ones, functions are twofold entities: they are expressions insofar as they
express (algebraic) quantities, and (algebraic) quantities insofar as they are expressed
by appropriate expressions. The following definition, which Lagrange advanced in his
treatise on numerical equations, is fairly explicit:

23 This way of thinking quantities was in no way specific to Lagrange, though Lagrange was certainly the
mathematician who tried, more than any other, to reform the calculus in conformity with this conception. A
crystal clear example is offered by Klügel (1800, p. 146). Rather than expressions or functions, he speaks of
forms, but his basic idea is just the same as Lagrange’s: in mathematics, the form is the “modality of compo-
sition of a quantity by another quantity [Art der Zusammensetzung einer Größe aus andern Größen]”, and
mathematics as a whole is “the science of the form of quantities [Wissenschaft der Formen der Grossen].”
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[…] when a quantity depends on other quantities in such a way that it can be
expressed by a formula that includes these quantities, one says then that it is a
function of these same quantities.

[…] lorsqu’une quantité dépend d’autres quantités, de manière qu’elle peut être exprimée par
une formule qui contient ces quantités, on dit alors qu’elle est une fonction de ces mêmes
quantités.

(Lagrange 1798, p. VII; 1808, pp. 14–15.)24

All these considerations should be enough in order to clarify the first part of La-
grange’s definition of functions, according to which a “function of one or several
quantities” is an “expression of calculation into which these quantities enter in any
way whatsoever combined or not with other quantities.” But more is needed for under-
standing what it means that these last quantities “are regarded as having same given
and invariable values, whereas the quantities of the function may receive any possible
value,” and, more generally, for explaining how functions enter into Lagrange’s theory.
The following Sects. 2.2–2.7 are devoted to this.

2.2 Functions and numbers

We begin by discussing a possible objection to the understanding of Lagrange’s defi-
nition just outlined.

At the beginning of the Introductio, Euler claimeds that “numbers of any sort”
are constant quantities, and that—“since all determined values” that a variable quan-
tity “encompasses within itself” can be expressed by numbers—“a variable quantity
involves all numbers of any sort” (Euler 1748, vol. I, arts. 1–2; Euler (BLA), vol. I,
p. 2). One could take these claims—together with Euler’s practice of assigning numer-
ical (real or complex) values to variable quantities—to suggest that quantities are just
numbers for Euler. One could then argue that the same applies to Lagrange. 25 Though
we do not in fact feel that Euler identified quantities with numbers, we shall stick to
Lagrange (concerning Euler, see Ferraro 2001, 2004; Panza 2007, Sect. 1.1).

In the two passages from the Leçons and the 1799 paper of the Journal de l’École
Polytechnique quoted, Lagrange explicitly distinguished algebra or the theory of func-
tions from arithmetic, and explicitly used the terms ‘quantity’ and ‘number’ to speak of
the entities they deal with, respectively. This explicitly suggests what is also implicitly
suggested by Lagrange’s theory as a whole: that numbers were for him quantities of
a particular sort, whereas the theory of functions deals with quantities in general, i.e.
with algebraic quantities.

The presence of numerals in many formulas occurring in Lagrange’s treatises does
not constitute evidence to the contrary. Numerals admit, indeed, an easy interpretation
as symbols either for constant quantities characterized by a particular operational role
or for indices of operations.

24 This quotation should be enough to show that the opposition proposed by Youschkevitch (1976–1977)
and Monna (1972) between two notions of function in 18th-century mathematics—according to which a
function is respectively an expression or a quantity depending on other quantities—is groundless. On this
matter, see: Panza (1992), Chap. II.2, especially Sect. II.2.η; Panza (1996); Ferraro (2000).
25 We thank Jesper Lützen for having attracted our attention on this point.
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To begin with, symbols like ‘0’, ‘1’, can be easily understood as symbols for con-
stant quantities characterized by a particular operational role. Concerning ‘0’ a similar
understanding is natural: ‘x + y = 0’ is, for example, shorthand for ‘x = −y’. Con-
cerning ‘1 ’, a similar understanding is explicitly fixed by Descartes in his Géometrie,
where this symbol is taken to refer to the unity of segments conceived as the neutral
element for multiplication on them (Descartes 1637, pp. 297–300; Panza 2005, pp.
23–27). There is no reason to think that Lagrange did not accept and generalize Des-
cartes’s stipulation on this matter, so as to take ‘1’ to express (in the sense clarified
above) the neutral element of multiplication on abstract quantities.

If this is accepted, any numeral usually understood as referring to an algebraic
number (in modern sense) can be conceived as a symbol either expressing a quantity
resulting from appropriate operations applied to such a neutral element, or represent-
ing such operations themselves. To take the simplest example, ‘2’ in ‘x + 2’ can be
viewed as shorthand for ‘1 + 1’.

A similar understanding also applies to symbols like ‘e’ or ‘π ’ in expressions like
‘ex ’ or ‘π2 ’. They can also be taken as symbols for constant quantities characterized
by a certain operational role to be specified by defining the logarithmic, exponential,
and trigonometric functions.

On the other hand, expressions like ‘x3’ or ‘ 3
√

2’ display the use of numerals (the
numeral ‘3’, in these cases) as symbols for indices of operations. Under this use,
numerals clearly refer to numbers, but these numbers are not the quantities which
Lagrange’s theory is dealing with, but are rather there to help in designing certain
operations on these last quantities. Thus, ‘x3’ is to be read as the expression of the
result that is obtained by multiplying the quantity x by itself three times, whereas ‘ 3

√
2’

is to be read as the expression of the quantity that, if multiplied three times by itself,
yields the quantity 2 (or 1 + 1). A similar understanding also applies to ‘3x’ or ‘ 3

x ’,
which are then to be viewed as shorthand for ‘x +x +x’ and ‘ 1

x + 1
x + 1

x ’, respectively.

2.3 Why Lagrange’s functions are analytical?

Another relevant question concerns Lagrange’s use of the adjective ‘analytical’ in the
term ‘analytical functions’.

In Lagrange’s treatises, this adjective is clearly not intended to qualify a particular
class of functions. Lagrange may have borrowed the term ‘analytical functions’ from
Condorcet’s unpublished Traité du calcul integral.26 But he used it differently, namely
to refer to any function whatsoever, understood as we have suggested. This is also
Dugac’s view (2003, p. 71), according to which the adjective ‘analytical’, in the title
of the Théorie, has the sense given to it by d’Alembert in the article “Analytique” of
the Encyclopédie: according to this sense, it merely applies to all that “belongs to the
analysis, or is of the same nature as analysis, or is done through analysis” (Alembert
ANA, p. 403).

26 The manuscript of Condorcet’s treatise is conserved at the Library of the Institut, in Paris. On the occur-
rence and meaning of the term ‘functions analytiques’ in such a manuscript, see Youschkevitch (1976–1977),
pp. 75–76, and Gilain (1988), p. 103.
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2.4 In what sense are functions quantities?

After these two preliminary questions (those addressed in Sects. 2.2 and 2.3, respec-
tively), we move to a more substantial matter. Our understanding of Lagrange’s def-
inition of functions leaves a problem open: in what sense can algebraic quantities be
considered quantities? Or rather, what do they have in common with quantities of a
particular sort, such as numbers, segments or speeds, that allows one to view them as
quantities too?

One could think that what is crucial here is that algebraic quantities are arguments
of operations supposed to have the same formal properties as the usual operations on
numbers or segments. This is only a partial answer, however.

Indeed Lagrange assigned to algebraic quantities certain features that do not merely
depend on their being expressed by appropriate expressions. He attributed to them,
namely, a linear order and certain metric relations, and assumed that they respect cer-
tain continuity conditions. In a word, he assumed that algebraic quantities, even if they
are not numbers, behave in many respects the way real numbers, or better, oriented
segments (a null segment included) do. For short, we can term ‘real’ those quantities
that behave this way. It follows that, in Lagrange’s view, algebraic quantities are real.27

This assumption has a crucial consequence: it implicitly introduces a discrepancy
between the understanding of functions as expressions and their understanding as
quantities, and this gives rise to an important discrepancy between Lagrange’s ideal
of purity and the actual deployment of his theory. On the one hand, Lagrange’s ideal
of purity requires functions to be studied merely as expressions; on the other, many
arguments in his theory rely on properties that functions have insofar as they are real
quantities.28

27 At first glance, this claim appears to contradict the argument Lagrange relied on to exclude the possibility
that “in the series that results from the development of a function f (x + ξ) there cannot be any fractional
powers of x” (Lagrange 1797, art. 10; 1801, p. 8; 1806, p. 9; 1813, art. I.2; see Sect. 3.1). As we shall
show in Sect. 3.1.3, this argument can be justified, however, without denying that algebraic quantities are
real. In another case—namely in his treatment of trigonometric functions in both editions of the Théorie
(Lagrange 1797, arts. 25–29; 1813, arts. I.14 and I.18–32)—Lagrange relied on imaginary coefficients and
exponents (explicitly identified as such through the occurrence of the factor

√−1), but handled them in a
purely formal way and used them to study the sine and the cosine functions under the implicit assumption
that their arguments are real quantities.
28 This discrepancy should not conceal that Lagrange’s ideal of purity forces him to treat algebraic quan-
tities as far as possible as pure relata of the net of relations expressed by the relevant expressions. This
attitude was famously contrasted by many coeval mathematicians. When this criticism is mentioned, Cau-
chy’s rejection of the “arguments drawn from the generality of algebra”, made clear in the preface of his
Cours d’analyse (Cauchy 1821, p. ii; CABS, p. 1), is often quoted. A much earlier example of this criticism
is the following passage included in a memoir by Ampère presented to the Institut des sciences in 1803 and
appeared in 1806:

That which is termed a fact of analysis has always to be reduced to the metaphysical principles
of this science, if one wants to have a right idea of it. It is evident, indeed, that one has always to
find the reasons of all results obtained through calculation in the attentive examination of the con-
ditions of any question, since the use of algebraic characters can adds nothing to the ideas that they
represent.

Ce qu’on appelle un fait d’analyse doit toujours étre ramené, si l’on veut s’en faire une idée juste, aux princi-
pes métaphysiques de cette science. Il est évident, en effet, que l’emploi des caractères algébriques ne pouvant rien
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It is a matter of fact that Lagrange took algebraic quantities to be real. But—one
could wonder—why did he do it? The simple remark that this supposition occurs in
some of his crucial arguments is not enough to answer the question. The crucial point
is rather that Lagrange used these arguments because the very purpose of his theory is
that of reducing the study of any particular sort of quantities to the study of functions.
Indeed, to do this, he had to do more than just providing a theory of functions. He
had to show, or at least to suggest, that all the known results concerned with particular
sorts of quantities may be recovered within this theory. This is precisely what forced
him to suppose that algebraic quantities are real.

The double concern of Lagrange’s theory for algebraic quantities and for particular
sorts of quantities is reflected by a separation that is made manifest by the table of
contents of the Théorie. This is the separation of this theory into two distinct parts:
a pure part dealing with functions in general, including components (i)–(iii) among
the four ones distinguished at p. 101; and an applicative part dealing with particular
sorts of quantities, including component (iv). Still, on one hand, this separation is
downplayed by the fact that the first part is greatly influenced by the aim of making
geometric and mechanical applications possible: these applications do not appear as
mere corollaries of the fundamental principles of the theory; they are rather built into
these same principles, especially into the remainder theorem.29 On the other hand, this
same separation is not only reflected by the very structure of Lagrange’s treatises. It is
also emphasized by Lagrange’s effort at keeping formal considerations as detached as
possible from considerations concerning order, metric and continuity,30 of developing
the pure part of the theory as far as possible without appealing (at least explicitly) to
order, metric and continuity for algebraic quantities.

In this context, the explicit recourse to conditions of order and continuity that
appears in the proofs of the remainder theorem is striking, since it appears as an
inevitable deviation from a basic methodological purpose. The same holds for other
surreptitious recourses to these conditions in other crucial arguments included in the
pure part of Lagrange’s theory, even in some quite crucial ones, as the fundamental
proof itself.

The idea that the study of quantities of any particular sort has to be reduced to
the study of functions has another important consequence. As we have said above,
in Lagrange’s view, algebra coincides with the theory of (analytical) functions or is

Footnote 28 continued
ajouter aux idées qu’ils représentent, on doit toujours trouver dans l’examen attentif des conditions de chaque
question la raison de tous les résultats où l’on est conduit par le calcul.

(Ampère 1806, p. 496.)

29 This is to say that Lagrange’s theory satisfies, with respect to its geometric and mechanical applications,
what today’s philosophers of mathematics usually call ‘Frege’s constraint’: see Dummett (1991), p. 274;
Wright (2000), p. 324.
30 Ovaert (1976, p. 173) has argued that in the Leçons, though not in the Théorie, Lagrange was striving
to sever the “formal point of view” from the “numerical point of view”. On this point, see also Alvarez-
Jimenez (1997), pp. 121 and 125, according to which Lagrange’s theory presents “two levels,” the first
being given by a “purely formal representation for functions,” and the second by the “effective calculation”
of “numerical value of a function.” The adjective ‘numerical’ seems to us inappropriate, since quantities of
a particular sorts do not have do be numbers. Still, these remarks seem to us to capture an important feature
of Lagrange’s theory.
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at least intimately connected with it, insofar as the latter as well as the former are
branches of the same more general theory. As the study of quantities is just mathe-
matics, it follows that this more general theory is not a branch of mathematics, but
a unitary framework to which all mathematics is to be reduced. Hence, speaking of
algebra or of the theory of (analytical) functions is not a way of speaking of a portion
of mathematics, but rather a way of speaking of mathematics as a whole, appropriately
understood. In fact this use of the term ‘algebra’ is not surprising: on the one hand, the
conception of algebra as a well delimited domain within mathematics is quite modern
and in the eighteenth century it was far from being generally accepted; on the other,
the possibility of expanding any function in a power series—a possibility that, as we
shall see in Sect. 3, Lagrange believed he had established—strongly suggests that any
function can be recast in the form of a polynomial expression.

2.5 Variables, constants, and indeterminate quantities

We are now ready to consider Lagrange’s distinction between the quantities that “are
regarded as having same given and invariable values,” and those that “may take on
any possible value,” i.e., the distinction between constant and variable quantities.

There are two points to be clarified in connection with this distinction: how should
we understand, in the context of Lagrange’s theory, the notion of a value of a quantity?
What does it mean that a quantity may take on not just several values, but rather all
possible values?

Let us begin with the first point.
Lagrange’s theory appears, to a modern mathematician, as a (flawed) version of

real analysis. From this point of view, it is natural to admit that Lagrange’s variables
vary over the real numbers and his constants are real numbers. As said, we do not
share this understanding (though we recognize, of course, that Lagrange’s variables
and constants can be interpreted as numbers). So we have to suggest an alternative
understanding of Lagrange’s notion of value.

We suggest that, in Lagrange’s view, a value of an algebraic quantity is another
algebraic quantity entitled to replace the former, and that may be explicitly associ-
ated with it by means of an appropriate equality. A constant algebraic quantity is thus
an algebraic quantity that—within a certain argumentative context—does not admit
arbitrary replacements, that is, either does not admit replacements at all, or admits
only some suitable replacements. A variable algebraic quantity is instead an algebraic
quantity that—again, within a certain argumentative context—admits any arbitrary
replacement compatible with the rules of composition. So conceived, the distinction
between constant and variable algebraic quantities not only depends on the formal
treatment of these quantities, it is also relative to argumentative contexts.

According to Lagrange, some algebraic quantities can also be taken to be inde-
terminate. This means that, within a certain argumentative context, they are handled
independently of their having, or their being able to take, a certain value and then, of
their admitting or not some replacements. Often, indeterminate quantities are supposed
to be whichever constant quantities, and are then open to take whichever suitable value,

123



114 G. Ferraro, M. Panza

and even to be later considered as variable. This is clearly the case of the increment
ξ in f (x + ξ).

Let us consider now the second point.
We have already mentioned what Euler said about quantities and numbers at the

beginning of the Introductio. Besides this, he also claimed that a variable quantity
“encompasses within itself, in general, any determined value,” and that “a variable
quantity is the genus in which are contained all determined quantities” (Euler 1748,
vol. I, art. 2; BLA, vol. I, pp. 2–3). Moreover, he added that a “function of a variable” is
a variable quantity, in turn, which means that it takes on any determined value. More
precisely, he argued that, “since it is permitted to substitute all determined values
for the variable quantity, the function takes on innumerable determined values,” and
added that “no determined value is excluded from those which the function can take
on, if the variable quantity also involve imaginary values” (Euler 1748, vol. I, art. 5;
BLA, vol. I, p. 3; on Euler views on this matter, we refer the reader to Panza 2007,
sect.1.1).

Lagrange merely repeated the first of Euler’s claims, but he did not try to explain
it, and did not insist on its consequences relative to the values that a function may
take on, in turn. On top of that, in expounding his theory, he even seems to have
made at least two concessions that contradict Euler’s second claim. On the one hand,
he seems to have admitted the possibility of taking a constant as a function of any
variable. On the other, he seems to have granted that a function might be such that
its variable be not licensed to take on any value. The first concession occurs quite
locally in Lagrange’s theory, for example in his treatment of singular solutions of
derivative equations (we shall return to this matter in Sect. 4.2), though it is implied by
the acknowledgment (that is natural in view of his notion of function) that expressions
like ‘2a2 − ax − a (a − x)’—in which a variable occurs, as it were, only vacuously
—are or express functions. The second concession pervades the whole theory, instead,
and it is much more relevant.

To see why, consider two simple examples, namely the expressions: ‘ a
a−x ’ and

‘
√

a − x’. It seems that, in Lagrange’s view, expressions like these are not well-formed
if x takes some particular values: for ‘ a

a−x ’, this is the case if x takes the value a; and
for ‘

√
a − x, this is the case if x takes any value greater than a.

These two examples are very different. To argue that ‘ a
a−x ’ is not well-formed if

x = a it is enough to maintain that division by 0 (i.e., by the neutral element of addition
on abstract quantities) is not allowed, or that ‘ a

0 ’ is meaningless since there is no such
thing as an infinite quantity. To argue that the expression ‘

√
a − x’ is not well-formed

if x > a, one has to say that no quadratic form is negative, or that ‘
√

a − b’ is mean-
ingless if b > a, since there is no quantity whose square is negative. It seems that
Lagrange implicitly endorsed both these arguments. In a sense, this is natural, since
they perfectly fit with the assumption that algebraic quantities are real. But, this has
also strong consequences for the pure part of the theory.

According to our modern set-theoretic understanding, a function is a mapping
f : X → Y from a certain set X to a certain set Y, and its very nature depends not
only on the rules the mapping is complying with, but also on the nature of these sets.
In Lagrange’s view, a function is, instead, an expression that expresses a quantity.
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There is thus no way to specify beforehand a certain domain of values of its variable
(or variables) where it is defined. Still, once it is assumed that algebraic quantities
are real, and that functions express them, it becomes necessary to assign to functions
something like a domain of definition.

We employ this last term for short, but we insist on the fact that what we use it to
refer to is quite different from what this last term refers to in a set-theoretic context.
In the context of Lagrange’s theory, the domain of definition of a function is given
by the possible substitutions for its variable (or variables) that preserve its property
of expressing a real quantity, thus, allowing the function to subsist as such. So under-
stood, the domain of definition of a function is not established independently of the
expression that constitutes the function itself, but is imposed by it.

It follows that, in Lagrange’s view, insofar the functions a
a−x and

√
a − x are not

defined for x = a and x > a, respectively, they have simply no property under the
condition that x = a and x > a. To claim, for example, that the first of them is dis-
continuous for x = a is simply nonsensical: this function is neither a mapping from
R to R, nor a mapping from any set X including the value a to any other appropriate
set Y ; it is just the expression itself insofar as it expresses a real quantity; and this last
condition is precisely what does not obtain if x = a.

Strictly speaking, such a conception contradicts Lagrange’s claim that a variable
quantity “may take on all possible values,” at least if it is admitted that functions
like a

a−x and
√

a − x are variable quantities, which Lagrange could have not denied.
But there is a sense in which this conception is entirely consistent with this claim.
According to the former, the values that a variable occurring in a function can take on
cannot be established at will. It follows that Lagrange’s functions are not only defined
everywhere on their domain of definition, but also that in Lagrange’s theory there is
no room for piece-wise defined functions like the following:

f (x) =
{

x2 for x ≥ 0
x for x < 0

, (1)

as already observed by Fraser (1987, pp. 40–41).

2.6 The compositional conception of functions

It is now time to consider a question we have so far left aside: what sort of expression
is a function, in Lagrange’s view?

Lagrange added to his definition neither a list of admitted atomic symbols that
can compose functions, nor a specification of the rules of composition of these sym-
bols. He merely took it for granted that the readers were familiar with the formalism
used to provide the relevant expressions, and there was thus no need to make it pre-
cise.

The crucial point here is, however, not concerned with the choice and delimita-
tion of this formalism, but rather with a compositional conception of functions that
Lagrange seems also to have taken for granted. His endorsement of this concep-
tion is made clear by the following claim, which he makes after having established
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the power-series expansions of (x + ξ)m , a(x+ξ), loga (x + ξ) , sin (x + ξ), and
cos (x + ξ):

The functions xm, ax , lx, 31 sin x, cos x we have just considered can be regarded
as the simple analytical functions of only one variable. All other functions of
the same variable are either composed from these ones by addition, subtraction,
multiplication, or division, or are given in general through some equations into
which some functions of this same form enter.

Les fonctions xm , ax , lx, sin x, cos x que nous venons de considérer, peuvent être regardées
comme les fonctions simples analytiques d’une seule variable. Toutes les autres fonctions de
la même variable se composent de celles-là par addition, soustraction, multiplication ou divi-
sion; ou sont données en général par des équations dans lesquelles entrent des fonctions de ces
mêmes formes.

(Lagrange 1797, art. 30; 1813, art. I.15; see also Lagrange 1801, p. 36; 1806,
p. 47.)

Like Euler (1748, vol. I, Chap. VIII), Lagrange seems to have included both the
sine and the cosine among simple functions, but no inverse trigonometric function.32

He also neglected to observe that functions can compose by replacing their arguments
with other functions, though, in his treatises, he makes a great use of such a form of
composition, of course.

Leaving aside these harmless flaws, his point is clear: functions are generated by
finitary algebraic compositions of a handful of elementary (or simple) ones,33 or are
implicitly defined through equations involving functions generated in this way. This
point deserves further clarification.

Lagrange’s acceptance of exponential, logarithmic, and trigonometric functions
is not at odds with his understanding of functions as algebraic quantities, since, as
we have seen above, for him algebra is not a portion of mathematics, but mathe-
matics as a whole, appropriately conceived. In the context of Lagrange’s (extended)
algebra, trigonometric functions do, however, have a different role from exponen-
tial and logarithmic functions. The functions ax and loga x can be viewed as result-
ing from a generalization of elementary arithmetical operations, and their presence
among elementary functions is thus perfectly consistent with the “genetic” (Vuillemin
1962, p. 64; Gusdorf 1971, pp. 232–249) conception that was shared by many coeval
mathematicians, according to which mathematics is gradually generated by extension,
starting from an elementary base.34 This is not so for trigonometric functions, whose

31 In Lagrange’s notation, lx is the Napierian logarithm of x .
32 But note that in the Leçons (Lagrange 1801, pp. 35–36; 1806, pp. 45–46), he obtained the derivatives
of arcsin x and arccos x by inverting the power-series expansion of sin (x + ξ) and cos (x + ξ).
33 Here and below we use the term ‘composition’ and its cognates in relation with functions in a sense
broader than that in which this term is habitually used today. In this broad sense, two functions f (x) and
g(x) can be composed by going over not only the functions f (g(x)) and g( f (x)), but also the functions

f (x) + g(x), f (x) − g(x), [ f (x)] [g(x)], and f (x)
g(x) , that is, as Lagrange says, by addition, subtraction,

multiplication, or division.
34 This conception was especially promoted by Condillac in his influential essay La langue des calculs
(Condillac 1797). For a study of this essay, see Dhombres (1982–1983). The following passage drawn from
the Leçons provides evidence for Lagrange’s acceptance of this conception in the case of the exponential
function:

123



Lagrange’s theory of analytical functions 117

basic properties depend, rather, on their geometric origins. It is true that the sine and
the cosine can also be defined through imaginary exponentials (see footnote 27). But if
they are so defined, they are no longer elementary function, and there is no reason for
assigning to them a relevant role in the theory of functions. The fact that Lagrange’s
elementary functions include the functions sine and cosine is thus another case of dis-
crepancy between Lagrange’s ideal of purity and the actual deployment of his theory
guided by its reductionist purpose.

Another relevant question is concerned with the last part of the claim quoted, where
Lagrange said that functions can be “given” through equations. Later, Lagrange con-
firmed this claim by remarking that “the function y could be given through any equation
between x and y” (Lagrange 1797, art. 33; 1801, p. 47; 1806, p. 52; 1813, art. I.17).
Right after this second claim, Lagrange proves that if F(x, y) = 0, then the first

derivative of y is − F
′x (x,y)

F ′ y(x,y)
, where F

′x (x, y) and F
′ y(x, y) are the first derivatives

of F(x, y) taken respectively with respect to x and to y (see equality 21).
This suggests that here Lagrange was referring only to non-derivative equations.

He therefore does not seem to have countenanced the possibility that a function can be
implicitly defined through a derivative equation. What he appears to have in mind was
that functions are either elementary or derive from a finitary algebraic composition of
elementary functions, or from the solution of an equation involving elementary func-
tions of two variables, algebraically composed. For short, call this the ‘compositional
conception’ (of functions).

The trouble with this conception is that it is at odds with a number of arguments
and results occurring in the Théorie and the Leçons. We shall later consider two of
them (see Sects. 3 and 4.4, respectively): the first is Lagrange’s fundamental proof, no
less; the second concerns partial derivative equations.

2.7 Generality

The last point we want to make about Lagrange’s notion of function concerns its rela-
tion with a typical feature of Lagrange’s proofs, namely his efforts to avoid as far as
possible the assignment of constant values to some variables (Ovaert 1976, p. 173;
Fraser 1987, p. 44).

This attitude is quite natural if functions are conceived as expressions. For a func-
tion so conceived can dramatically alter its nature when a symbol that occurs in it is
replaced with another. Consider the function x2 + √

x − a. If the variable x takes the
value a, the radical disappears and the function loses one of its essential features: that

Footnote 34 continued

The function xm , in which x is the variable and m is a constant, naturally brings to the consideration
of the function ax , in which the variable is x, and a is a constant.

La fonction xm , dans laquelle x est la variable et m est une constante, conduit naturellement à la considération
de la fonction ax , dans laquelle la variable est x, et où a est une constante.

(Lagrange 1801, p. 20; 1806, p. 25.)
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of including a fractional power. Hence, Lagrange merely wants to avoid the mistakes
that could derive from such an alteration, if it happens surreptitiously.

But that is not all. What is more relevant is that the very possibility of such an
alteration of the nature of a function goes together with a conception of generality
concerning functions that is essentially different from the one we are familiar with.
Lagrange often said that a certain result holds in general, or better that certain functions
have certain properties in general. This meant, for him, that certain expressions can be
subjected to certain transformations whenever no particular values are assigned to the
variables or indeterminate quantities that occur in them, or, to use Lagrange’s words,
whenever these quantities remain indeterminate. For Lagrange, it was thus natural to
assume that a general result concerning functions could have exceptions for particular
values of some variables.

This is an intensional conception of generality, which is quite different from the
extensional conception we are familiar with. According to the latter, P holds in gen-
eral for a certain set S of individuals when P(s) holds for any s in S. According to
the former, P holds in general for the s’s when it holds for an expression S that is
taken as the typical expression of the s’s.35 A clear illustration of such a conception
is provided by Lagrange’s fundamental proof, to which we now turn.

3 Lagrange’s fundamental proof

We have already observed that in order to achieve his purpose Lagrange had to show
that derivative functions could effectively replace differential quotients. More pre-
cisely, he had to prove that the following condition holds:

[Fundamental condition of the theory of analytic functions]
– (FC.i) For any function y = f (x) there exists an infinity of other func-

tions f (k)(x) (k = 1, 2, . . .), called ‘derivative functions’, that are such that∑∞
k=0

f (k)(x)
k! ξ k (where f (0)(x) = f (x) and ξ is an indeterminate increment)

is the (unique) power-series expansion of f (x + ξ), and that may be uniquely
determined with the same rules used in going from f (x) to the corresponding

differential quotients dk y
dxk , and therefore formally coincide with these quotients,

to the effect that they are defined for any x for which the differential quotients
dk y
dxk are.

– (FC.ii) If x0 is an isolated value of x and n a non-negative integer such that[
dk y
dxk

]
x=x0

is defined if and only if k ≤ n, then
∑n

k=0
f (k)(x0)

k! ξ k +∑∞
k=n+1 �k(ξ)

(where f (k)(x) coincides with dk y
dxk (k = 0, 1, . . . , n) and �k(ξ) (k = n + 1, n +

2, . . .) are appropriate functions of ξ alone) is the (unique) expansion of f (x0 +
ξ) = fx0(ξ) including n + 1 terms having, respectively the form Akξ

k (k =
0, 1, . . . , n), where Ak does not depend on ξ .

35 Lagrange’s view on this matter was shared by most of his contemporaries. In the first volume of his
Traité du calcul différentiel et intégral, Lacroix observes for example that “though true in general,” the form
of a power series for the expansion of a function of x + ξ “is not appropriate for certain particular cases”
(Lacroix 1797–1798, vol. 1, p. 232).
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This condition cannot be stated as such within Lagrange’s theory, and indeed it is
stated neither in the Théorie nor in the Leçons. Still, as we already observed, both
these treatises open with an argument that, if correct, would have convinced anybody
already familiar with the differential calculus that such a condition is met. This is,
Lagrange’s fundamental proof. The present section is devoted to a reconstruction and
evaluation of this argument.

3.1 Power-series expansion

The first part of Lagrange’s fundamental proof is intended to establishe a result that
he initially stated as follows:

Theorem 1 (Power-series expansion theorem)

Let us consider […] a function f (x) of whatever variable x. If one replaces
in it x with x + ξ, where ξ is whatever indeterminate quantity, it will become
f (x + ξ), and, for the theory of series, one will be able to expand it in a series
of this form

f (x)+ pξ + qξ2 + rξ3 + &c., (2)

in which the quantities p, q, r, &c.—which are the coefficients of the powers of
ξ—will be new functions of de x, derived from the primitive function f (x), and
independent of the indeterminate [quantity] ξ .

Considérons […] une fonction f (x) d’une variable quelconque x. Si à la
place de x, on y met x + ξ, ξ étant une quantité quelconque indéterminée,
elle deviendra f (x + ξ), et par la théorie des séries on pourra la développer
en une série de cette forme

f (x)+ pξ + qξ2 + rξ3 + &c.,

dans laquelle les quantités p, q, r, &c., coefficients des puissances de ξ,
seront des nouvelles fonctions de x, dérivées de la fonction primitive f (x),
et indépendantes de l’indéterminée ξ .

(Lagrange 1797, art. 3; 1801, p. 7; 1806, p. 8; 1813, art. I.1.)36

The reference to the theory of series requires explanation. Lagrange’s intention was
presumably to refer to the corpus of results expounded in the first volume of Euler’s In-
troductio, where—by relying on appropriate formal procedures—it is shown that any
rational or irrational function can be expanded in a power series, and the power-series
expansions of the exponential, the logarithm, the sine and the cosine are provided.
One could then think that Lagrange considered these results as a sufficient basis for

36 We correct an evident misprint of the second edition of the Théorie. In this edition, Lagrange used the
symbol ‘. . .’ whenever, in the first edition of the Théorie and in both editions of the Leçon, he had used
the symbol ‘&c.’. We prefer to use the latter symbol, which was much commoner in the 18th century. The
term ‘theorem of power-series expansion’ is not Lagrange’s. We use it for brevity and simplicity.
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proving the theorem. But this is contradicted by what he wrote straight away, which
rather suggests that, for him, any proof merely relying on Euler’s results would have
been inappropriate:

But, so as not to go ahead gratuitously, we begin by examining the very form
of the series that should represent the expansion of any function f (x) when one
replaces x in it with x + ξ, and which we have supposed to contain only integer
positive powers of ξ . In fact, this supposition holds for the expansion of [all] the
different functions we know, but, to the best of my knowledge, nobody has tried
to prove it a priori, which seems to me all more necessary that there are some
particular cases in which it cannot obtain.37

Mais pour ne rien avancer gratuitement, nous commencerons par examiner la forme même de la
série qui doit représenter le développement de toute fonction f (x) lorsqu’on y substitue x + ξ

à la place de x , et que nous avons supposée ne devoir contenir que des puissances entières et
positives de ξ . Cette supposition se vérifie en effet par le développement des différentes fonc-
tions connues; mais personne, que je sache, n’a cherché à la démontrer a priori, ce qui me paraît
néanmoins d’autant plus nécessaire, qu’il y a des cas particuliers où elle ne peut pas avoir lieu.

(Lagrange 1797, art. 10, 1801, p. 8, 1806, pp. 8–9, and 1813, art. I.2)

Such an a priori proof is precisely what the first part of Lagrange’s fundamental proof
is intended to provide.

In his treatises, Lagrange made no effort to explain what it meant for him that
a certain series is an expansion of a certain function. In the second edition of the
Théorie, after having provided his alleged a priori proof, he referred to the result
allegedly established by this proof with the phrase ‘la formule générale f (x + ξ) =
f (x) + pξ + qξ2 + rξ3 + &c.’ (Lagrange 1813, art. I.8; in the first edition—1797,
art. 16—, the adjective ‘générale’ is absent). This is only one of several occasions
where Lagrange used the symbol ‘ =’ to denote the relation between a certain func-
tion and its power-series expansion (or some other sort of expansions). The mere use
of this symbol is, however, not enough to clarify the exact nature either of this result or
of this relation. The best (and possibly only) way to achieve such a clarification is by
parsing Lagrange’s proof. This is what we shall do in Sect. 3.1.2. The discussion made
in this last section will be based, however, on our understanding of what Lagrange
meant by requiring that his proof be a priori. Before we turn to the proof it is therefore
necessary to consider this last matter.

3.1.1 Why an a priori proof?

Providing functions comply with the compositional conception (explained in Sect. 2.6),
Euler’s previously mentioned results on the power-series expansion of functions would
be enough to prove the power-series expansion theorem. To prove that any finitary alge-
braic composition of the elementary functions has a power-series expansion it would
be enough, indeed, to show how to obtain a power-series expansion of a composed
function by composing the power-series expansions of the elementary functions that
compose it. The method of indeterminate coefficients would, then, be appropriate to
obtain a power-series expansion of any function implicitly defined through a (finitary)

37 For an explanation of this last disclaimer, see Theorem 2.
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equation in two variables involving elementary functions algebraically composed.
For short, call such a proof ‘compositional.’ It is natural to wonder why Lagrange
considered it inappropriate.38

In the Introductio, Euler proved his mentioned results by appealing both to infin-
itesimalist arguments and to an unproved generalization of the binomial theorem to
any real exponent. This is not, however, a reason that Lagrange could have advanced
for requiring an alternative proof of these results based on a non-compositional proof
of the power-series expansion theorem. On the one hand, the argument that he relied
on in the Leçons (see pp. 44–45, ) to obtain the first coefficient of the power-series
expansion of (x +ξ)m is a clever version of a later proof of the binomial theorem due to
Æpinus and Euler himself, which works for any sort of exponent and relies on no infin-
itesimalist assumptions (Æpinus 1760–1761; Euler 1787; Dhombres 1987; Dhombres
and Pensivy 1988; Pensivy 1987–1988.). On the other hand, when he looked for the
first coefficients of the power-series expansions of a(x+ξ), loga (x + ξ) , sin (x + ξ) ,

and cos (x + ξ) , both in the Théorie and in the Leçons (Lagrange 1797, arts. 19–23
and 25–29; 1801, pp. 20–24 and 31–35; 1806, pp. 25–3; pp. 40–47; 1813, arts. I.11–14
and I.18-I.19; Panza 1992, pp. 749–760), Lagrange offered arguments that are per-
fectly suitable for providing, independently of all infinitesimalist considerations, the
power-series expansions of the exponential, the logarithm, the sine and the cosine
obtained by Euler. Lagrange could thus have easily obtained Euler’s results through
arguments that he would certainly have considered correct, and that are independent
of the power-series expansion theorem.

One can wonder, then, why, rather than proceeding accordingly, he sought a non-
compositional (a priori) proof. Three explanations come to mind.

The first is as follows. Let F(x, y) = 0 be a (finitary) equation involving Lagrange’s
elementary functions algebraically composed, and f (x + ξ) be the function implicitly
defined through the corresponding equation F(x +ξ, y) = 0. To develop this function
into a power-series expansion by relying on the method of indeterminate coefficients,
one has to suppose that f (x + ξ) =∑∞

k=0 Akξ
k, then apply this method to determine

the coefficients Ak in terms of x . It follows that either it is taken for granted that any
function f (x + ξ) so defined reduces to a finitary algebraic composition of Lagrange’s
elementary functions, or a compositional proof of the power-series expansion theorem
is in some way circular, since the equality f (x + ξ) = ∑∞

k=0 Akξ
k could only be

justified by the assumption that f (x + ξ) has a power-series expansion. It is thus pos-
sible that Lagrange required a non-compositional proof of the power-series expansion
theorem to avoid assuming that any function f (x + ξ) so defined reduces to a finitary
algebraic composition of its elementary functions.

The second explanation is simpler. It could be that Lagrange wanted a non-composi-
tional proof of the power-series expansion theorem to avoid making another assump-
tion (that a compositional proof would have required): the assumption that power
series obtained by appropriately composing the power-series expansions of elementary

38 Lagrange’s phrase ‘pour ne rien avancer gratuitement’, included in one of the passages quoted, makes
it hard to argue that Lagrange merely preferred an a priori proof but did not consider a compositional one
inappropriate.
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functions is a power-series expansion of the function obtained by analogously com-
posing these same elementary functions.

The third explanation is radical. Perhaps Lagrange wanted a non-compositional
proof of the power-series expansion theorem because he wanted the proof of this
crucial theorem to work even independently of the adoption of the compositional
conception of functions. 39

All these explanations indicate a discrepancy between Lagrange’s actual proof
of the power-series expansion theorem and his ideal of purity, as they suggest that
Lagrange sought a proof that does not depend on assumptions concerning functions
that are natural to make if functions are conceived as expressions according to the
view explained in Sect. 2. They suggest, moreover, that what Lagrange meant by an
a priori proof of this theorem is a proof that does not rely on formal procedures like
Euler’s: procedures leading to the power-series expansion of certain functions through
appropriate transformations of the relevant expressions.

3.1.2 The premises of Lagrange’s proof of the power-series expansion theorem and
the appropriate understanding of this theorem

We are now ready to consider Lagrange’s a priori proof of the power-series expansion
theorem. This is far from unequivocal, as has often been noticed. We will therefore
quote it in extenso, before parsing it:

I shall first prove that, in the series resulting from the extension of the function
f (x + ξ), there cannot be any fractional power of ξ, unless one assigns to x
some particular values.

It is clear, indeed, that the radicals of ξ can only result from some radicals
included in the primitive function f (x), and it is also clear that replacing x with
x + ξ could neither increase nor decrease the number of these radicals, and it
could no more change their nature, as far as x et ξ are indeterminate quantities.
Furthermore, from the theory of equations, we know that any radical has as many

39 In the first edition of the Leçons, Lagrange took his proof to be concerned only with “algebraic functions”
and made, at the end of it, the following quite peculiar remark:

If the function f (x) is not algebraic, one can nevertheless suppose that the expansion of f (x + ξ)

be, in general, of this same form, regarding as particular exceptions the cases where this expansion
would contain some powers of ξ other than the integer positive ones. Thus, whatsoever the function
f (x)might be, we only consider the functions p, q, r,&c. that result from the expansion of f (x +ξ)
according to the powers ξ, ξ2, ξ3, &c.

Si la fonction f (x) n’est pas algébrique, on peut néanmoins supposer que le développement de f (x + ξ) soit
en général de cette même forme, en regardant comme des exceptions particulières les cas où ce développement
contiendrait d’autres puissances de ξ que des puissances positives et entières. Ainsi, quelle que soit la fonction
f (x) nous ne considérerons que les fonctions p, q, r, &c. résultant du développement de f (x + ξ) suivant les
puissances ξ, ξ2, ξ3, &c.

(Lagrange 1801 , pp. 9–10.)

This remark, together with the restriction to algebraic functions, is absent both from the two editions of the
Théorie and from the second edition of the Leçons. It is not clear what sort of exceptions Lagrange had in
mind, so it is hard to decide whether this remark should be taken as evidence that Lagrange sought a proof
of the power-series expansion theorem that worked independently of the adoption of the compositional
conception of functions.
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different values as there are unities in its exponent, and any irrational function
has then as many different values as possible combinations of the different values
of the radicals it includes. Hence, if the expansion of the function f (x + ξ)were
able to contain a term of the form uξ

m
n , the function f (x) would necessarily

be irrational and would then have a certain number of different values, which
would be the same for the function f (x + ξ) as for its expansion. But, since this
expansion is represented by the series

f (x)+ pξ + qξ2 + &c.+ uξ
m
n + &c., (3)

each value of f (x) would combine with each one of the n values of the radical
n
√
ξm, to the effect that the function f (x + ξ) would have, when it is expanded,

more different values than this same function when it is not expanded, which is
absurd.

This proof is general and rigorous as far as x and ξ remain indeterminate;
but it would cease to be so if one assigned to x some determinate values, since
it would be possible that these values destroy some radicals in f (x) that could
nevertheless subsist in f (x + ξ). […]

We have just seen that the expansion of the function f (x + ξ) could not
include, in general, some fractional powers of ξ ; it is also possible to warrant
that it could no more include some negative powers of ξ .

Since, if among the terms of this expansion, there were one of the form r
ξm ,

where m is a positive number, this term would become infinite; thus, the func-
tion f (x + ξ) should also become infinite when ξ = 0; and consequently f (x)
should become infinite, which could only happen for some particular values
of x .

Je vais d’abord démontrer que, dans la série résultante du développement de la function f (x+ξ),
il ne peut se trouver aucune puissance fractionnaire de ξ, à moins qu’on ne donne à x des valeurs
particulières.

En effet, il est clair que les radicaux de ξ ne pourraient venir que des radicaux renfermés
dans la fonction primitive f (x), et il est clair en même temps que la substitution de x + ξ au
lieu de x ne pourrait ni augmenter ni diminuer le nombre de ces radicaux, ni en changer la
nature, tant que x et ξ sont des quantités indéterminées. D’un autre côté, on sait par la théorie
des équations que tout radical a autant de valeurs différentes qu’il y a d’unités dans son expo-
sant, et que toute fonction irrationnelle a, par conséquent, autant de valeurs différentes qu’on
peut faire de combinaisons des différentes valeurs des radicaux qu’elle renferme. Donc, si le

développement de la fonction f (x + ξ) pouvait contenir un terme de la forme uξ
m
n , la fonction

f (x) serait nécessairement irrationnelle et aurait par conséquent un certain nombre de valeurs
différentes, qui serait le même pour la fonction f (x + ξ), ainsi que pour son développement.
Mais, ce developpement étant représenté par la série

f (x)+ pξ + qξ2 + &c.+ uξ
m
n + &c.,

chaque valeur de f (x) se combinerait avec chacune des n valeurs du radical n√ξm , de sorte que
la fonction f (x + ξ) développée aurait plus de valeurs différentes que la même fonction non
développée, ce qui est absurde.

Cette démonstration est générale et rigoureuse tant que x et ξ demeurent indété rminés; mais
elle cesserait de l’être si l’on donnait à x des valeurs détérminées, car il serait possible que
ces valeurs détruisissent quelques radicaux dans f (x) qui pourraient néanmoins subsister dans
f (x + ξ). […]
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Nous venons de voir que le développement de la fonction f (x +ξ) ne saurait contenir, en géné
ral, des puissances fractionnaires de ξ ; il est facile de s’assurer aussi qu’il ne pourra contenir
non plus des puissances négatives de ξ .

Car, si parmi les termes de ce développement, il y en avait un de la forme r
ξm ,m étant un

nombre positif, en faisant ξ = 0, ce terme deviendrait infini; donc la fonction f (x + ξ) devrait
devenir infinie lorsque ξ = 0; par conséquent, il faudrait que f (x) devînt infinie, ce qui ne peut
avoir lieu que pour des valeurs particulières de x .

(Lagrange 1797, art. 10; 1801, pp. 8–9; 1806, pp. 9–10; 1813, art. I.2; the second
part of the quotation, concerned with negative powers of ξ, is absent from the
first edition of the Théorie.)

If this argument is taken to provide Lagrange’s complete proof of the power-series
expansion theorem, as we suggest,40 then this proof is based (among other things) on
an unproved premise. For brevity, let us say that a series S(x, ξ) is a generalized power
series if it is of the form

∑∞
k=0 pk(x)ξαk , where the coefficients pk(x) are functions

of x and the exponents αk are rational (and, of course, different from each other). 41

Lagrange’s unproved premise can then be stated as follows:

– [P] Any function f (x + ξ) has a generalized power-series expansion.42

This is not, of course, the only premise on which Lagrange’s proof of the power-
series expansion theorem rests. Three others premises are the following:

– [C] For any function f (x + ξ) and any generalized power series S(x, ξ), if the
latter is an expansion of the former then:

(i) if S(x, ξ) contains a radical of ξ then f (x) is also irrational;
(ii) f (x + ξ) and S(x, ξ) have the same number of values;43

(iii) if S(x, ξ) becomes infinite for ξ = 0, then f (x) is also infinite.

In the proof, we have just quoted, condition [C. i] is justified by the observation
that “the radicals of ξ [in S(x, ξ)] could only come from radicals contained in the […]
function f (x).” In the Leçons, Lagrange also argued that “the form” of the functions
pk(x) (k = 0, 1, 2, . . .) “depends only on that of the given function f (x)” and added
that these functions “can be easily determined, in the particular cases, through the
rules of ordinary algebra” (Lagrange 1801, p. 7; 1806, p. 8).

At first glance, these claims suggest that, for Lagrange, to say that a certain gener-
alized power series is an expansion of a certain function was the same as saying that
the former results from the latter through the application of an appropriate formal pro-
cedure. This is consistent with Lagrange’s understanding of functions as expressions,
but neither with the a priori character of the desired proof, nor with conditions [C.ii]
and [C.iii].

40 In Sect. 5.2.1, pp. 74–75, we shall consider an alternative understanding of Lagrange’s proof of the
power-series expansion theorem, according to which this argument provides only the first part of this proof.
41 In what follows, we shall denote with ‘p1(x)’, ‘p2(x)’, ‘p3(x) ’, …the functions Lagrange denotes
with ‘p’, ‘q’, ‘r ’, …We also use the modern symbol ‘

∑∞
k=0 −’ to denote a series. Lagrange wrote instead

the first terms of this series followed by the symbols ‘&c.’ or ‘. . .’ (see footnote 36). These last symbols
clearly indicate, in his treatises, that the sum is indefinitely, rather than infinitely, extended. The reader is
thus invited to consider the possibility that all terms of a series vanish beyond a certain value of k.
42 For the case where f (x + ξ) has an expansion including some powers of log ξ, see Sect. 3.4
43 We shall return to this premise, and try to shed light on it, in Sect. 3.1.3
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These two last conditions suggest, rather, an alternative understanding, which is not
only consistent with the a priori character of the proof and these same conditions, but
also with Lagrange’s understanding of functions as quantities, and the mathematical
practice concerning expansion of functions that was usual within algebraic analysis
before Lagrange (Ferraro 2001, 2002; Ferraro and Panza 2003). This understanding
is a general (or global) one in the following sense: a generalized power series S(x, ξ)
counts as an expansion of a function f (x + ξ) insofar as both this series and this
function are understood as expressions where x and ξ remain indeterminate, that is,
as expressions taken as such (or expressions where x and ξ are not supposed to take
any particular value).

Let us fix this understanding through an explicit definition:

Definition 1 A generalized power series S(x, ξ)—where x and ξ remain indetermi-
nate—is an expansion of a function f (x +ξ)—where x and ξ remain indeterminate as
well—if and only if, for any value of x for which this series is defined, it converges44

to such a function whenever the value of ξ belongs to an appropriate proper interval.45

The following considerations should be enough to show how this understanding
works in Lagrange’s theory and to explain it better.

Though general in the previous sense, this definition is such that, according to it, a
function f (x + ξ) has a generalized power-series expansion S (x, ξ) in virtue of what
happens under appropriate replacements of x and ξ with constant quantities. This is
just the sort of understanding that is needed both for the power-series expansion theo-
rem and for premise [P], since—we argue—both of them are supposed to be general
in this same sense.

Definition 1 suggests that premise [P] be understood as follows:

– [P.1] For any function f (x + ξ)—where x and ξ remain indeterminate—there
is a generalized power series S(x, ξ)—where x and ξ remain indeterminate, in
turn—such that, for any value of x for which it is defined, it converges to f (x + ξ)
whenever the value of ξ belongs to an appropriate proper interval.

However, this understanding of premise [P] is too weak for justifying Lagrange’s use
of this premises in his proof of the power-series expansion theorem. Let us see why.

Having admitted premise [P], Lagrange was satisfied with two reductio ad absur-
dum purporting to exclude the possibility that a generalized power-series expansion
of a function f (x + ξ) contains fractional and negative powers of ξ, respectively.

The first reductio, intended to exclude fractional exponents, starts with the suppo-
sition that this function has a generalized power-series expansion of the form

f (x)+ · · · + pμ(x)ξ
m
n + &c., (4)

44 As the purpose of Definition 1 is to fix the way Lagrange understood the relation of a function and a
generalized power-series expansion of it, the convergence of the former to the latter has to be understood
as Lagrange could have understood it, that is, as a not-better-defined metric equality between the values
of the function and the values that the series indefinitely approaches. In what follows, we shall always use
the verb ‘to converge’ and its cognates in this same quite vague sense, which corresponds, we argue, to the
understanding of eighteenth-century mathematicians. For further considerations on this matter, see Ferraro
and Panza (2003).
45 By ‘proper interval’ we mean one that includes more than a single value.
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where μ is a positive integer greater than 0, and m
n is a fractional exponent (different

from every other exponent of ξ in this expansion). In Sect. 3.1.3, we shall return to the
argument that Lagrange developed starting from this supposition. For the time being, it
is only relevant to remark that, according to such a supposition, this expansion includes
the function f (x) as one of its terms. This is essential, since the reductio proceeds by
showing that the generalized power-series expansion of f (x + ξ) cannot contain both
f (x) and pμ(x)ξ

m
n , and then, as it certainly contains the former, it cannot contain the

latter. Now, if definition 1 is accepted, f (x) would enter a generalized power-series
expansion of f (x + ξ) if no exponent of ξ in this expansion were negative, since this
would insure that the proper interval to which ξ must belong for this expansion to
converge to f (x + ξ) includes the value ξ = 0. One could then think that the second
reductio—which is primarily intended to exclude negative exponents—is also suitable
for proving that the (or any) generalized power-series expansion of a function f (x +ξ)
includes the function f (x) as one of its terms.

Still, this second reductio proceeds by making the other assumption that, whatever
x might be, if a generalized power-series expansion of f (x + ξ) goes to infinity for
ξ = 0, this also happens for f (x + ξ) itself. This is the same as assuming that this
expansion converges to f (x + ξ) for ξ = 0, to the effect that S(x, 0) = f (x). This is
precisely what happens for power series. Thus, either Lagrange’s second reductio is
circular in some way, or it depends on the assumption that a generalized power-series
expansion of f (x + ξ) converges to f (x + ξ) around ξ = 0. Hence, it can neither
provide a proof for this last assumption, nor for the assumption that such an expansion
includes f (x) as one of its terms.

It thus appears that Lagrange took this last assumption for granted. In other words,
he took it for granted that a generalized power series of a function f (x + ξ) is a series
that converges to this function for small enough ξ, and merely proved that this is
possible only if this expansion is a power series.

Now, the requirement that a generalized power series of a function f (x + ξ) con-
verge to this function for small enough ξ and include the function f (x) as one of its
terms is certainly relevant for Lagrange’s proof to hold, but it is not relevant to the
content of this last theorem. Indeed, a power series

∑∞
k=0 pk(x)ξ k converges if and

only if ξ belongs to an interval containing zero,46 and it can thus converge to f (x +ξ)
only if it includes f (x) as one of its terms. A natural way to understand this theorem
is thus the following:

Theorem 2 For any function47 f (x + ξ) —where x and ξ remain indeterminate—,
there is a power series

∑∞
k=0 pk(x)ξ k—where x and ξ remain indeterminate as well,

and the coefficients pk(x) are functions of x—that, for any value of x for which it is

46 In Lagrange’s day, nobody had spotlessly proved that this is the case. In the 18th century, this was,
however, generally taken for granted (though nobody remarked that the interval of convergence could, in
some cases, reduce to the only value ξ = 0), and we can suppose that this was also the case for Lagrange.
47 According to Desanti 1973, p. 66, Lagrange’s theory includes “a principle of ‘normalisation’ which
delimits a priori the class of functions that can be expanded in series.” This seems wrong to us. We maintain,
rather, that Lagrange wanted to prove that any function of x + ξ has a power-series expansion, at least if
this claim is appropriately understood.
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defined, converges to such a function whenever the value of ξ belongs to an appropriate
proper interval centered on zero.

Suppose now that
∑∞

k=0 pk(x)ξ k be a power-series expansion of a certain function
f (x +ξ). Suppose also that x0 be a value of x for which

∑∞
k=0 pk(x0)ξ

k is not defined.
Insofar as ξ remains indeterminate when x takes the value x0 in f (x +ξ), this function
reduces to a function of ξ alone, namely f (x0 + ξ) = fx0(ξ). Theorem 2 is clearly
compatible with the possibility that this last function has a generalized power-series
expansion

∑∞
k=0 pk(x0)ξ

αk which is not a power series.
Two simple examples are provided by the functions 1

x+ξ and
√

x + ξ and the respec-

tive power-series expansions
∑∞

k=0(−1)k 1
xk+1 ξ

k and
∑∞

k=0

( 1
2
k

)
ξ k

xk−1√x
. The former

of these series is not defined for x = 0, the latter is not defined for x ≤ 0. For these
values of x, the functions 1

x+ξ and
√

x + ξ reduce to 1
ξ

and
√

a + ξ (where a is a
non-positive constant), respectively. The former of these last functions is then its own

generalized power-series expansion, whereas the latter has
∑∞

k=0

( 1
2
k

)
ak

ξ k−1
√
ξ

as its

generalized power-series expansion.48

Even if Theorem 2 holds, there is thus a sense in which a function f (x +ξ) can have
a generalized power-series expansion that is not a power series. This explains what
Lagrange meant when he remarked (at the end of the passage quoted at page 120, after
Theorem 1), that “there are some particular cases where […] [the supposition that the
expansion of f (x + ξ) contains only integer positive powers of ξ ] cannot hold.” As
Lagrange sayd in his proof, these cases are given by “particular values of x .” The term
‘particular values’ suggests that Lagrange was here thinking to isolated values on an
appropriate domain.

Plausibly, this domain includes the domain of definition of f (x), but it seems that
Lagrange also considered as being relevant the limit values of this domain that, though
not included in it, allow the function f (x + ξ) to be defined for any non-null value
of ξ . In other terms, it seems that he took the relevant “particular values of x ” to
be isolated values in the domain of definition of f (x + ξ) for any non-null value of
ξ .49 For example, in the case of the function 1

x , the relevant domain seems also to
include the value x = 0, for which this function is not defined (since 1

x+ξ is defined

48 Though the power series
∑∞

k=0

( 1
2
k

)
ξk

xk−1√
x

is not defined for x = 0, there is a generalized power

series that provides an expansion of
√

x + ξ and is defined for any value of x for which
√

x is defined, and

thus, also for x = 0. This is
∑∞

k=0

( 1
2
k

)
xk

ξk−1√
ξ

. But this is a power series of x, not of ξ . It does not

contain the function
√

x as one of its terms and does thus appear not to count, for Lagrange, as a generalized
power-series expansion of

√
x + ξ, insofar as this function results from the function

√
x by replacing x

with x + ξ . It rather counts as a generalized power-series expansion of the function
√
ξ + x, insofar as

this function results from the function
√
ξ by replacing ξ with ξ + x . Conceived as resulting from

√
x by

replacing x with x + ξ, the function
√

x + ξ has thus only a generalized power-series expansions, namely,∑∞
k=0

( 1
2
k

)
ξk

xk−1√
x

.

49 This seems to be also Dugac’s view: see Dugac (2003), p. 73, where he claims that Lagrange took the
relevant particular cases to be given by a finite number of points on a closed interval.
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for x = 0 if the increment ξ is non-null), while, in the case of the function
√

x, the
only “particular value” to be considered is x = 0.

The consideration of the limit values of the domain of definition of f (x) which
are not included in this domain is however mathematically inessential for Lagrange’s
theory, and rather depends on rhetorical reasons: to say that the power-series expan-
sion of f (x + ξ) is not defined for these values simply reduces to saying, within
this theory, that the function f (x) has no derivatives at some values of x for
which it is not defined. Hence, in what follows, we shall limit ourselves to con-
sider the “particular values of x” to be isolated values in the domain of definition of
f (x).

A little reflection clarifies the situation. Let
∑∞

k=0 pk(x)ξ k and
∑∞

k=0 p̂k(x)ξ k be
two distinct power-series defined on the same interval of values of x . Suppose that, on
this interval, both of them converge to a function f (x + ξ) whenever ξ belongs to an
appropriate proper interval centered on zero. Then there would be a proper interval of
values of ξ for which, on this interval of values of x,

∑∞
k=0 pk(x)ξ k =∑∞

k=0 p̂k(x)ξ k .
For the method of indeterminate coefficients, it would then follow that pk(x) = p̂k(x)
for any k, which contradicts the assumption that

∑∞
k=0 pk(x)ξ k and

∑∞
k=0 p̂k(x)ξ k

are distinct. Hence, if the method of indeterminate coefficients is accepted, theorem 2
excludes the possibility that a function f (x + ξ) has distinct power-series expansions
defined on a same interval of values of x . But it leaves open both the possibility that
a function f (x + ξ) have several distinct power-series expansions, each of which is
defined for different intervals in the domain of definition of f (x) , and the possibility
that a function f (x + ξ) admit no power-series expansion defined for some proper
interval in this same domain of definition.

The former possibility would undermine, however, the second part of Lagrange’s
fundamental proof, which we shall discuss in Sect. 3.2. Moreover, his use of the terms
‘determined values’ and ‘particular values,’ and his treatment of the cases correspond-
ing to these values, suggest that he did not consider the latter.

Insofar as his proof of the power-series expansion theorem does not eliminate
these two possibilities, it is natural to think that their exclusion depends on his
understanding of premise [P]. So, in the end, it seems to us that, to adhere to La-
grange’s views, this premise and this theorem should be, respectively, understood as
follows:

– [P.2] For any function f (x + ξ)—where x and ξ remain indeterminate—there is a
generalized power series S(x, ξ)—where x and ξ remain indeterminate as well—
which includes f (x) as one of its terms, and is defined for any x in the domain of
definition of f (x) except for some isolated values, and that, for any value of x for
which it is defined, converges to f (x + ξ) whenever the value of ξ belongs to an
appropriate proper interval centered on zero.

Theorem 3 This generalized power series is necessarily a power series and it is thus
unique. In other words, for any function f (x + ξ)—where x and ξ remain indetermi-
nate—, there is one and only one power series

∑∞
k=0 pk(x)ξ k—where x and ξ remain

indeterminate as well, and the coefficients pk(x) are functions of x—that is defined
for any x in the domain of definition of f (x) except for some isolated values, and that,
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for any value of x for which it is defined, converges to such a function whenever the
value of ξ belongs to an appropriate proper interval centered on zero.50

If the power-series expansion theorem is so understood, there are no easy counter-
examples to it in the universe of Lagrange’s functions,51 at least if his notion of function
is understood strictu sensu.

If this is the case, Cauchy’s counter-examples—consisting of functions of the form
e−1/g(x), where g(x) is defined for any (real) value of x, is indefinitely derivable at
the origin, and is such that g(0) = 0 and g(x) > 0 for x �= 0 (Cauchy 1822, p. 277–
278; 1823, p. 152)52—do not apply. It is true that, if one is allowed to extend these
functions and their derivatives continuously to x = 0, the power-series expansions of
e−1/g(x+ξ) are defined for x = 0, but reduce in this case to 0 + 0 + 0 + . . . , which is
obviously not equal to e−1/g(0+ξ) = e−1/g(ξ). Extending a function continuously to a
point in which it is not defined is however the same as replacing this function with a
piece-wise defined function, which is not allowed, in agreement Lagrange’s notion of
function understood strictu sensu.

In the case of functions of the form e−1/g(x), extending them continuously to x = 0
is the same as replacing them with piece-wise defined functions of the form f (x) ={

e−1/g(x) x �= 0
0 x = 0

. Hence, in agreement with Lagrange’s notion of function understood

strictu sensu, the value x = 0 is such that the power-series series expansion of any
function e−1/g(x) is not defined for it.53

50 Note that this theorem is equivalent neither to the statement that for any function f (x) and any value
x0 in its domain of definition there is a series

∑∞
k=0 pk (a)(x − a)k which converges to f (x) whenever

x belongs to a proper interval centered on x = a that includes x0, nor to the statement that any value x0
of the domain of definition of any function f (x) can be chosen as the centre of an expansion of the form∑∞

k=0 pk (x0)(x − x0)
k for this function.

51 According to Grabiner (1990, p. 15), “it is not true that any function given by an analytic expression can
be expressed as the sum of a convergent Taylor series about any arbitrary point. (It was not sufficient for
Lagrange to except a finite number of isolated points at which the function or its derivative cease to exist.)”
Unfortunately, Grabiner does not illustrate her claim with any particular example, and it is not clear how
exactly this claim should be understood.

52 In (1822), Cauchy considered the functions e−1/x2
, e−1/ sin2 x , e

−1/x2
(

a+bx+x2+...
)

, and e−1/x , sup-

posing that x takes only positive values. In (1823), he considered only the function e−1/x2
.

53 Dugac (2003, p. 77) has argued that Lagrange “did not believe in the existence” of counter-examples
like Cauchy’s. For Dugac, evidence for this claim is provided by the following quotation:

One should not fear that the functions f (x), f ′(x), f ′′(x),&c. […], up to the infinity, could vanish
all together under the supposition that x = a, as some geometers seem to suppose.

Il n’est pas à craindre que les fonctions f (x), f ′(x), f ′′(x),&c. […] à l’infini puissent devenir nulles en mê me
temps par la supposition x = a, comme quelques géomètres paraissent le supposer […].

(Lagrange 1797, art. 39; 1813, art. I.28; see also 1801, p. 62; 1806, p. 83.)

From Lagrange’s point of view, this claim seems however not to be relevant for the case of Cauchy’s counter-
examples. For him, derivatives are defined through power-series expansions, so they could all be equal to 0
for x = a only if the power-series expansion of f (x + ξ) were defined for x = a and, for this value of x,
would converge to f (a + ξ) whenever ξ belongs to an appropriate proper interval. In the lines that follow
the previous quotation it is argued, indeed, that if it were the case that f (x) = f ′(x) = f ′′(x) = · · · = 0
for x = a, then it would also be the case that f (a + ξ) = 0 for any ξ, which, he says, is impossible.
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There is no doubt, however, that this point belongs to the domain of definition
of f (x + ξ) = e−1/g(x+ξ), for any non-null value of ξ . One could then argue that
Lagrange should have taken this value to be a particular value of x for which the
power-series expansion of this last function is not defined. This is all the more likely
for, when Lagrange dealt with the particular values of x for which the power-series
expansion of a function f (x + ξ) is not defined, he took into account the possibility
that a function f (x0 + ξ) = fx0(ξ) have an expansion including some power of log ξ,
and, in order to manage this case, he implicitly admitted that a function could be
extended continuously to a value of its variable for which it is not defined as such.54

We shall return to this matter in Sect. 3.4. Here, it is only important to observe that, if
this were admitted, Cauchy’s counter-examples would work. This is, however, more a
case against the appropriateness of Lagrange’s notion of function, than a genuine case
against Theorem 3.55

Similar considerations apply to the function resulting from the series
∑∞

k=0(−1)k

k!ξ k+1. Though this series only converges for ξ = 0, it can be understood as the power-

series expansion of the function e
1
ξ
∫ ξ

0
e− 1

t

t dt, since the former can be obtained from
the latter through reiterated integrations by parts (Ovaert 1976, p. 182).56 By replac-
ing x with x + ξ and expanding the integer powers of this last binomial, one obtains

the power series
∑∞

k=0

(∑∞
h=0(−1)hh!

(
h + 1

k

)
xh+1−k

)
ξ k . This series can thus

be taken to be the power-series expansion of the function e
1

x+ξ
∫ x+ξ

0
e− 1

t

t dt, despite

Footnote 53 continued
Lagrange was thus supposing that f (x + ξ) has a power-series expansion that, for x = a, converges to

f (a + ξ), which is not the case for f (x) =
{

e−1/g(x) x �= 0
0 x = 0

with a = 0.

54 One could also account for the argument Lagrange advanced in this case by admitting that the value
of a function could be determined through a calculation involving the infinite. If this were licensed, one

could argue that
[
e−1/g(0)

]
= e−1/0 = e−∞ = 0, and

[
e−1/g(0)

]
[g(0)]−ν = e−1/00ν = e−∞∞ = 0

(ν = 1, 2, . . .), which would allow to conclude that both a function of the form e−1/g(x) and all its
derivatives take the value 0 for x = 0, and are thus defined for this value.

55 Note that the behavior of a function of the form f (x) =
{

e−1/g(x) x �= 0
0 x = 0

for x = 0 does not prevent

us from associating with it a power series which, for any x different from 0, converges to f (x +ξ)whenever
the value of ξ belongs to an appropriate proper interval centered on zero. To take a simple example suppose
that g(x) = x2. According to the binomial theorem for negative integer exponents and the expansion of
the exponential function, we have:

e−(x+ξ)−2 = e−x−2 + 2e−x−2
x−3ξ + e−x−2 [

2x−6 − 3x−4
]
ξ2 + &c.

which for non-vanishing x poses no problem.
56 Ovaert claims that the series

∑∞
k=0(−)kk!ξk+1 is a counter-example to Lagrange’s remainder the-

orem. According to him, the proof that this series is the power-series expansion of e
1
ξ
∫ ξ

0
e− 1

t
t dt was

given by Lacroix, who would not appear to have remarked, however, that his result is a counter-example
to Lagrange’s theorem. This was later proved by Laguerre. Lacroix (1800, p. 372; 1810–1819, vol. III, p.

347) showed, indeed, with quite a complex argument, that e
1
ξ
∫ e− 1

t
t dt can be taken as the “expression of

the limit of the series”
∑∞

k=0(−)kk!ξk+1. Laguerre (1878–1879) showed, instead, that the formal equality
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the fact that both this series and the function e
1
x
∫ x

0
e− 1

t

t dt are defined for any value of

x different from zero and the former never converges to e
1

x+ξ
∫ x+ξ

0
e− 1

t

t dt .

Hence, if one conceded that e
1
x
∫ x

0
e− 1

t

t dt and e
1

x+ξ
∫ x+ξ

0
e− 1

t

t dt are functions in
Lagrange’s sense and that

∑∞
k=0(−1)kk!ξ k+1 is the power-series expansion of the

former, this could be considered as a counter-example to Theorem 3. Still, it is doubt-
ful that Lagrange would have accepted these as functions. Certainly, they are not
functions according to the compositional conception.

This last example not only shows, like Cauchy’s, that Lagrange’s notion of function
is too restricted; it also shows that his notion of a power-series expansion of a function
is too restricted as well.

3.1.3 Lagrange’s proof of the power-series expansion theorem

To claim that in the universe of Lagrange’s functions there are no easy counter-exam-
ples to Theorem 3 and that the power-series expansion theorem should be understood
as being equivalent to this last theorem is not the same as claiming that Lagrange’s
proof of this last theorem is sound. Indeed quite the opposite is true: this proof is not
only based on premise [P]—which, however, it might be understood, is unproved—
and on three other premises like [C. i–iii], that are at best unclarified. It would remain
flawed even if these premises were accepted.57

Let us consider the two reductio that compose it, in turn.
The first reductio aims at excluding fractional exponents.58 Lagrange began by

supposing that the generalized power-series expansion of f (x + ξ) has the form (4).
According to condition [C.i], the function f (x) would then be irrational, and would
thus have “a certain number of different values.”59 But—as “the replacement of x with

Footnote 56 continued

e
1
ξ
∫ ξ

0
e− 1

t
t dt =∑∞

k=0(−)kk!ξk+1 can be easily obtained by calculating by parts the integral
∫∞

z
e−y

y dy,
so as to obtain, for any non-negative integer h,

∫ ∞
z

e−y

y
dy = e−z

⎡
⎣h−1∑

k=0

(−)k k!
zk+1

⎤
⎦+ (−)hh!

∫ ∞
z

e−y

yh+1
dy,

then supposing that h goes to infinity, and effecting the substitutions y → 1
t and z → 1

ξ
. On Lacroix’s and

Laguerre’s results, see Borel (1929), pp. 8 and 55–56.
57 This seems to have been Galois’s opinion too. In a note published in Galois (EMM, pp. 413–421),
but not dated, he remarked that in order to prove that the generalized power-series expansion of f (x + ξ)

cannot contain fractional or negative powers of ξ, Lagrange “produced an argument that collapses on its
own” (ibid., p. 413). It is not clear, however, what flaws Galois had in mind.
58 Grabiner (1990, pp. 98–99 has pointed out a number of flaws relative to this first reductio, some of
which do not seem valid to us. We do not consider them here.
59 Woodhouse (1803, p. XIX) alleged that Lagrange’s argument are circular, since, to prove that “any
radical has as many values as there are unities in its exponent,” it would be necessary to rely on the Eulerian

equality cos θ+√−1 sin θ = eθ
√−1 which derives in turn from the expansions of the exponential, the sine

and the cosine. This last equality is, however, only useful to exhibit explicitly the radicals of the equation
xn − ζ = 0 (where n is a natural exponent and ζ is a complex number). The number of them depends, more
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x +ξ cannot increase or diminish the number of […] radicals [in f (x +ξ)] and can no
more change their nature, as long as x and ξ are indeterminate quantities”— f (x + ξ)
would be irrational too and would have this same number of values.60 The different
values of f (x) would thus combine with the |n| values of the term pμ(x)ξ

m
n , and the

expansion would have a greater number of values than f (x + ξ), which, according to
condition [C.ii], is impossible.

This argument relies on the admission that any radical has several values. To us,
this suggests that Lagrange was working with functions with values in C. Another
interpretation is possible, however. For Lagrange’s argument to work, it is enough to
hold that an equation like zn − y = 0 (where n is a non-negative integer and y a real
quantity) can be satisfied by replacing z with n “imaginary values,”61 merely under-
stood as expressions of the form ‘a + b

√−1’ (where a and b are real quantities, in
the sense explained in Sect. 2) to be handled according to the well-known operational
rules.

This implicit appeal to imaginary values is unique in Lagrange’s treatises, and
should thus be understood as a special, local device used in a theory that in fact con-
cerns real quantities.62 The crucial assumption, here, is that—when imaginary values
for the radicals occurring in f (x + ξ) and in its generalized power-expansion are con-
sidered—this expansion has to have the same number of values as f (x +ξ). This is an
assumption which Lagrange seems to have drawn, in turn, from the other assumption
that the relations that subsist between a function f (x + ξ) and its generalized power
expansion, when the variables of the relevant functions vary on real quantities, also
subsist when these variable are supposed to take imaginary values: an assumption that
remains unjustified, in turn.

The second reductio aims at excluding negative exponents. It begins by supposing
that, if a function f (x + ξ) had a generalized power-series expansion that contains
a term of the form pμ(x)ξ−m—where μ is a non-negative integer and m a positive
exponent—then, for ξ = 0, this term, and thus also f (x + ξ), would become infinite.
It would follow that f (x)would be infinite for any x,whereas this is possible only for

Footnote 59 continued
generally, on the fundamental theorem of algebra, which is the result Lagrange referred to when speaking
generally of the theory of equations.
60 The aforementioned function

√
x provides an easy example of what happens if x takes a value—namely,

the value x = 0—for which f (x + ξ) and f (x) do not have the same number of radicals. Another straight-

forward example is provided by the function
√

x−a
x for x = a. In this case, the generalized power-series

expansion of f (a + ξ) =
√
ξ

a+ξ is
∑∞

k=0 (−)k a−1−kξ
2k+1

2 .
61 The term ‘imaginary value’ was common in Lagrange’s time: for an example, see footnote 62.
62 This was a common practice in 18th-century mathematics that Gauss described quite well in 1811 by
observing that “imaginary values” were often treated as an “excrescence [Überbein]” of “real magnitudes”:
see Gauss (WERKE), vol. 10.1, p. 366 (letter of Gauss to Bessel, December, 18, 1811). The former were
merely regarded as forming a sort of analogical extension of the latter to be considered in certain particular
circumstances, without investigating the general consequences of their use: see Ferraro (2007), p. 484.
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“particular values of x .”63 We suggest that Lagrange implicitly assumed, here, that
f (x + ξ) becomes infinite if its generalized power-series expansion becomes infinite.
So his argument implicitly relies on condition [C.iii], and on the assumption that the
generalized power-series expansion of f (x + ξ) converges to this function for ξ = 0,
according to our interpretation of premise [P].

Two final remarks about Lagrange’s proof are in order. The former is that the
appeal to condition [C.i] in the first reductio is strictly unnecessary. Suppose a func-
tion f (x + ξ) has a generalized power-series expansion that contains both f (x) and
a term having more than one value, and that f (x) has as many values as f (x + ξ)

(which happens, of course, if they both have only one value). It is then obvious that the
number of values in this expansion is greater than the number of values of f (x + ξ).
The latter remark is that, in the second reductio, Lagrange implicitly excludes the pos-
sibility that a function f (x + ξ) has a generalized power-series expansion containing
several terms of the form pμ(x)ξ−m (distinct from each other for the value of m, of
course), whose sum is not infinite for ξ = 0. This seems to be correct, however, since
this possibility requires that the values of the coefficients of these terms depend on
that of ξ, which is unacceptable.

3.2 The recursive form of power-series expansions

Lagrange’s fundamental proof is entirely based on the power-series expansion theo-
rem. This proof is performed in four steps. The first one consists in the proof of this
last theorem. In the second step, Lagrange proved that the power-series expansion
of any function f (x + ξ) has a recursive form. In the third, he relied on this form
for fixing the algorithm of derivative functions. This is what allowed him to prove
that conditions [FC.i] holds. Finally, in the fourth step, Lagrange wondered what
shows that, for a particular value x0 of x, the function f (x0 + ξ) = fx0(ξ) has no
power-series expansion. This is what allowede him to prove that condition [FC.ii] also
holds.

In the present section we deal with the second step (Lagrange 1797, art. 16; 1801,
pp. 10–13; 1806, pp. 10–13; 1813, art. I.8). Sections 3.3 and 3.4 will be devoted to the
third and the fourth ones, respectively.

This is how Lagrange stated, in the Théorie, the result proved in the second step:

[…] if […] one denotes by f ′(x) the first derivative function of f (x), by f ′′(x)
the first derivative function of f ′(x), by f ′′′(x) the first derivative function of
f ′′(x), and so on, one will get […]

f (x + ξ) = f (x)+ f ′(x)ξ + f ′′(x)
2

ξ2 + f ′′′(x)
2.3

ξ3 + f IV(x)

2.3.4
ξ4 + &c. (5)

63 The aforementioned function 1
x provides an easy example of what happens if x takes a value—namely

x = 0—for which f (x) becomes infinite. Another easy example is provided by the function
√

x
x−a for x = a.

In this case, the generalized power-series expansion of f (a + ξ) =
√

a+ξ
ξ

is
∑∞

k=0

( 1
2
k

)
a

1
2 −k

ξk−1.
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[…] si […] on dénote par f ′(x) la première fonction dérivée de f (x), par f ′′(x) la premi ère
fonction dérivée de f ′(x), par f ′′′(x) la première fonction dérivée de f ′′(x), et ainsi de suite,
on aura […]

f (x + ξ) = f (x)+ f ′(x)ξ + f ′′(x)
2

ξ2 + f ′′′(x)
2.3

ξ3 + f IV(x)

2.3.4
ξ4 + &c.

(Lagrange 1797, p. 14; 1813, p.18; an analogous claim is also made in the Leçons:
1801, pp. 12–13: 1806, pp. 12–13.)

Supposing that g(x) is any function, the term ‘première fonction dérivée de g(x)’
is clearly used here to refer to the coefficient of ξ in the power-series expansion of
g(x + ξ), whereas the symbol of equality is used to denote the relation between the
function f (x +ξ) and its power-series expansion. Lagrange’s result can then be stated,
more clearly, as follows:

Theorem 4 The power-series expansion of any function f (x + ξ) has the form:

∞∑
k=0

f (k)(x)

k! ξ k, (6)

where f (0)(x) = f (x) and, for any positive integer ν, f (ν)(x) is the coefficient of ξ
in the power-series expansion of f (ν−1)(x + ξ).

This same result had been already advanced by Lagrange himself in his 1772
memoir on a “new species of calculus” (Lagrange 1772, pp. 186–189; on La-
grange’s 1772 memoir, see Grabiner 1990, pp. 31–39; Panza 1992, pp. 569–593).
The proof offered in the Théorie and the Leçons is the same as the one offered in this
memoir.64

This proof is not only based on the assumption that any function of a binomial has a
unique expansion in the form of a power series of the second term of such a binomial,
as stated by Theorem 3, it also requires that the replacement of such a function with
its power-series expansion is licensed independently of any consideration concerning
the interval of convergence of the latter. This was a current practice in 18th-century
analysis, and Lagrange followed it unwaveringly.

The basic idea is close in spirit to the solution of a functional equation. It consists in
equating the power-series expansions of f ((x + ξ)+ o) and f (x + (ξ + o)) , sup-
posing that ξ and o are two independent indeterminate increments.65

These expansions are respectively:

∞∑
k=0

pk(x + ξ)ok and
∞∑

k=0

[pk(x)] (ξ + o)k . (7)

64 An alternative proof of Theorem 4 is offered by Poisson: see Poisson (1804–1805); Panza (1992),
pp. 736–741.
65 For reasons of clarity, we have permuted ξ and o in Lagrange’s proof.
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If in the former, the functions pk(x +ξ) are replaced by their power-series expansions,
and in the latter the powers of the binomial ξ + o are developed, one obtains:

∞∑
k=0

[ ∞∑
h=0

qk,h(x)ξ
h

]
ok and

∞∑
k=0

[ ∞∑
h=k

(
h
k

)
ph(x)ξ

h−k

]
ok . (8)

Hence, by equating these series and applying the method of indeterminate coefficients
twice, so as to equate first the coefficients of ok in these same series, and then the
coefficients of ξ in those of ok, one easily gets the equalities:

pk+1(x) = qk,1(x)

k + 1
(k = 0, 1, 2, . . .). (9)

Since qk,1(x) is the coefficient of ξ in the power-series expansion of pk(x + ξ) and
p0(x) is nothing but f (x), it is enough to denote with ‘ f (ν)(x)’ the coefficient of ξ
in the power-series expansion of f (ν−1)(x + ξ) (ν = 1, 2, . . .)—by supposing that
f (0)(x) be f (x)—and to admit that the coefficient of ξ in the power-series expansion

of f (λ)(x+ξ)
λ! (λ = 2, 3, . . .) is obtained by multiplying by 1

λ! the coefficient of ξ in the
power-series expansion of f (λ)(x + ξ), in order to rewrite the equality (9) as follows:

pν(x) = qν−1,1(x)

ν
= f (ν)(x)

ν! (ν = 1, 2, . . .),

as was to be proved.
Once this theorem proved, the meaning of the term ‘derivative function [fonction

dérivée]’ can be fixed in a more precise way, namely as follows:

We shall call the function f (x) ‘primitive function’ with respect to the functions
f ′(x), f ′′(x), &c. that derive from it, and we shall call these latter functions
‘derivative functions’ with respect to the former one. Furthermore, we shall
term the first derivative function f ′(x) ‘prime function’, the second derivative
function f ′′(x) ‘second function’, the third derivative function f ′′′(x) ‘third
function’, and so on.

Nous appellerons la fonction f (x), fonction primitive, par rapport aux fonctions f ′(x), f ′′(x),
&c. qui en dérvent, et nous appellerons celles-ci, fonctions dérivées, par rapport à celle-là. Nous
nommerons de plus la première fonction dérivée f ′(x), fonction prime ; la seconde fonction
dérivée f ′′(x), fonction seconde; la troisième fonction dérivée f ′′′(x), fonction tierce, et ainsi
de suite.

(Lagrange 1797, art. 17; 1801, p. 13; 1806, p. 13; 1813, art. I.9.)66

In his proof, Lagrange did not use indices, and wrote many relevant equalities only
up to the first term of the expansions involved in them, by denoting respectively with
‘p’, ‘q’, ‘r ’, ‘s’, &c., the coefficients of ξ, ξ2, ξ3, ξ4, &c. in the power-series expan-
sion of f (x + ξ), and by ‘p ′’, ‘q ′ ’, ‘r ′’, &c. the coefficients of o in the power-series

66 In the Leçons, one finds ‘première fonction dérivée’, ou ‘fonction dérivée du premier ordre’, ou simple-
ment ‘fonction prime’ in place of ‘fonction prime’, and similarly for the second and third derivatives.
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expansions of p(x + o), q(x + o), r(x + o), &c.67 This fact, together with his use
of symbols ‘ f ′(x)’,‘ f ′′(x)’ &c., suggests the idea that the derivative functions result
from the primitive one by iteratively applying to it an appropriate operator. This idea
is however neither explicit in Lagrange’s argument, not necessary for his argument to
work. The simple identification of f ′...′′(x) (or f (ν)(x)) with the coefficient of ξ in the
power-series expansion of f ′...′(x + ξ) (or f (ν−1)(x + ξ)), and that of p ′, q ′, r ′,&c.
with the coefficient of ξ in the power-series expansion of p(x +o), q(x +o), r(x +o),
&c. are enough.

3.3 The algorithm of the derivatives functions

We are now ready to consider the third step of Lagrange’s fundamental proof.
At the beginning of the Théorie, Lagrange referred to his 1772 memoirs and claimed

to have argued there that “the theory of expansion of functions” contains the “true prin-
ciples of differential calculus freed from any consideration of infinitely small or limits”
and then to have proved, through this theory, Taylor’s theorem, that, he said, had been
proved before only through the differential calculus (Lagrange 1797, art. 7; 1813,
Introduction, p. 5).

This is only partially true. In this memoir, Lagrange argued that “the differential
calculus, considered in all its generality, consists in finding, by simple and easy proce-
dures, the functions […] derived from the function f ” which provides the coefficient
of the power-series expansion of f (x +ξ) (Lagrange 1772, p. 187).68 But he justified it
by relying on the differential formalism and on the practice of neglecting differentials
of higher orders, so as to get Taylor’s theorem in the form

f (x + ξ) =
∞∑

k=0

dk f

dxk

ξ k

k! . (10)

Far from being independent of the differential calculus, this result is basically con-
cerned with it, and is thus essentially different from Theorem 4 (Grabiner 1990, p. 37).
Hence, Lagrange certainly proved, in his 1772 memoir, the equivalence between the
derivative functions entering the power-series expansion of a function f (x + ξ) and

the differential quotients dk f
dxk (k = 1, 2, . . .). Moreover, his proof undoubtedly pro-

vides a grounds for asserting that “the differential calculus […] consists in finding
[…] the functions […] derived from the function f .” But, this proof depends on

67 Like the symbol ‘ph ’, also the symbol ‘qk,h ’ is introduced by us to simplify Lagrange’s notation. Here
is how this notation is introduced in the Théorie:

[. . .] let f x + f ′xo+&c., p+ p ′o+&c., q +q ′o+&c., r +r ′o+&c. be that which the functions
f x, p, q, r,&c. become when x is replaced with x + o [. . .].

[. . .] soit f x + f ′xo + &c., p + p ′o + &c., q + q ′o + &c., r + r ′o + &c., ce que deviennent les fonctions
f x, p, q, r,&c. en y mettant x + o pour x [. . .].

(Lagrange 1797, art. 16; 1813, art. I.8.)

68 Lagrange used ‘u’ instead of ‘ f ’.
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essential properties of differentials. In his 1772 memoir, Lagrange was thus still quite
far from arguing that “the theory of series expansion of functions” contains the “true
principles of differential calculus freed from any consideration of infinitely small or
limits.”

This is what he did, instead, in the Théorie and in the Leçons through a completely
new argument: he first found—relying neither on infinitesimalist considerations nor
on the formalism of calculus—the first derivatives of his elementary functions; then
he showed how to compose these derivatives so as to get those of the composed and
implicit functions; in this way, he implicitly showed that the algorithm to be applied
for getting the function f (ν)(x) from the function f (ν−1)(x) (ν = 1, 2, . . .) is the same

as that employed for passing from dν−1 y
dxν−1 to dν y

dxν .
The first elementary function that Lagrange considered is xm, where m is a ratio-

nal exponent. A very simple way of finding its first derivative consists in applying
the binomial theorem for rational exponents. As this theorem can be easily proved
relying neither on infinitesimalist considerations nor on the calculus, such a proce-
dure presents no difficulty. But, it is unnecessarily cumbersome, since we may attain
the same ends by relying on this same theorem restricted to integer positive expo-
nents.

If m = μ
ν

or m = −μ
ν

(where μ and ν are positive integer), it suffices to suppose
that

(x + ξ)
μ
ν =x

μ
ν + A1ξ + &c. and (x + ξ)−

μ
ν = 1

(x + ξ)
μ
ν

=x−μ
ν + B1ξ + &c.,

(11)

and apply this theorem so restricted, and then the method of indeterminate coefficients,
to conclude that:

μxμ−1 = νx
μ(ν−1)
ν A1 or A1 = μ

ν
x
μ−ν
ν

νx
μ
ν B1 + μx−1 = 0 or B1 = −μ

ν
x−μ+ν

ν

. (12)

It is thus clear why, in the Théorie (Lagrange 1797, art. 18; 1813, art. I.10), Lagrange
merely argued that, insofar as m is rational, “it is easy to prove, either with the simple
rules of arithmetic, or with the first operations of algebra,” that the first derivative of
xm is mxm−1.

This result is not strong enough, however, for providing a basis for obtaining the
first derivatives of the transcendental elementary functions. For that, the binomial the-
orem extended to exponents given by any sort of algebraic quantity—or, at least, the
part of this theorem concerning the first two terms of the expansion—is necessary.
This is certainly the reason why, in the Leçons (Lagrange 1801, pp. 13–17; 1806, p.
16–21), Lagrange found the coefficient of ξ in the power-series expansion of the func-
tion (x + ξ)m through an argument that also holds if m is not rational. This consists in
solving the functional equation occurring in the Æpinus–Euler proof of the binomial
theorem (see Sect. 3.1.1).
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Supposing that

(1 + z)m = 1 + F(m)z + &c., (13)

where F(m) is an indeterminate function of m, and relying on the equality (1+z)m+n =
(1 + z)m(1 + z)n and the method of indeterminate coefficients, Lagrange got

F(m + n) = F(m)+ F(n), (14)

which is just the Æpinus–Euler equation. Next, he remarked that (1 + z)m+n =
(1+z)(m+ξ)+(n−ξ) and applied again the method of indeterminate coefficients, together
with Theorem 4, obtaining:

F(m + n) = F(m + ξ)+ F(n − ξ)

= F(m)+ F(n)+ [F ′(m)− F ′(n)
]
ξ + &c.

(15)

He could then compare this equality with the Æpinus–Euler equation and apply the
method of indeterminate coefficients once more, to obtain F ′(m) = F ′(n), which
shows that F ′(m) does not depend on m, that is, it is constant.

To solve the Æpinus–Euler equation it is thus enough to find “the value of the
primitive function F(m) based on the derivative function F ′(m) = a, ” where a is
an indeterminate constant (Lagrange 1801, p. 131; 1806, p. 19). To do it, Lagrange
relied on the condition F (ν)(m) = 0 (ν = 2, 3, . . . ), to get F(m + ξ) = F(m)+ aξ,
and thus, for ξ = −m: F(m) = am + F(0). 69 Having obtained this last equality,
Lagrange compared it with the equality (13), set m = 0 and m = 1, and obtained,
once again with the method of indeterminate coefficients, F(0) = 0 and a = 1, and
thus: F(m) = m. It is thus enough to substitute this value in the equality (13) and
suppose that z = ξ

x , to obtain:

(x+ξ)m =xm
(

1+ ξ
x

)m

= xm+mxm−1ξ+&c. and thus,
(
xm) ′ = mxm−1. (16)

The possibility of relying on this equality, where m can be supposed to be any
algebraic quantity, makes the determination of the derivatives of ax and loga x very
easy.

The determination of the derivatives of trigonometric functions is a bit more elab-
orate because of the intrinsic geometric nature of these functions (see Sect. 2.6).70 To
obtain these derivatives, Lagrange supposed, in the first edition of the Théorie and in
the Leçons, that these functions satisfy certain suitable conditions that he did not jus-
tify, while in the second edition of the Théorie, he defined them in terms of imaginary
exponentials. There is no need to detail Lagrange’s arguments on these matters (the
references are given at Sect. 3.1.1).

69 An easy way to prove that the condition F(ν)(m) = 0 (ν = 2, 3, . . . ) holds is to remark that if

f (x) = a, then also f (x + ξ) = a, for any ξ, and thus, the equality f (x + ξ) =∑∞
k=0

f (k)(x)
k! ξk reduces

to 0 =∑∞
k=1

f (k)(x)
k! ξk , from which, according to the method of indeterminate coefficients, it follows that

f (k)(x) = 0 (k = 1, 2, . . .).
70 According to Ovaert (1976, p. 186), Lagrange was forced here to abandon the purely formal level.
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On the basis of these results, it is then also easy to show how the derivatives
of f (x) ± g(x), f (x) · g(x) and f (x)

g(x) are composed from those of f (x) and g(x).
Lagrange’s arguments for it (Lagrange 1797, art. 30; 1801, pp. 36–38; 1806, pp. 47–
49; 1813, art. I.15) are similar in nature to those he relied on for showing how to find
the first derivatives of functions whose arguments are other functions and of implicit
functions.

The former of these last two arguments runs as follows (Lagrange 1797, art. 31;
1801 p. 38; 1806 p. 49; 1813, art. I.16). Let g(x) be a function of x and f (g(x)) be a
function of g(x); if o is the increment of g(x) that corresponds to the increment ξ of
x, then, according to Theorem 4:

o =
∞∑

h=1

1

h!
[
g(h)(x)

]
ξh and f (g(x)+o) = f (g(x))+ f

′g(x) (g(x)) o+&c.

= f (g(x))+g ′(x) f
′g(x) (g(x)) ξ+&c. (17)

where f
′g(x) (g(x)) is the coefficient of o in the power-series expansions of

f (g(x)+ o) , i.e., the first derivative of f (g(x)) with respect to g(x). Hence, the
coefficient of ξ in the power-series expansions of f (g(x + ξ))—i.e., the first deriva-
tive of f (g(x))with respect to x—is g ′(x) f

′g(x) (g(x)). If one denotes this derivative
with ‘ f

′x (g(x))’, one obtains, then, the following equality71

f
′x (g(x)) = g ′(x) f

′g(x) (g(x)) , (18)

in conformity with the chain rule for the differential calculus.
Lagrange’s argument for showing how to find the derivatives of implicit functions

is not much trickier (Lagrange 1797, art. 33; 1801 pp. 39–42; 1806 pp. 50–54; 1813,
art. I.17).

Let F(x, y) = 0 be an equation involving elementary functions of two variables
algebraically composed, and y = f (x) a root of it. The function F (x, f (x)) = ϕ(x)
has then to be null, to the effect that ϕ ′(x) = 0 (see footnote 69). To find the first
derivative of f (x) , it suffices to write this equality in a convenient form.

For this purpose, let F (p(x), q(x)) be a function of two variables that are, in
turn, functions of a unique variable x . The function F (p(x + ξ), q(x + ξ)) can then
be expanded in a power series of ξ . Lagrange took it for granted that this power
series can be obtained by appropriately composing the power-series expansions of
F (p (x + ξ) , q(x)) and F (p (x) , q(x + ξ)) , where q(x) and p(x) are respectively
handled as if they were constant. In this way, he got

F (p(x + ξ), q(x + ξ)) = F (p(x), q(x))+
[

p ′(x)F ′ p(x) (p(x), q(x))+
q ′(x)F ′q(x) (p(x), q(x))

]
ξ + &c.,

(19)

71 The symbols ‘ f
′g(x) (g(x))’ and ‘ f

′x (g(x))’ are not Lagrange’s. His notation is much less explicit.
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where F
′ p(x) (p(x), q(x)) and F

′q(x) (p(x), q(x)) are, respectively, the first deriva-
tives of F (p(x), q(x)) with respect to p(x) (q(x) being handled as if it were con-
stant) and with respect to q(x) (p(x) being handled as if it were constant), i.e., the
coefficients of ξ and o in the power-series expansions of F (p(x)+ ξ, q(x)) and of
F (p(x), q(x)+ o). It follows that, if p(x) = x and q(x) = y = f (x), then

F
′x (x, f (x)) = ϕ ′(x) = 0 = F

′x (x, y)+ f ′(x)F ′ y (x, y) , (20)

and thus

f ′(x) = − F
′x (x, y)

F ′ y (x, y)
, (21)

where F
′x (x, y) and F

′ y (x, y) are, respectively, of course, the first derivatives of
F (x, y) with respect to x and y, i.e., the coefficients of ξ and o in the power-series
expansions of F (x + ξ, y) and F (x, y + o) , respectively.

All these arguments show that, once Theorem 4 and the unicity of the power-series
expansion are accepted, the establishment of the algorithm of derivative functions
obeys to the compositional conception of function, and depends, essentially, on a
number of clever applications of the method of indeterminate coefficients.

3.4 Special cases

To complete Lagrange’s fundamental proof, it is finally necessary to consider the spe-
cial cases for which the assumption that the generalized power-series expansion of
f (x + ξ) contains only integer positive powers of ξ fails, so as to prove that condition
[FC.ii] holds.

According to Lagrange’s official definition of derivatives, the ν-th derivative of
a function f (x) is the coefficient of ξν

ν! in the power-series expansion of f (x + ξ)

or, equivalently, the coefficient of ξ in the power-series expansion of f (ν−1)(x + ξ).
Hence, strictly speaking, if some terms of the power-series expansion of a function
f (x +ξ) are not defined for a particular value of x, so that the expansion is not defined
either, the function f (x) has no derivatives at all for this value of x . On the basis of this
definition, there is thus no room for arguing that f (ν)(x) is defined for x = x0 if and
only if the function that results from f (x) by ν iterative applications of the algorithm
that leads from it to f ′ (x) is defined for x = x0. According to this definition, either
all derivatives of a given primitive f (x) are defined for a certain value of x, or none.
But then how can one account for a case where only a finite number of derivatives of
a function f (x) are defined for a certain value of x?

Lagrange’s answer comes from his treatment of the special cases where the gener-
alized power-series expansion of f (x + ξ) is not a power series of ξ (Lagrange 1797,
arts. 34–44; 1801 leçon VIII, pp. 52–65; 1806, leçon VIII, pp. 69–87; 1813, ch. V,
arts. I.24–I.32.). The main conclusion he reaches is stated in the Théorie as follows:
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From there, it follows that the expansion f (x)+ ξ f ′(x)+ ξ2

2 f ′′(x)+ &c. can
become wrong for a given value of x only insofar as, for this value of x, one
of the functions f (x), f ′(x), f ′′(x), &c. will become infinite as well as all
the subsequent ones. Then, if n is the index of the first function that becomes
infinite, the relevant expansion will have to contain a term of the form ξm,

where m is a number included between n − 1 and n. And if all the functions
f (x), f ′(x), f ′′(x),&c. became infinite for the same value of x, the expansion
of f (x + ξ) would contain, in this case, some negative powers of ξ .

On conclura de là que le que le développement f (x)+ξ f ′(x)+ ξ2

2 f ′′(x)+&c. ne peut deve-
nir fautif pour une valeur donnée de x, qu’autant qu’une des fonctions f (x), f ′(x), f ′′(x),
&c. deviendra infinie ainsi que toutes les suivantes pour cette valeur de x . Alors si n est
l’indice de la première fonction qui devient infinie, le developpement dont il s’agit devra
contenir un terme de la forme ξm ,m étant un nombre compris entre n − 1 et n. Et si toutes
les fonctions f (x), f ′(x), f ′′(x), &c. devenaient infinies pour la même valeur de x, le
développement de f (x + ξ) contiendrait dans ce cas des puissances négatives de ξ .

(Lagrange 1797, art. 42; 1813, art. I.30.)72

There are three claims in this passage. If the second were taken to apply when n = 0
(the case where the functions f (x), f ′(x), f ′′(x), &c. all become infinite), then it
would immediately imply the third, at least if the requirement that m lie between n −1
and n were understood as the requirement that n−1 < m < n, and ‘negatif’ were taken
to mean ‘less than zero’.73 Still, the mere consideration of a function like f (x) = 1

xα ,

with α ≥ 1, shows that such an understanding is misleading. This is a case where
n = 0, indeed, but the generalized power-series expansion of f (x0 + ξ) = fx0(ξ),

for x0 = 0, reduces to 1
ξα
, to the effect that m = −α ≤ n − 1 = −1.

It seems, then, that the second and third claims apply, in Lagrange’s intended under-
standing, to two distinct cases: the former to the case where f (x) does not become

72 In the Leçons, this passage is broken up into two. Before, Lagrange wrote :

[…] if n is the index of the first function that becomes infinite, the expansion of f (x + ξ) will have
to contain a term of the form ξα, where α is a number included between n − 1 and n. If n = 0, that
is, if the very function f (x) becomes infinite, this expansion will contain some negative powers of
ξ .

[…] si n est l’indice de la première fonction qui devient infinie, le developpement de f (x + ξ ) devra contenir un
terme de la forme ξα, α étant un nombre compris entre n − 1 and n. Si n = 0, c’est-à-dire, si la fonction f (x)
devient elle même infinie, ce developpement contiendra des puissances négatives de ξ .

(Lagrange 1801, p. 55; 1806, pp. 72–73).

A page later (after having considered the possibility that f (x + ξ) has an expansion including powers of
log ξ , he added:

One can then conclude in general that the expansion f (x)+ ξ f ′(x)+ ξ2

2 f ′′(x)+ &c. of the func-
tion f (x + ξ) can become wrong for a determinate value of x only insofar as one of the functions
f (x), f ′(x), f ′′(x),&c. will become infinite if this value is given to x ; and that this expansion will
only be wrong by starting from the term that becomes infinite.

On peut donc conclure en général que le développement f (x)+ξ f ′(x)+ ξ2
2 f ′′(x)+&c. de la fonction f (x +ξ)

ne peut devenir fautif pour une valeur déterminée de x, qu’autant qu’une des fonctions f (x), f ′(x), f ′′(x),&c.
deviendra infinie en donnant à x cette valeur; et que ce développement ne sera fautif qu’à commencer du terme
qui deviendra infini.

(Lagrange 1801, p. 56; 1806, p. 74.)

73 We shall return to the meaning Lagrange ascribes to the adjectives ‘negatif’ and ‘positif’ in Sect. 5.2.2.
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infinite for the relevant value of x but some of its derivatives do; the latter to the case
where both f (x) and all its derivatives become infinite for the relevant value of x .

This is also confirmed by the way Lagrange argued for his three claims. When
reduced to its essential part, his argument runs as follows (Lagrange 1797, art. 41;
1801, pp. 54–55; 1806, pp. 71–73; 1813, art. I.29).74

Let f (x) be a function such that the power-series expansion of f (x + ξ) is not
defined for x = x0. It follows that the generalized power-series expansion of f (x0 +ξ)
includes at least one term of the form Aξm , where A does not depend on ξ, and m is
either a positive fractional or a negative exponent:

f (x0 + ξ) = . . .+ Aξm + &c. (22)

The generalized power-series expansion of the first derivative of f (x0+ξ)with respect
to ξ will contain, then, a term of the form m Aξm−1, those of the second derivative, a
term of the form m (m − 1) Aξm−2, &c.:

f ′ξ (x0 + ξ) = . . .+ m Aξm−1 + &c.
f ′′ξ (x0 + ξ) = . . .+ m (m − 1) Aξm−2 + &c.
...

(23)

But, according to the equality (18), the derivatives of f (x + ξ) with respect to x are
the same functions as its derivatives with respect to ξ, since both the former and the
latter coincide with the derivatives of f (x +ξ)with respect to x +ξ . Hence, the values
of the derivatives of f (x) for x = x0 are obtained by setting ξ = 0 in the derivatives
of f (x0 + ξ) with respect to ξ :

f (ν)x (x + ξ) = f (ν)ξ (x + ξ) = f (ν)x+ξ (x + ξ)

and then[
f (ν) (x)

]
x=x0

=
[

f (ν)ξ (x0 + ξ)
]
ξ=0

, (24)

where ν is any positive integer.
From these premises, Lagrange inferred that “by setting ξ = 0, one will conclude

that, when x = x0, the functions f (x), f ′(x), f ′′(x), &c. will respectively contain
the terms A0m,m A0m−1,m (m − 1) A0m−2,&c.” (Lagrange 1797, p. 38; 1801, p. 55;
1806, p. 72; 1813, p. 50).75

Lagrange clearly drew this conclusion by setting ξ = 0 in the equalities (22) and
(23), to obtain, in agreement with the second of the equalities (24):

f (x0) = . . .+ A0m + &c.
f ′(x0) = . . .+ m A0m−1 + &c.
f ′′(x0) = . . .+ m (m − 1) A0m−2 + &c.
...

(25)

74 Lagrange presented this argument discursively, without relying on the equalities (22)–(25); we include
them to make the presuppositions of the argument clearer.
75 For consistency with our notation, besides replacing ‘i’ by ‘ξ ’ as usual, we also write ‘x0’ instead of ‘a’.

123



Lagrange’s theory of analytical functions 143

However, for this inference to be sound, one must assume that it is enough to set
ξ = 0 in the generalized power-series expansions of the functions f (x0 +ξ), f ′ξ (x0 +
ξ), f ′′ξ (x0 + ξ),&c. to obtain the functions f (x0), f ′(x0), f ′′(x0),&c. themselves.
Alternatively, one can reach a weaker conclusion by supposing that the generalized
power-series expansions of the functions f (x0 + ξ), f ′ξ (x0 + ξ), f ′′ξ (x0 + ξ), &c
converge to these functions around ξ = 0. In this latter case, one would merely infer
that the values of the functions f (x0), f ′(x0), f ′′(x0), &c. are provided by these
generalized power-series expansions for ξ = 0.

However, Lagrange might have reasoned, he continued by observing that: if m
is negative, all the terms A0m,m A0m−1,m (m − 1) A0m−2, &c. are infinite, so that
the functions f (x), f ′(x), f ′′(x), &c. all become infinite for x = x0; and if m is
positive fractional and n is the positive integer right after m, the same happens for the
terms m (m − 1) . . . (m − n + 1) A0m−n,m (m − 1) . . . (m − n) A0m−n−1, &c. and
the functions f (n)(x), f (n+1)(x), &c.

With all this in mind, Lagrange’s claims become clearer:

(i) A function f (x +ξ) fails to have a power-series expansion for x = x0—i.e., the
generalized power-series expansion of the corresponding function f (x0 +ξ) =
fx0(ξ) contains positive fractional or negative powers of ξ—only if one of the
functions f (x), f ′(x), f ′′(x), &c. becomes infinite for x = x0 together with
all its derivatives.

(ii) A function f (x + ξ) fails to have a power-series expansion for x = x0 and the
generalized power-series expansion of the corresponding function f (x0 +ξ) =
fx0(ξ) contains positive fractional powers and no negative powers of ξ only if
one of the functions f ′(x), f ′′(x), &c. becomes infinite for x = x0 together
with all its derivatives, and if this is the case and the first of these functions
that become infinite is f (n)(x), then the generalized power-series expansion of
f (x0 + ξ) = fx0(ξ) contains a power ξm of ξ such that n − 1 < m < n.

(iii) A function f (x + ξ) fails to have a power-series expansion for x = x0
and the generalized power-series expansion of the corresponding function
f (x0 + ξ) = fx0(ξ) contains negative powers of ξ if and only if the func-
tions f (x), f ′(x), f ′′(x), &c. all become infinite for x = x0.

Strictly speaking, Lagrange’s argument provides a proof for the only-if implication
of claim (iii), which is also part of his proof of the power-series expansion theorem.
But it does not prove the if implication, though this implication is explicitly stated
in the third claim included in the passage quoted. To justify it, Lagrange could have
relied on the following tacit argument: if the generalized power-series expansion of the
function f (x0 +ξ) = fx0(ξ) contains no negative powers of ξ, then it assumes a finite
value for ξ = 0, and this value is precisely f (x0), so that f (x) is finite for x = x0;
hence, if it is not the case that this expansion contains some negative powers of ξ, it
is no more the case that all the functions f (x), f ′(x), f ′′(x),&c. become infinite for
x = x0; by contraposition, it follows that if the functions f (x), f ′(x), f ′′(x),&c. all
become infinite for x = x0, the generalized power-series expansion of the function
f (x0 + ξ) = fx0(ξ) contains negative powers of ξ .

The crucial step in this argument amounts to the assumption that the generalized
power-series expansion of the function f (x0 + ξ) = fx0(ξ) converges to this function
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around ξ = 0, which merely reproduces, in the case where x = x0, an assumption
that also figures in Lagrange’s fundamental proof. It is thus quite natural to guess
that Lagrange had reasoned correspondingly. But making this assumption amounts to
admitting that if the generalized power-series expansion of the function f (x0 + ξ) =
fx0(ξ) contains no negative powers of ξ, it can be written in the form

f (x0)+
∞∑

k=1

pk(x)ξ
αk (26)

where αk > 0 for any k.
Suppose this is so, and also that the generalized power-series expansion of f (x0 +

ξ) = fx0(ξ) contains no negative powers but some positive fractional power of ξ ,
and that m is the smallest exponent of these last powers. This expansion could then be
written in the form

f (x0)+ p1(x)ξ + p2(x)ξ
2 + · · · + p	m
(x)ξ 	m
 + p	m
+1(x)ξ

m + &c., (27)

where 	m
 is the integer right before m. But then, reasoning as above, according to
the second of the equalities (24), one would obtain

f ′(x0) = p1(x)

f ′′(x0) = 2p2(x)

. . .

f (	m
)(x0) = 	m
!p	m
(x)
f (�m�)(x0) = m 	m
!p	m
+1(x)0

m−�m�, (28)

where �m� is the integer right after m, and m−�m� is accordingly a negative exponent.
The first derivative of f (x) to become infinite for x = x0 would then be f (�m�)(x),
so that n = �m� and n − 1 < m < m + 1.

This is likely to be the tacit argument Lagrange relied on to justify the second
part of claim (ii), which, strictly speaking, does not follows from his explicit argu-
ment. By arguing that, in the case at issue, the generalized power-series expansion of
f (x0 + ξ) = fx0(ξ) contains a power ξm of ξ such that n − 1 < m < n , Lagrange
would then have implied that this power is the smallest of the fractional powers in the
expansion.

The difficulties to which Lagrange’s arguments (both the explicit and the tacit ones)
are subject are obvious. We only point out that they are all based on the identification
of the derivatives of a function f (x) for x = x0 with the values that can be deter-
mined through the application of an appropriate linear algorithms—stemming from
the consideration of the power-series expansion of the function f (x + ξ) where x and
ξ remain indeterminate—to the equality

f (x0 + ξ) = f (x0)+
∞∑

k=1

pk(x)ξ
αk . (29)
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This, then, is the implicit definition of these derivatives at issue in Lagrange’s the-
ory. It is on the basis of this implicit definition that Lagrange was in fact able to prove
his result, namely that: (i) the ν-th derivative of a function f (x), such that f (x + ξ)

has no power-series expansion for x = x0, is defined for this same value of x if and
only if f (x0) is not infinite and the smallest fractional exponent of the powers of ξ
occurring in the generalized power-series expansion of f (x0 + ξ) = fx0(ξ) is greater
than ν; (ii) in this case, the value of this derivative for x = x0 is the coefficient of ξ

ν

ν!
in this generalized power-series expansion.

As an example, take the function76 f (x) = ax − x2 + a
(
x2 − a2

)√
x2 − a2. The

associated function f (a+ξ) = fa(ξ) is −aξ−ξ2 +aξ
√
ξ (2a + ξ)

√
2a + ξ,whose

generalized power-series expansion is:

− aξ + 2a2
√

2aξ
√
ξ − ξ2 + 3

2
a
√

2aξ2
√
ξ + 3

16

√
2aξ3

√
ξ + &c. (30)

If follows that

f (a) = 0 and f ′(a) = −a, (31)

whereas the other derivatives are not defined for x = a.
In the Leçons (Lagrange 1801 p. 52 and 55–57; 1806 pp. 69–70 and 73–75), La-

grange also considered the possibility that a function f (x0 + ξ) = fx0(ξ) has an
expansion including terms with a factor of the form ξλ (log ξ)μ , where λ and μ are
rational positive or negative exponents. 77

A simple case is given by the function f (x) = x log x, whose associated function
f (x0 + ξ) = fx0(ξ), for x0 = 0, is ξ log ξ . In this case, the relevant value x0 belongs
to the domain of definition of f (x + ξ) for any non-null value of ξ, but not to the
domain of definition of f (x) (see Definition 1). Lagrange began by proving that this
is always the case when the exponent of log ξ is positive (Lagrange 1801 p. 52; 1806
pp. 69–70).78

To this end, he relied on an argument analogous to the one he used for negative
powers of ξ : if the generalized power expansion of f (x0 + ξ) = fx0(ξ) includes a
term with a positive power of log ξ as factor, then this expansion becomes infinite for
ξ = 0 (since log ξ = −∞ for ξ = 0); the same happens, then, for f (x0).

He then remarked (Lagrange 1801 pp. 55 and 27; 1806, pp. 73 and 34-35), more
generally, that the case of expansions including powers of log ξ reduces to that of
expansions including fractional powers of ξ, since, for any base a,

loga z = r

log a

(
z

1
r − 1

)
, (32)

76 This example results from a slight adjustment of an example proposed by Lagrange (1801 p. 56–57;
1806, pp. 74–75).
77 Though Lagrange did not explicitly remark upon it, it is clear that, because of the equality loga z = log z

log a ,

this case encompasses any analogous case concerning logarithms with any base.
78 Lagrange considered only the case where the factor ξλ in ξλ (log ξ)μ is unitary, i.e., λ = 0, but it is
clear that the same applies to any value of λ.
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provided r be “infinitely large.” Strangely enough, this appeal to an infinitesimalist
argument does not seem detrimental to him. He probably felt the argument was local
enough for its infinitesimalist character to be harmless. The fact remains that it is only
by appealing to this reduction that he could justify that the case where f (x + ξ) has
an expansion including a power of log ξ is not mentioned at all in the proof of the
power-series expansion theorem, nor, more generally, in the Théorie. Furthermore,
for the appeal to equality (32) in this proof to involve no circularity, this last equality
should be obtained though an argument different from the one Lagrange used to obtain
it (Lagrange 1801 pp. 24–27; 1806, pp. 31–34). This last argument is based, indeed,
on the power-series expansion of loga (x + ξ) ,which is got, in turn, by relying on the
power-series expansion theorem itself.79

In any case, Lagrange continued by observing that in the case where the expansion
of f (x0 +ξ) = fx0(ξ) includes terms of the form ξλ (log ξ)μ , an argument analogous
to the one used in the case where this expansion contains fractional powers of ξ also ap-
plies. In this case, Lagrange said, the derivatives f ′(x+ξ), f ′′(x+ξ),&c., for x = x0,

respectively contain, in turn, terms of the forms ξλ−1 (log ξ)μ and ξλ−1 (log ξ)μ−1 ,

and of the forms ξλ−2 (log ξ)μ , ξλ−2 (log ξ)μ−1 and ξλ−2 (log ξ)μ−2 , &c., which,
for ξ = 0, become either null or infinite, depending on whether the exponent of ξ is
positive or negative, whatever the exponent of log ξ might be.

Lagrange’s treatment here is rough, but his point is clear: if the expansion of f (x0 +
ξ) = fx0(ξ) includes terms of the form ξλ (log ξ)μ , the expansions of the functions
f ′ξ (x0 +ξ), f ′′ξ (x0 +ξ) , &c., will contain terms like the foregoing, so that the deriv-
atives f ′(x), f ′′(x),&c., evaluated at x = x0, or rather their expansions, will contain
terms which become either null or infinite, depending on whether the exponent of ξ
is positive or negative. Lagrange also seems to have implied that, if the exponent of ξ
is 0 , these terms become either null or infinite depending on whether the exponent of
log ξ is negative or positive.

This argument not only poses the same problems as the argument used in the
case where the expansion of f (x0 + ξ) = fx0(ξ) contains fractional powers of ξ,
it also requires the assumption that certain functions vanish, and are then defined,
for a particular value of their variable, even if certain terms, factors, or denomina-
tors including in them become infinite for this value. For example, assuming that, for
ξ = 0, ξλ (log ξ)μ vanishes when λ is positive, whatever μ might be, amounts to
assuming that 0 (±∞) = 0

±∞ = 0. In modern parlance, this amounts to assuming
that a function can be extended continuously to a value of its variable where strictly
speaking it is not defined. As we have already observed (see Theorem 3 ), this is tan-
tamount to replacing this function by one defined piecewise, which seems contrary
Lagrange’s notion of function.

79 In the Théorie and in the Leçons Lagrange presented two alternative deductions of the power-series
expansion of the logarithm. The first one (Lagrange 1797, art. 21; 1801 pp. 23–24; 1806 pp. 28–3; 1813,
art. I.13), explicitly appeals to the equality (5), which is clearly deduced from the power-series expansion
theorem. The second one (Lagrange 1797, art. 23; 1813, art. I.19) appealss to the binomial theorem for any
real exponent, which is proved in turn by appealing to this same equality: see Sect. 3.3.
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To clarify this matter, consider the only example offered by Lagrange (Lagrange
1801, p. 57; 1806, p. 75). Let f (x) be

√
x + (x − a)2 log(x − a). It follows that:

f (x + ξ) = √
x + (x − a)2 log(x − a)+

[
1

2
√

x
+ (x − a) (2 log (x − a)+ 1)

]
ξ

+
[
− 1

4x
√

x
+ 2 log (x − a)+ 3

]
ξ2

2
+
[

3

8x2
√

x
+ 2

x − a

]
ξ3

3! + &c.

(33)

According to Lagrange, all derivatives of this function from f ′′(x) become infinite
for x = 0, so that the expansion of f (a +ξ) = fa(ξ) contains the term ξ2 log ξ . Since
f (a + ξ) = fa(ξ) = √

a + ξ + ξ2 log ξ, this expansion is obtained by expanding√
a + ξ in a power series, according to the binomial theorem for positive fractional

exponents, so as to get

√
a + ξ + ξ2 log ξ = √

a + 1

2
√

a
ξ −

[
1

8a
√

a
− log ξ

]
ξ2 + 1

16a2
√

a
ξ3 + &c.

(34)

It seems then that Lagrange took the functions (x − a)2 log(x −a) and (x − a) (2 log
(x −a)+1) to be defined for x = a, and indeed to vanish there. Had he denied this, he
could not have taken the coefficient of ξ in the expansion (34) to be the first derivative
of

√
x + (x − a)2 log(x − a) for x = a, and argued that the power-series expansion

of the associated function f (x + ξ) is undefined only from its third term. He would
then have been forced to go against his whole analysis of the special cases where a
function f (x + ξ) does not admit a power-series expansion.

Going over to fractional powers according to equality (52) might solve the problem,
for then:

f (x + ξ) = √
x + ξ + (x + ξ − a)2 log(x + ξ − a)

= √
x + ξ + r (x + ξ − a)2

(
(x + ξ − a)

1
r − 1

)

= √
x + r (x − a)2

(
(x − a)

1
r − 1

)

+
[

1

2
√

x
+ (x − a)

(
(x − a)

1
r (2r + 1)− 2r

)]
ξ

+
[

1

4x
√

x
− 2r + (x − a)

1
r

(
2r + 3 + 1

r

)]
ξ2

2
+ &c. (35)
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and

f (a + ξ) = fa(ξ) = √
a + ξ + ξ2 log ξ = √a + ξ + ξ2r

(
ξ

1
r − 1

)
=

= √
a + 1

2
√

a
ξ −

[
1

8a
√

a
+ r

]
ξ2 + rξ2+ 1

r + 1

16a2
√

a
ξ3 + &c.

(36)

(where r is infinitely large). But, for the values of f (a) and f ′(a) calculated using
the expansions (35) to be equal to those calculated using the expansions (36), and for
the value of f ′′(x) calculated using the former of these expansions to become infinite
for x = a, one has to assume that

[
r (x − a)2

(
(x − a)

1
r − 1

)]
x=a

=
[
(x − a)

(
(x − a)

1
r (2r + 1)− 2r

)]
x=a

=
[
(x − a)

1
r

(
2r + 3 + 1

r

)]
x=a

= 0,

(37)

which is an inescapably infinitesimalist assumption.
It seems then that, once more, Lagrange’s mathematical practice departs here from

his ideal of purity of method, or, more precisely, from his very notion of function.80

4 Lagrange’s reformulation of the calculus: some examples

Lagrange’s fundamental proof could not have been a sufficient basis for him to argue
that his theory of analytical functions could (or should) supplant the differential cal-
culus in all its extension and for all its applications. Many of the results forming
the corpus of the latter, together with its several applications both geometrical and
mechanical, had been obtained using arguments based on infinitesimalist interpreta-
tions of it, namely on the interpretation of a differential as an infinitely small quantity,
or of an integral as an infinite sum of infinitely small quantities. If Lagrange had simply
proposed the replacement of the differential calculus by his theory of derivative func-
tions, by appealing to something like an appropriate translation rule for transforming
statements using the language of the former in new statements using the language of
the latter, he would have implicitly admitted the validity of these arguments.

The theory of derivative functions could thus not be expected to supplant the dif-
ferential calculus unless the whole corpus of such a calculus might be reformulated
within the context of this theory, and the application of its algorithm (understood as the

80 We should add that Lagrange took the opportunity of his treatment of the particular values of x for
which a function f (x + ξ) fails to have a power-series expansion, to consider the cases where the equality
(21) leads to an expression of the derivative of an implicit function that, for a certain value of the relevant
variable, reduces to 0

0 . Needless to say, he showed how to deal with this difficulty through l’Hôpital’s rule,
which he proved in the context of his theory (Lagrange 1797, arts. 36 and 39; 1801 pp. 58–59 and 61–62;
1806 pp. 78–80 and 81–82; 1813, arts. I.26 and I.28).
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algorithm of derivative functions) to the solution of the geometrical and mechanical
problems might be justified within this same theory. Most of both the Théorie and the
Leçons is devoted to this. Of course, Lagrange did not pursue this task in extenso,
for doing so would have required much more than a treatise. He confined himself to
some important examples. In Sects. 4.1–4.5, we shall consider some of these examples
from the pure part of Lagrange’s theory. In Sect. 5.1, we shall consider other examples
concerned with geometric and mechanical applications.

4.1 Partial derivatives

The first example concerns partial derivatives. Lagrange’s interpretation of the cal-
culus is particularly suitable for filling the gap between the differential calculus and
the calculus of partial differentials. This was emphasized by Lagrange himself in the
Leçons, where he insisted on the unity and appropriate organization of mathematics:

[…] the calculus of derivative functions of only one variable naturally leads
to the calculus of derivative functions of several variables, which […] is noth-
ing but a generalization of the former and depends on the same principles. If
the inventors of the differential calculus had first regarded it as the calculus of
derivative functions, they would have naturally and immediately been led to the
calculus of derivative functions of several variables, and a half century would not
have passed between the discovery of the differential calculus strictly speaking
and that of the partial differential calculus, which corresponds to the calculus
of derivative functions of several variables. Furthermore, rather than consider-
ing this latter calculus as a new calculus, one would have regarded it as a new
application, or better as an extension, of the differential calculus, and one would
have, from the very beginning, encompassed under the same point of view and
the same denomination the different branches of this same calculus that have
been for a long time separated and, as it were, isolated.

[…] le calcul des fonctions dérivées relatives à une seule variable, conduit naturellement à celui
des fonctions dérivées relatives à différentes variables, lequel n’est […] qu’une généralisation
du premier, et dépend des mêmes principes. Si les inventeurs du Calcul différentiel l’avaient
regardé d’abord comme le calcul des fonctions dérivées, ils auraient été conduit naturellement
et immédiatement au calcul des fonctions dérivées relatives à plusieurs variables; et il ne serait
pas passé un demi-siècle entre la découverte du calcul différentiel proprement dit, et celle du
calcul aux différences partielles, qui répond au calcul des fonctions dérivées relatives à diffé
rentes variables. A plus forte raison, au lieu d’envisager ce dernier comme un nouveau calcul, on
l’aurait seulement regardé comme une nouvelle application ou plutôt comme une extension du
calcul différentiel, et l’on aurait, dès le commencement, embrassé sous un même point de vue et
sous une même dénomination, les différentes branches du même calcul, qui ont été longtemps
séparées et comme isolées.

(Lagrange 1801, p. 264; 1806, pp. 327–328.)

Lagrange’s basic idea is that the power-series expansion of a function of several
variables—and then its total derivatives—can be obtained step by step: one begins by
considering this function as a function of only one of these variables, and expands it in
a power series by dealing with the other ones as if they were constants, then expands
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the derivative functions so obtained as functions of one of the other variables, and
so on.

If f (x, y) is a function of two independent variables (Lagrange 1797, arts. 85–86;
1801, pp. 264–268; 1806, pp. 328–332; 1813, arts. I.73–I.74), this procedure gives
first:

f (x + ξ, y) =
∞∑

k=0

f (k)x (x, y)
ξ k

k! , (38)

and then

f (x + ξ, y + o)=
∞∑

k=0

f (k)x (x, y + o)
ξ k

k! =
∞∑

k=0

∞∑
h=0

f (k)x (h)y (x, y)
oh

h!
ξ k

k! ,

(39)
(where the indices appended to ‘(k)’ and ‘(h)’ specify the variables with respect to

which the derivatives are taken).
The same result is obtained by first expanding f (x, y + o) and then expanding

the derivatives f (h)y (x + ξ, y) (h = 0, 1, . . .). Hence the method of indeterminate
coefficients leads to the equality

f (k)x (h)y (x, y) = f (h)y(k)x (x, y) (40)

for any pair of non-negative integers k and h.81 It follows that the “operations” of der-
ivations with respect to different variables are “absolutely independent of each other”
(Lagrange 1797, art. 86; 1801, p. 268; 1806, pp. 331–332; 1813, art. I.74), which is
the fundamental principle of partial derivation.

4.2 Singular primitive equations

The second example concerns singular solutions of derivative equations (Lagrange
1797, arts. 72–76; 1801, lectures XV–XVIII; 1806, lectures XIV–XVII; 1813, art. I.58–
63; we limit ourselves to the general theory of singular solutions as it is formulated in
lectures XV and XIV of the first and the second edition of the Leçons, respectively;
on this topic, see also Fraser 1987, pp. 45–49).82

To begin with (Lagrange 1801, pp. 162–165; 1806, pp. 178–184), let f (x, y, y ′) =
0 be a derivative equation of the first order, where y is a function of x, and y ′ is its first
derivative. Lagrange conceived this equation as resulting from the elimination of the
arbitrary constant a between two other equations F(x, y, a) = 0 and F ′(x, y, a) = 0,

81 Our notation is different from Lagrange’s. He used two different conventions in the Théorie and in the
Leçons. In the former, he denoted the derivatives of a function of two variables with respect to the first
variable by ‘ f ′′...’, and those with respect to the second by ‘ f ′′...’; in the latter, he denoted the derivatives
with respect to the first variable with ‘ f ′′...,’, and those with respect to the second with ‘ f ′′...’. This made
difficult for him to distinguish notationally between the two functions we have denoted ‘ f (k)x (h)y (x, y)’
and ‘ f (h)x (k)y (x, y)’, respectively, for indeterminate indices k and h. This is probably why he wrote no
equality like (40).
82 Lagrange’s derivative and partial derivative equations correspond of course, in the language of his theory,
to differential and partial differential equations in the language of differential calculus.
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where F ′(x, y, a) is the total derivative of F(x, y, a), that is, the coefficient of ξ in
the power-series expansion of F(x + ξ, y (x + ξ) , a), and F(x, y, a) = 0 is the
equation to be found that counts as the complete primitive, or the general solution of
f (x, y, y ′) = 0.83

It is easy to see that this last equation would also be obtained from the same two
equations F(x, y, a) = 0 and F ′(x, y, a) = 0 if a were taken to be a function of x
such that

F ′a (x, y, a) a
′ = 0 (41)

(where the subscript ‘a’ specifies that the derivative is taken with respect to a). So, if
g(x) is a function of x such that this last condition is met for a = g(x), the equation
F(x, y, g(x)) = 0 is a solution of f (x, y, y ′) = 0 not contained in its general solu-
tion. Lagrange called it ‘singular primitive equation’. As from the condition a ′ = 0 it
simply follows that a is constant (see footnote 69), this singular primitive equation is
the equation in y and x which results from

{
F(x, y, a) = 0
F ′a (x, y, a) = 0,

(42)

provided its solution a = ψ(x, y) is not constant. It is thus clear that a singular prim-
itive equation of a derivative equation of first order contains no arbitrary constant.

A simple example is the following (Lagrange 1801, p. 164; 1806, p. 182). Let
f (x, y, y ′) = y ′√x2 + y2 − b − yy ′ − x = 0 the derivative equation to be solved.
Its general solution is F(x, y, a) = x2 − 2ay − a2 − b = 0. If a is taken to be a
function of x, one gets F ′a (x, y, a) = −2y − 2a, and the system (42) becomes

{
x2 − 2ay − a2 − b = 0
−2y − 2a = 0.

(43)

Hence a = −y, and x2 + y2 − b = 0 is then the singular primitive equation.
A similar argument applies to derivative equations of higher orders (Lagrange 1801,

p. 165–166; Lagrange 1806, pp. 184–185). Supposing that f (x, y, y ′, . . . y(n)) = 0
is such an equation and F(x, y, y ′ . . . , y(n−1), a) = 0 one of its primitives of order
n − 1, its singular primitive is the equation in x, y, y ′, . . . , y(n−1) which results from

{
F(x, y, y ′, . . . , y(n−1), a) = 0
F ′a (x, y, y ′ . . . , y(n−1), a

) = 0,
(44)

provided its solution a = ψ(x, y) is not constant. Lagrange proved that this singu-
lar primitive is unique: for any given derivative equation of order n, condition (44)

83 Note that, according to Lagrange’s definition of derivative functions, to claim that a function g(x) is
the primitive of a function f (x) is the same as claiming that this latter function is such that g(x + ξ) =
g(x) + ξ f (x) +∑∞

k=2 pk (x)ξ
αk (where αk are rational exponents greater that 1). Lagrange should then

have provided a proof of existence and uniqueness (except for additive constants) of the primitive of any
function. But he offered no such proof.
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supplies the same singular primitive, whatever primitive equation of order n−1 of this
derivative equation is considered (Lagrange 1801, p. 168–169; 1806, pp. 186–190).84

He also established a sufficient and necessary condition for the existence of
such a singular primitive (Lagrange 1801, pp. 173–174; 1806, pp. 195–196). If
a = �(x, y, y ′, . . . , y(n−1)) is a root of F

(
x, y, y ′, . . . , y(n−1), a

) = 0,

F
(

x, y, y ′, ..., y(n−1), �
(

x, y, y ′, ..., y(n−1)
))

= 0 (45)

is an identical equation. It follows that if the variables x, y, y ′, ..., y(n−1) are taken to
be independent of each of other, all the derivatives of the left-hand side of this equation
taken with respect to each one of these variables are null. Writing ‘F’ and ‘�’ for
‘F
(
x, y, y ′, ..., y(n−1), a

)
’ and ‘�

(
x, y, y ′, ..., y(n−1)

)
’, one obtains:

� ′x = − F ′x
F ′a ; � ′y = − F ′y

F ′a ; �
′ y ′ = − F

′ y ′

F ′a … �
′ y(n−1) = − F

′ y(n−1)

F ′a .

(46)

But as we have just seen, a necessary condition for an equation f (x, y, y ′, . . .
y(n)) = 0 to have a singular primitive is that F ′a = 0. The derivative equation
f (x, y, y ′, . . . y(n)) = 0 then has a singular primitive only if

� ′x = � ′y = �
′ y ′ = · · · = �

′ y(n−1) = ±∞. (47)

To obtain a sufficient and necessary condition, it is then sufficient to add the require-
ment that � be not a constant.85

84 This proof also suggests a procedure for finding the singular primitive of a derivative equation of order
n starting from its complete primitive equation; see Lagrange (1801, pp. 169–173; 1806, pp. 190–195).
85 In Cauchy (1822, pp. 278–279), after having presented the examples mentioned at text below Theorom 3,
Cauchy claimed that his previous considerations suggest that certain results “established by means of series”
are faulty. To offers an example, he considered the differential equation dy = [1 + (y − x) log (y − x)

]
dx,

and claimed that the equation y = x is included in its general solution log(y−x) = aex , though the differen-

tial ratio d[1+(y−x) log(y−x)]
dy becomes infinite for y = x . It seems that Cauchy’s aim here was to contradict

Lagrange’s results on singular primitive equations. Bottazzini (1990, pp. XLI–XLII) has, however, rightly
observed that “for supporting his point Cauchy was forced to ‘stretch’ the commonly accepted meaning of
the concepts he used,” since the equation y = x is included in log(y − x) = aex only if the substitution
a = −∞ is licensed. But this is not all. On the one hand, Lagrange’s theory of primitive singular equations
is, as such, independent of the consideration of series, and only depends on the algorithm of derivative
functions, to the effect that his results concerning singular primitive equations could be established without
any appeal to series. On the other hand, according to Lagrange’s condition, the equation y = x is not a
singular primitive of the equation y ′ − 1 − (y − x) log (y − x) = 0. This is easy to prove. According to
this condition, the singular primitive of this equation should result from

{
log(y − x) = aex

−ex = 0,
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4.3 Exact derivatives

The third example concerns the conditions to be met for a certain function of several
variables to be an exact derivative of another function (Lagrange 1801, lecture XIV;
1806, pp. 401–409).

Let� be a function of any number of independent variables x, y, z, . . . and of their
derivatives up to whatever order m. To begin with the simplest case, let us suppose
that this function is linear with respect to one of these variables, say z, and to its
derivatives, so that: � = ∑m

k=0�k z(k), where �k are functions of x, y, . . . and of
their derivatives up to order m (but not of z and its derivatives). As, for any pair of
non-negative integers k and h,

[
�
(h)
k z(k−h−1)

] ′ = �
(h+1)
k z(k−h−1) +�

(h)
k z(k−h), (48)

where the derivatives are total, it is easy to obtain, by iterated substitutions,

�k z(k) = (−1)k �(k)k z +
k−1∑
h=0

(−1)h
[
�
(h)
k z(k−h−1)

] ′
, (49)

and thus:

� =
∑m

k=0
�k z(k) =

m∑
k=0

(−1)k �(k)k z +
m∑

k=0

k−1∑
h=0

(−1)h
[
�
(h)
k z(k−h−1)

] ′
(50)

(by supposing, of course, that
∑−1

h=0(−1)h
[
�
(h)
0 z(−h−1)

] ′ = 0).

Hence, � is an exact derivative if and only if
∑m

k=0 (−1)k �(k)k z is itself an ex-

act derivative, or vanishes. But
∑m

k=0 (−)k �(k)k z can be an exact derivative only if
z is linked to x, y, . . . through an appropriate relation, which is impossible, since
x, y, z, . . . are supposed to be independent variables. It follows that � is an exact
derivative if and only if

m∑
k=0

(−)k �(k)k = 0. (51)

This being proved, Lagrange reduced the general case to such a simpler one.
Let y be a function of x, V and U two functions of x, y and the derivatives of y up to

whatever orders m and m − 1, respectively. Suppose that V = U ′, whatever function
of x, y might be. If z is also a function of x and Vy|y+z and Uy|y+z are the functions

Footnote 85 continued
provided its solution a = ψ(x, y) is not a constant. This last condition is not satisfied, however, since,

in this case, a = ψ(x, y) = log(y−x)
0 . Hence the given derivative equation has, according to Lagrange’s

condition, no singular primitive.
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which result from V and U by replacing y with y + z (and hence y ′, . . . , y(m) with
y ′ + z ′, . . . , y(m) + z(m), respectively), it will follow that Vy|y+z = U ′

y|y+z .

Let us now view V and U as functions of the variables y ′, . . . , y(m) and
y ′, . . . , y(m−1), respectively, and assume that Vy|y+z and Uy|y+z are expanded in

power series of z ′, . . . , z(m) according to the procedure described in Sect. 4.1. Let
j

V

and
j

U ( j = 0, 1, . . .) be, respectively, the sums of all the terms of order j of the two

powers series so obtained, so that: Vy|y+z =∑∞
j=0

j
V and Uy|y+z =∑∞

j=0

j
U (where

of course
0
V = V and

0
U = U ). Since

∑∞
j=0

j
V =

[∑∞
j=0

j
U

] ′
=∑∞

j=0

j
U ′, it will be

easy to prove that

{
j

V =
j

U ′
}∞

j=0

.

These last equalities provide the necessary and sufficient condition for V to be an
exact derivative. It remains to describe this condition in more detail.

If j = 0, the equality
j

V =
j

U ′ holds by hypothesis. Consider the case j = 1. As
1
V = ∑m

k=0�k z(k) (where �k are appropriate functions of x, y, y ′, . . . , y(m)),
1
V is

an exact derivative if and only if equality (51) holds. Suppose that this is so. It is easy
to prove that the difference Vy|y+z − V is then an exact derivative.

This is done as follows. From the equalities (50) and (51), it follows that

1
U =

m−1∑
k=0

U
′ y(k) z(k) =

m∑
k=0

k−1∑
h=0

(−1)h�(h)k z(k−h−1), (52)

(where U
′ y(k) is the first derivative of U with respect to y(k)) and thus, according to

the method of indeterminate coefficients:

U
′ y(k) =

m−k−1∑
h=0

(−1)h�(h)h+k+1, (53)

for any k (k = 0, 1, . . .m − 1). As the partial derivatives of higher order of U result
from the first ones, according to the algorithm of derivatives, these equalities allow
us to determine the expansion of the difference Uy|y+z − U, which is the primitive of
Vy|y+z − V .

Now, if Vy|y+z − V is an exact derivative, this is also the case of V, since the
substitution z → −y reduces Vy|y+z to a function of the only variable x, which is
certainly an exact derivative. The equality (51) supplies thus a necessary and suffi-

cient condition for V to be an exact derivative, and—as
1
V = ∑m

k=0�k z(k) entails

�k = V
′ y(k) for any k (k = 0, 1, . . . ,m)—it can be written under the form:
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m∑
k=0

(−)k
[
V

′ y(k)
](k) = 0, (54)

where the derivatives of V
′ y(k) are of course total.

Lagrange has thus proved that if V = V
(
x, y, y ′, . . . y(m)

)
,Euler and Condorcet’s

necessary condition of exact integrability (Euler 1744, pp. 71–74; Condorcet 1765,
Sect. I, pp. 4–35) is also sufficient.

It is easy to understand that if V = V
(
x, y, y ′, . . . y(m), t, t ′, . . . t (m)

)
his argu-

ment applies separately to y and its derivatives and to t and its derivatives, so that this
function is an exact derivative if and only if the equality (54) holds together with an
analogous equality where y is replaced by t . Lagrange’s result is thus general.

4.4 Partial derivative equations

The fourth and last example concerns partial derivative equations (Lagrange 1797, arts.
92–96 and 100–107; 1801, continuation of lecture XX, pp. 284–318; 1806, lecture.
XX; 1813, arts. I.81–I.84 and I.88–I.95; with the exception of some details, we shall
confine ourselves to the account that Lagrange presented in arts. 92–96 and I.81–I.84
of the two editions of the Théorie, respectively).86

If z is taken to be a variable independent of x and y (or even a constant), the coef-
ficients of ξ and o in the power-series expansion of F(x + ξ, y + o, z)—that is, the
first partial derivatives of F(x, y, z) with respect to x and y, under this condition on
z—can be easily determined according to the equality (39). They differ, of course,
from the partial derivatives of F(x, y, z) under the condition that z is a function of x
and y implicitly expressed by the equation F(x, y, z) = 0. Let us respectively denote
the former with ‘F ′x (x, y, z)’ and ‘F ′y (x, y, z)’ and the latter with ‘F ′x (x, y, zx,y)’
and ‘F ′y (x, y, zx,y)’.87 Then:

F ′x (x, y, zx,y) = F ′x (x, y, z)+ F ′z (x, y, z)z ′x
F ′y (x, y, zx,y) = F ′y (x, y, z)+ F ′z (x, y, z)z ′y , (55)

where F ′z (x, y, z) is the partial derivative of F(x, y, z) with respect to z under the
condition that z is independent of x and y, whereas z ′x and z ′y are the partial deriva-
tives of z taken as a function of x and y. But, if z is taken to be a function of x and y
implicitly expressed by F(x, y, z) = 0, then F(x +ξ, y +o, z) = 0 holds too, and the
method of indeterminate coefficients leads to F ′x (x, y, zx,y) = F ′y (x, y, zx,y) = 0.
Hence from the equations (55) it follows that:

z ′x = − F ′x (x, y, z)

F ′z (x, y, z)
and z ′y = − F ′y (x, y, z)

F ′z (x, y, z)
, (56)

which correspond to the equality (21), for the case under consideration.

86 On Lagrange’s terminology, see footnote 82.
87 Lagrange had in fact no elementary symbol for denoting F ′x (x, y, zx,y) and F ′y (x, y, zx,y).
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This is the basic result of Lagrange’s reformulation of the part of the calculus dealing
with partial differential equations. By generalizing his approach to ordinary deriva-
tive equations, he conceived a partial derivative equation as the equation that results
if a non-derivative equation F(x, y, . . . , z) = 0, involving three or more variables
x, y, . . . , z, is combined with the equations obtained by equating to zero the partial
derivatives of F(x, y, . . . , z) with respect to some of these variables. The equalities
(56) apply to the simplest case where only three variables are involved. The other cases
are analogous.

Consider this simplest one. If the primitive equation F(x, y, z) = 0 contains two
arbitrary constants, they also occur, in general, in the equations F ′x (x, y, zx,y) = 0
and F ′y (x, y, zx,y) = 0 and can thus be eliminated by composing these three equa-
tions. Hence, the general solution F(x, y, z) = 0 of a first order partial differential
equation involving the variables x, y, z, z ′—i.e., in Lagrange’s parlance, the “com-
plete primitive equation”88 of this equation— contains two arbitrary constants.

But singular solutions exist here too, as Lagrange showed by considering a function
F(x, y, z, a, b) of five variables x, y, z, a, b, and assuming that z, a, and b are func-
tions of x and y. In this case (Lagrange 1801, p. 296; 1806, pp. 367–369), the equations
F ′x (x, y, zx,y, ax,y, bx,y) = 0 and F ′y (x, y, zx,y, ax,y, bx,y) = 0 have respectively
the form

F ′x (−)+ F ′z (−)z ′x + F ′a(−)a ′x + F ′b (−)b ′x = 0
F ′y (−)+ F ′z (−)z ′y + F ′a (−)a ′y + F ′b (−)b ′y = 0,

(57)

where the dashes stand for the sequence ‘x, y, z, a, b’. If F ′a (−) = F ′b (−) = 0, the
composition of these equations with their primitive gives the same partial derivative
equation obtained by composing the equation F(x, y, z) = 0 with the corresponding
equations F ′x (x, y, zx,y) = 0 and F ′y (x, y, zx,y) = 0. Hence, to obtain the singular
solution of a partial derivative equation involving the variables x, y, z, z ′, it suffices
to take the arbitrary constants a and b occurring in the complete primitive equation as
two functions of x and y, and to require that F ′a (−) = F ′b (−) = 0. Lagrange called
such a solution the ‘singular primitive equation’.

Now, let b be a function of a, this last variable being a function of x and y, again.
Suppose in particular that b = ϕ(a). Equations (57) become

F ′x (−)+ F ′z (−)z ′x + [F ′a (−)+ F ′ϕ(a) (−)ϕ ′(a)
]

a ′x = 0

F ′y (−)+ F ′z (−)z ′y + [F ′a (−)+ F ′ϕ(a) (−)ϕ ′(a)
]

a ′y = 0. (58)

Thus, if a satisfies the condition

F ′a (−)+ F ′ϕ(a) (−)ϕ ′(a) = 0, (59)

the composition of the these equations with F(x, y, z, a, b) = 0 produces the
same partial derivative equation obtained by composing F(x, y, z) = 0 with

88 For the introduction of this and the following terms, see Lagrange (1801), p. 296–298; (1806), p. 369–
371.

123



Lagrange’s theory of analytical functions 157

F ′x (x, y, zx,y) = 0 and F ′y (x, y, zx,y) = 0. As this does not depend on the par-
ticular nature of the function ϕ(a), and a is supposed to be a function of x and y,
it follows that such a partial derivative equation has a primitive which contains an
arbitrary function of x and y and no arbitrary constant. Lagrange called it the ‘general
primitive equation’.

As a simple example consider the equation F(x, y, z) = z − ax − by − c = 0
where a, b and c are constants and z is taken to be a function of x and y implicitly
expressed by this equation. The equations F ′x (x, y, zx,y) = 0 and F ′y (x, y, zx,y) = 0
are z ′x = a and z ′y = b, and, by composition, one obtains the partial derivative equa-
tion z − z ′x x − z ′y y − c = 0, of which z − ax − by − c = 0 is the complete
primitive. Suppose that also a and b are functions of x and y. Since, in this case,
F ′a (x, y, z, a, b) = −x, and F ′b (x, y, z, a, b) = −y, to obtain the singular prim-
itive, it is enough to impose the condition x = y = 0 on this complete primitive,
which gives z − c = 0. Suppose now that b = ϕ(a), and a is a function of x and
y. Since, in this case, F ′a (x, y, z, a, b) + F ′ϕ(a) (−)ϕ ′(a) = x + yϕ ′(a), to obtain
the general primitive, one also has to impose the condition x + yϕ ′(a) = 0 on this

same complete primitive. But, from this condition it follows that a = ϕ ′−1
(
− x

y

)
and

b = ϕ
(
ϕ ′−1

(
− x

y

))
. Hence, the general primitive is z − yψ

(
x
y

)
− c = 0, where

ψ
(

x
y

)
= x

yϕ
′−1
(
− x

y

)
+ ϕ

(
ϕ ′−1

(
− x

y

))
is an arbitrary function of x

y .

4.5 Returning to Lagrange’s notion of function

The previous examples make it clear that, in reformulating the calculus, Lagrange
was forced to deal with functions in a way that is at odds with the compositional
conception, and, more generally, with the identification of functions with appropriate
expressions.

He did not only identify functions with generic variables depending on other vari-
ables and merely expressed by generic symbols submitted to an appropriate algebra,
he was also forced to acknowledge the existence of functions that can only be char-
acterized as the functions expressed by such symbols. This is manifestly the case

for the arbitrary functions ϕ(a) and ψ
(

x
y

)
involved in his account of the general

primitives of a partial derivative equation (see Sect. 4.4). What makes these functions
arbitrary is not merely that they enter into a general argument that does not depend,
as such, on their being some particular expressions (or some quantities expressed by
some particular expressions). These functions are arbitrary also because this argument
does not require that they be expressions (or quantities expressed by some expres-
sions). For this argument to work, it is enough to take these functions to be generic
symbols for quantities that satisfy an appropriate algebra (or quantities denoted by such
symbols).

This is a new and fairly clear example of the tensions between Lagrange’s ideal of
purity and the actual deployment of his theory. Though he cautiously avoided, in his
treatises, the issues raised by Euler’s famous 1765 memoir on “discontinuous func-
tions” (Euler 1765), and the debate generated by it, his efforts to recover the totality
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of calculus within this theory were such that the necessity of considering functions
merely as quantities “somehow determined through some variable” (Euler 1765, p. 3)
arose naturally.89

More generally, this same difficulty affects Lagrange’s reformulation of the integral
calculus as such, since his notions of function and derivative seem too strict to allow
each function to have a primitive. In his view, the passage from a given function to
his primitive relies on an “operation” which can be regarded as “the inverse” of the
derivation, and that “can always be performed through series,” by appealing to the
method of indeterminate coefficients.90 But if the operation of derivation is viewed
as the operation that leads from a given function f (x) to the coefficient of ξ in the
power-series expansion of f (x + ξ), its inverse can only be seen as the operation
leading from a given function f (x) to a function g(x) such that f (x) is the coeffi-
cient of ξ in the power-series expansion of g(x + ξ) (see footnote 83). But how then
can one determine the primitive of a function f (x) that can only be integrated by
series?

Lagrange could have answered this question in different ways, but none of them
would have been in good order with respect to the principles of his theory. He could
have admitted that a series is in itself a function, and taken a series to be the primitive
of f (x). But this is something that he does not seem to have been ready to admit, and
that is in any case openly at odds with his notion of function. He could have argued that
the primitive of f (x) is unknown though having a known expansion. But, he should
then have explained what sort of function this unknown function might have been,
which would have been hard to do on the base of his notion of function. Finally, he
could have granted that the primitive of f (x) is not a function in turn, or that f (x) has
no primitive at all. But in this way, his theory would have departed from a generally
admitted assumption of the differential calculus.91

89 On the well-known debate generated by Euler’s memoir, see Truesdell (1995), pp. 237–300; Grattan-
Guinness (1970), 1–21; Dhombres (1988); Bottazzini (1986), pp. 21–33; Panza (1992), 256–264. The issues
of this debate were hard to reconcile with the structure of algebraic analysis (Grattan-Guinness 1970, pp.
6–11). This explains why, both in his 1765 memoir and in other memoirs on the same matter—like Euler
(1749) and (1753)—Euler often and crucially relied on geometric interpretations of his formalism.
90 See Lagrange 1797, art. 58; 1813, art. I.45:

In the foregoing examples, we looked for the derivative equation and then determined the value of
the primitive function y through this equation. Since this last operation is […] the inverse of that
through which one comes down from the primitive function to the derivative ones, it can always been
performed through series, by employing, as we did, a series with indeterminate coefficients, and by
drawing a separate equation from any term affected by a power of x . In this way, one determines
the coefficient one after the others, and one has often the advantage of grasping the general law that
governs these coefficients.

Dans les exemples précédents, nous avons cherch é l’équation dérivée et nous avons ensuite déterminé par cette
équation la valeur de la fonction primitive y. Cette derni ère opération est […] l’inverse de celle par laquelle on
descend de la fonction primitive aux fonctions dérivées; elle peut toujours s’exécuter par le moyen des séries,
en employant, comme nous l’avons fait, une série avec des coefficients indéterminés, et faisant des équations
séparées des termes affectés de chaque puissance de x . De cette manière, on détermine les coefficients les uns
par les autres, et l’on a souvent l’avantage d’apercevoir la loi générale qui règne entre ces coefficients.

91 For other considerations on this matter, see Fraser (1987), p. 40.
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5 The remainder theorem

No complete appreciation of Lagrange’s theory of analytical functions can omit con-
sideration of his remainder theorem. This is not only generally seen as the major
mathematical achievement of the Théorie and the Leçons; it is also the basic result
that the geometrical and mechanical applications of such a theory depend on.

Modern calculus treatises often state the theorem as follows:

Theorem 5 (Modern Remainder theorem) If f (z) is a function of a real variable z
differentiable up to order h + 1 in a right neighborhood of x including x itself (but
possibly not differentiable at order h + 1 at x) and z belongs to this neighborhood
and differs from x , then the difference

f (z)−
h∑

k=0

dk

dzk

[
f (z)

]
z=x

(z − x)k

k! (60)

between this function and the associated Taylor polynomial of order h is equal to

dh+1

dzh+1

[
f (z)

]
z=λ

(z − x)h+1

(h + 1)! , (61)

for some λ strictly between x and z.

Mutatis mutandis, this statement already occured, for example, in Laplace’s Théorie
analytique des probabilités (Laplace 1812, pp. 175–176) and in Lacroix’s Traité du
calcul différentiel et du calcul intégral (Lacroix 1810–1819, vol. III, p. 399), where
it is proved through appropriate integrations by parts.92 Its importance rests on the
possibility it provides of proving that the Taylor series of a suitable class of functions
converges to these functions in an appropriate interval.

Lagrange’s result is essentially different: (i) it involves derivative functions in La-
grange’s sense, rather than differential ratios (as in the versions of Laplace and Lacroix)

92 For a modern version of Laplace’s and Lacroix’s proof, see Giusti (1983), vol. I, pp. 235–237. Giusti
obtains the equality

f (z)−
h∑

k=0

dk

dzk

[
f (z)

]
z=x

(z − x)k

k! = 1

h!
z∫

x

(z − t)h
dh+1

dzh+1

[
f (z)

]
z=t

dt

though induction on h and integration by parts, then observes that, since dh+1

dzh+1

[
f (z)

]
is supposed to be

differentiable in the relevant neighborhood of x, it is also continuous, and so:

1

h!
z∫

x

(z − t)h
dh+1

dzh+1

[
f (z)

]
z=t

dt= 1

h!
dh+1

dzh+1

[
f (z)

]
z=λ

z∫
x

(z − t)h dt= dh+1

dzh+1

[
f (z)

]
z=λ

(z − x)h+1

(h + 1)! .

for some λ strictly between x and z.
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or derivative functions in modern sense (as in the modern version);93 (ii) it concerns

the remainder of the power-series expansion
∑h

k=0
f (k)(x)

k! ξ k =∑h
k=0

f (k)(x)
k! (z − x)k

of the function f (x + ξ) = f (x + (z − x)) = f (z), rather than the difference (60);
(iii) it presupposes the convergence of the relevant series, to the effect that it cannot
be used to prove that this series converges in appropriate cases.

In our understanding, Lagrange’s result is then the following:

Theorem 6 (Lagrange’s Remainder theorem) If ξ is a positive increment such that

the series
∑∞

k=0
f (k)(x)

k! ξ k converges to f (x +ξ), then, for any order h (h = 0, 1, . . .):

f (x + ξ) =
h∑

k=0

f (k)(x)

k! ξ k + ξ h+1

(h + 1)! f (h+1)(x + j), (62)

where j is an appropriate increment such that 0 ≤ j ≤ ξ .

Lagrange was quite explicit in asserting that equality (62) holds (Lagrange 1797,
art. 53; 1813, art. I.40), but he was vague about the conditions under which it does.
We argue the conditions are those expressed in theorem 6, because of the arguments
Lagrange used to prove the theorem: namely, it seems these arguments hold only if∑∞

k=0
f (k)(x)

k! ξ k converges to f (x + ξ) around ξ = 0, so that Lagrange’s remain-
der theorem cannot be part of a more general argument intended to prove that the
power-series expansion of a function f (x +ξ) converges to this same function around
ξ = 0.

We have said that the remainder theorem is the basic result on which the geometric
and mechanical applications of Lagrange’s theory depend, and that its proof depends
on the convergence of the power-series expansion of f (x + ξ) to this same function
around ξ = 0. This is clearly inconsistent with claiming that the convergence of the
power-series expansion of f (x + ξ) to this same function around ξ = 0 is a sufficient
condition for applying the theory of analytical functions to the solution of geometric
and mechanical problems. We reject this last claim, indeed.

According to us, the examination of the arguments Lagrange relied on in the Théorie
to justify these applications shows that these arguments not only require the conver-
gence of the power-series expansion of f (x + ξ) to this same function around ξ = 0

and/or the evaluation of the series
∑∞

k=h+1
f (k)(x)

k! ξ k, but also rely on the admission

that this series can be expressed in the form of a product like ξh+1

(h+1)! f (h+1)(x + j), as

the equality (62) prescribes.94

93 Our use of the differential notation in formulas (60) and (61), and in footnote 92 aims to emphasize this
difference.
94 In our view, the series

∑∞
k=h+1

f (k)(x)
k! ξk is precisely what should count, in Lagrange’s theory, as

the remainder of the power-series expansion of f (x + ξ). The distinction between the evaluation of such
a remainder and the way this remainder is expressed is explicitly introduced by Lagrange himself in the
Leçons:
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5.1 Tangents, areas, speed and acceleration

Examples will be useful for clarification.

5.1.1 Tangents

Let us begin with Lagrange’s treatment of the problem of tangents (Lagrange 1797,
arts. 109–113; Lagrange 1813, arts. II.2–II.6; Lagrange’s argument has been recon-
structed in Grabiner 1990, pp. 159–160bis).

Let u = ϕ(v), u = φ(v) and u = ψ(v) be three functions expressing three dif-
ferent curves that meet each other at a point v = x, so that: ϕ(x) = φ(x) = ψ(x).
For simplicity, suppose that in a right neighborhood I>x of this point, such that the
power-series expansions of ϕ(x + ξ), φ(x + ξ) and ψ(x + ξ) converge to these func-
tions if x + ξ ∈ I>x , these curves are all increasing, their ordinates are positive, and
the ordinate of the first is smaller than or equal to the ordinates of the two others
(appropriate variants of the following argument apply in other cases).

Then, let �1 and �2 be the (non-negative) differences between φ(x + ξ) and
ϕ(x +ξ) and betweenψ(x +ξ) and ϕ(x +ξ), respectively. As ϕ(x) = φ(x) = ψ(x),
from Theorems 4 and 6 it follows that:

�1 = φ(x + ξ)− ϕ(x + ξ) = ξ
[
φ ′(x)− ϕ ′(x)

]

+ξ
2

2

[
φ ′′(x + j[φ] ,2)− ϕ ′′(x + j[ϕ],2)

]

�2 = ψ(x + ξ)− ϕ(x + ξ) = ξ
[
ψ ′(x)− ϕ ′(x)

]

+ξ
2

2

[
ψ ′′(x + j[ψ],2)− ϕ ′′(x + j[ϕ],2)

]
, (63)

where j[ϕ],2, j[φ],2 and j[ψ],2 are three increments depending on x and on the nature
of functions ϕ(v), φ(v), ψ(v), but in any case belonging to [0, ξ ].

Let us assume that ϕ ′(x) = φ ′(x). Since�2 is non-negative, ψ ′(x)−ϕ ′(x) is too.
If it were positive, there would be a positive quantity δ small enough for

�1 −�2 = ξ2

2

[
φ ′′(x + j[φ],2)− ψ ′′(x + j[ψ],2)

]− ξ
[
ψ ′(x)− ϕ ′(x)

]
< 0, (64)

Footnote 94 continued

In the solution I advanced for this problem in […][the Théorie], I began by searching the exact
expression of the remainder of the series, then I determined the limits of this expression. But one
can immediately find these limits in a more elementary and also more rigorous way.

Dans la solution que j’ai donnée de ce problème dans […] [la Théorie], j’ai commencé par chercher l’expres-
sion exacte du reste de la série, ensuite j’ai déterminé les limites de cette expression. Mais on peut trouver
immédiatement ces limites d’une manière plus élémentaire, et également rigoureuse.

(Lagrange 1801, p. 66; 1806, p. 86.)
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whenever 0 < ξ ≤ δ. But in I>x the curve expressed by the function u = ψ(v)

lies between the curves expressed by the functions u = ϕ(v) and u = φ(v) if and
only if �1 ≥ �2. So, in I>x , the former curve lies between the latter ones only if
ψ ′(x) = ϕ ′(x).

It is thus enough to suppose that the curves expressed by the functions u = φ(v) and
u = ψ(v) are two straight lines with equations u = p[φ]v+q[φ] and u = p[ψ]v+q[ψ],

respectively, to conclude that, in I>x , the latter of these straight lines lies between
the curve expressed by the function u = ϕ(v) and the former straight lines only if
p[φ] = p[ψ]. But, as long as these straight lines meet each other at the point v = x,
this means that they coincide. Therefore, there is no straight line passing through the
point v = x that, in I>x , lies between the curve expressed by the function u = ϕ(v)

and the straight line passing through this point whose slope is equal to ϕ ′ (x). This
last line is therefore the tangent to the curve at v = x .

5.1.2 Areas

Consider now, Lagrange’s treatment of the problem of areas (Lagrange 1797, art.
134; 1813, art. II.27; Lagrange’s argument has been reconstructed in Grabiner 1981a,
p. 157; Grabiner 1990, pp. 160bis–162).

Let u = ϕ(v) and u = φ(v) be two functions expressing respectively a curve
referred to a system of orthogonal coordinates and the area under this curve (taken
starting from a certain fixed point). For simplicity, suppose that in a right neighbor-
hood I>x of a generic point v = x such that the power-series expansions of ϕ(x + ξ)

and φ(x + ξ) converge to these functions if x + ξ ∈ I>x , the ordinates of ϕ(v) are
non-negative and increasing (appropriate variants of the following argument apply in
other cases).95

The difference φ(x + ξ)− φ(x) is thus non-negative as well, and

ξϕ(x) ≤ φ(x + ξ)− φ(x) ≤ ξϕ(x + ξ), (65)

whenever x + ξ ∈ I>x . According to theorem 6, this condition reduces to

0 ≤ φ ′(x)− ϕ(x) ≤ ξ

[
ϕ ′(x + j[ϕ],1)− φ ′′(x + j[φ],2)

2

]
, (66)

95 Lagrange explicitly supposed that any function is made up of monotonic pieces. After having presented
his argument, he wrote:

We supposed […] that the ordinates increased or diminished from f (x) up to f (x + ξ): this con-
dition would not obtain if there were a maximum or minimum between these two ordinates. But,
since one can take the interval ξ as small as one likes, it is clear that one will be always able to make
the second ordinate fall before the maximum or minimum, to the effect that the conclusion we have
drawn will remain the same.

Nous avons supposé […] que les ordonnées allaient en augmentant ou en diminuant depuis f (x) jusqu’à f (x +ξ):
cette condition n’aurait pas lieu s’il y avait entre ces deux ordonnées un maximum ou un minimum; mais, comme
on peut prendre l’intervalle ξ assez petit que l’on veut, il est clair qu’on pourra toujours faire tomber la seconde
ordonnée f (x + ξ) en deçà du maximum ou du minimum, et que, par consequant, la conclusion que nous avons
tirée demeurera toujours la même.

On this matter, see Dugac (2003), p. 76.
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where j[ϕ],1 and j[φ],2 are two increments depending on x and on the nature of the
functions ϕ(v) and φ(v), but in any case belonging to [0, ξ ]. But this condition holds
for any non-negative ξ only if φ ′(x) = ϕ(x). Indeed if it were not, it would be enough
that

ξ <
φ ′(x)− ϕ(x)

ϕ ′(x + j[ϕ],1)− 1
2φ

′′(x + j[φ],2)
, (67)

for condition (66) to not hold. Hence, φ ′(x) = ϕ(x).

5.1.3 Speeds and accelerations of rectilinear motions

Finally, consider Lagrange’s treatment of speeds and accelerations of a rectilinear
motion (Lagrange 1797, art. 188; Lagrange (1813), art. III.4; see also Panza 1991–
1992, pp. 184–187 of vol. 45).

Let u = ϕ(v) be a function expressing the space u covered in time v by a point
moving uniformly in a straight line and v = t the initial instant of motion. It fol-
lows that ϕ(t) = 0 and that, starting from this moment, ϕ(v) is non-negative and
increasing. Hence, ϕ(t + θ)− ϕ(t) = ϕ(t + θ) is non-negative too, and expresses the
space covered in a (positive) time θ starting from this instant. Lagrange claimed that
θ can be taken small enough for the movement expressed by the two first terms of the
power-series expansion of ϕ(t + θ) to “draw nearer the real motion than any other
[rectilinear] movement composed by a uniform movement and a uniformly acceler-
ated movement,” so that “the term θϕ ′(t) expresses all that which can there be of
uniform [tout ce qu’il peut y avoir d’uniforme] in the proposed motion considered at
the beginning of time θ ,” whereas “the term θ2

2 ϕ
′′(t) expresses […] all that which

could there be of uniformly accelerated [tout ce qu’il peut y avoir d’uniformement
accéléré] in this motion.” The mechanical implications of his argument do not interest
us here. Consider only the part of it which is supposed to prove that, for any a and b

independent of θ, respectively different from ϕ ′(t) and ϕ ′′(t)
2 , and such that aθ + bθ2

is non-negative, there is a quantity ϑ small enough for

∣∣∣[ϕ(t + θ)− ϕ(t)] −
[
aθ + bθ2

]∣∣∣ >
∣∣∣∣[ϕ(t + θ)− ϕ(t)] −

[
θϕ ′(t)+ θ2

2
ϕ ′′(t)

]∣∣∣∣ ,
(68)

whenever 0 < θ ≤ ϑ .
According to theorem 6, this reduces to the claim that, under the above conditions,

∣∣∣∣[ϕ ′(t)− a
]+

[
ϕ ′′(t)

2
− b

]
θ + ϕ ′′′(t + j[ϕ],2)

3! θ2
∣∣∣∣ >

∣∣∣∣ϕ
′′′(t + j[ϕ],3)

3! θ2
∣∣∣∣ , (69)

where j[ϕ],3 is an increment depending on t and on the nature of function ϕ(v), but
in any case belonging to [0, θ ]. According to Lagrange, this “can be easily proved by
an argument similar” to that used to prove the extension up to the third order of the
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result on which his solution of the problem of tangents is based (Lagrange 1797, art.
111; 1813, art. II.4).

Suppose that u = φ(v) and u = ψ(v) are two new functions such that ϕ(t) =
φ(t) = ψ(t), ϕ ′(t) = ψ ′(t), and ϕ ′′(t) = ψ ′′(t). Suppose also that�1 = ϕ(t +θ)−
φ(t + θ), and �2 = ϕ(t + θ)− ψ(t + θ). From theorem 6 one derives:

�1 = θ
[
ϕ ′(t)− φ ′(t)

]+ θ2

2

[
ϕ ′′(t)− φ ′′(t)

]

+θ
3

3!
[
ϕ ′′′(t + j[ϕ],3)− φ ′′′(t + j[φ],3)

]
,

�2 = θ3

3!
[
ϕ ′′′(t + j[ϕ],3)− ψ ′′′(t + j[ψ],3)

]
(70)

where j[φ],3 and j[ψ],3 are two increments depending on t and on the nature of the
functions φ(v) and ψ(v), but in any case belonging to [0, θ ]. The extension Lagrange
was clearly referring consists in the claim that there is a quantity ϑ small enough for
|�1| > |�2| whenever 0 < θ ≤ ϑ .

Without considering absolute values (that is, assuming �1 and �2 to be both non-
negative), Lagrange argued that for this to happen, it is enough that

[
ϕ ′(t)− φ ′(t)

]+ θ

2

[
ϕ ′′(t)− φ ′′(t)

]
>
θ2

3!
[
φ ′′′(t + j[φ],2)− ψ ′′′(t + j[ψ],3)

]
,

(71)

which, he said, “is obviously possible when ϕ ′(t) − φ ′(t) does not vanish,” and,
if ϕ ′(t) − φ ′(t) = 0, “is still manifestly possible, by decreasing the value of θ
as much as one wishes whenever ϕ ′′(t) − φ ′′(t) does not vanish.” If this claim is
applied to the problem of speeds and accelerations of rectilinear motions—for which
φ(t + θ) = aθ + bθ2 and ψ(t + θ) = θϕ ′(t)+ θ2

2 ϕ
′′(t)—the inequality (71) reduces

to

[
ϕ ′(t)− a

]+ θ

[
ϕ ′′(t)

2
− b

]
> 0. (72)

Now, when referred to this inequality, Lagrange’s first claim is true: if ϕ ′(t) > a, it
is certainly possible that θ be taken small enough, though positive, for

[
ϕ ′(t)− a

]
>

θ
[
b − ϕ ′′(t)

2

]
. But this is not so for his second claim, since, in this case, ϕ ′′(t) −

φ ′′(t) = 0, and nothing insures, in general, that θ
[
ϕ ′′(t)

2 − b
]
> 0. Hence, taken as

such, Lagrange’s argument is flawed, and should be reformulated, by relying on the
fact that any polynomial P(z) of a real variable z takes the sign of its first term when
the absolute value of z becomes small enough (Panza 1991–1992, p. 186 of vol. 45).
However, insofar as such a reformulation still involves the equality (71), the role of
the remainder theorem in the argument remains the same.
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5.1.4 Reflecting on the foregoing examples

The arguments Lagrange used in the three examples we have just seen do not appeal
explicitly to the convergence of the power-series expansion of f (x + ξ) to this same
function around ξ = 0, and such convergence is in fact not enough for them to be cor-
rect.96 The crucial result on which these arguments are based is, rather, the remainder
theorem.

For any non-negative integer h, let R[ f ],h+1 (x, ξ) be the remainder of order h
(h = 1, 2, . . .) of the power-series expansion of a function f (x + ξ), i.e., the series∑∞

k=h+1
f (k)(x)

k! ξ k . The role of this theorem in the three foregoing arguments is that
of ensuring, respectively, that, for any pair of functions f (x + ξ) and g(x + ξ):

(i) R[ f ],2 (x, ξ) and R[g],2 (x, ξ) are such that there is a quantity δ small enough that,
if 0 < ξ ≤ δ and g ′(x)− f ′(x) is positive, then

∣∣R[ f ],2 (x, ξ)− R[g],2 (x, ξ)
∣∣ < ξ

[
g ′(x)− f ′(x)

] ; (73)

(ii) R[ f ],2 (x, ξ) and R[g],1 (x, ξ) are such that

0 ≤ ξ
[

f ′(x)− g(x)
] ≤ ξ R[g],1 (x, ξ)− R[ f ],2 (x, ξ) , (74)

for any positive ξ belonging to an appropriate right neighborhood of 0 only if
f ′(x)− g(x) = 0;

(iii) R[ f ],3 (x, ξ) is such that there is a quantity δ small enough that, if 0 < ξ ≤ δ

, and a and b are independent of θ and respectively different from f ′(x) and
f ′′(x)

2 , then

∣∣∣∣ξ [ f ′(x)− a
]+ ξ2

[
f ′′(x)

2
− b

]
+ R[ f ],3 (x, ξ)

∣∣∣∣ >
∣∣R[ f ],3 (x, ξ)

∣∣ . (75)

It thus seems that, in Lagrange’s view, the remainder theorem insures that, when ξ
approaches zero (though remaining positive), R[ f ],h+1 (x, ξ) behaves as a product like

96 Lagrange himself claimed that this is so. At the end of the proof of the remainder theorem in the Théorie,
he wrote

The perfection of the methods of approximation in which some series are employed not only depends
on the convergence of the series, but also on the possibility of estimating the error resulting from the
terms that are neglected. Concerning this matter, one could say that almost all methods that are used
in the solution of geometrical and mechanical problems are very imperfect. The foregoing theorem
will be useful, in many occasions, in order to confer on these methods the perfection of which they
lack and whiteout which it is often dangerous to use them.

La perfection des méthodes d’approximation dans lesquelles on emploie les séries dépend non seulement de la
convergence des séries, mais encore de ce qu’on puisse estimer l’erreur qui résulte des termes qu’on néglige,
et à cet égard on peut dire que presque toutes les méthodes d’approximation dont on fait usage dans la solution
des problèmes géométriques et mécaniques sont encore très-imparfaites. Le théorème précédent pourra servir,
dans beaucoup d’occasions, à donner à ces méthodes la perfection qui leur manque et sans laquelle il est souvent
dangereux de les employer.

(Lagrange 1797, art. 53; 1813, art. I.40)
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ξ h+1�[ f ],h+1, where �h+1 is a finite factor independent of ξ . When ξ approaches
zero, the inequalities (73), (74), and (75) would then be equivalent to these:

∣∣�[ f ],2 −�[g],2
∣∣ < A − B

ξ

0 ≤ A − B

ξ
≤ �[g],1 −�[ f ],2∣∣∣∣ A

ξ2 + B

ξ
+�[ f ],3

∣∣∣∣ > ∣∣�[ f ],3
∣∣ , (76)

where A and B are finite quantities that are independent of ξ .
We know that the remainder theorem does not in fact insure this, since the incre-

ment j[ f ],h+1 is supposed to belong to an interval whose upper bound is ξ and is thus
actually not independent of this increment. But for our purpose it is more important
to wonder why Lagrange did not merely base his arguments on the equality

R[ f ],h+1(x, ξ) =
∞∑

k=h+1

f (k)(x)

k! ξ k = ξ h+1
∞∑

k=0

f (h+k+1)(x)

(h + k + 1)!ξ
k . (77)

His choice of appealing to the remainder theorem suggests that he was convinced

that the identification of the series
∑∞

k=h+1
f (k)(x)

k! ξ k with a product like ξ h+1�[ f ],h+1
is only guaranteed by the equality

∞∑
k=0

f (h+k+1)(x)

(h + k + 1)!ξ
k = f (h+1)(x + j)

(h + 1)! . (78)

But, why did Lagrange believe this? We suggest the following answer: to feel

justified in considering the series
∑∞

k=0
f (h+k+1)(x)
(h+k+1)! ξ

k in the context of an argument
concerned with particular quantities, Lagrange required to have proved that this series
reduces to a quantity expressed by a suitable, finitary expression, i.e., to an algebraic
quantity or function (of ξ ). This is precisely the content of the remainder theorem.

5.2 Lagrange’s proofs of the remainder theorem

Having clarified the role of the remainder theorem in Lagrange’s theory, we turn to its
proofs. We speak of proofs in the plural, since Lagrange proved this theorem in two
different ways in the Théorie and in the Leçons. Furthermore, in the second edition of
the Théorie, he adjusted the argument provided in the first.

5.2.1 The theorem of the sufficiently small increment

The argument advanced in the first edition of the Théorie explicitly relies on a result
proved at the beginning of the treatise, right after the proof of the power-series expan-
sion theorem (Lagrange 1797, arts. 11–15; 1813, arts. I.3–I.7); we suggest to term it
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‘theorem of the sufficiently small increment’. Lagrange stated it as follows (Lagrange
1797, art. 14; 1813, art. I.6; the same result is stated twice in these articles; we quote
the first occurrence; a third equivalent statement occurs in articles 15 and. I.7 of the
same treatises, respectively):

Theorem 7 (Theorem of the sufficiently small increment)

[…] in the series f (x) + pξ + qξ2 + rξ3 + &c. resulting from the expansion
of f (x + ξ), one can always take ξ so small that whatever term be greater than
the sum of all the following ones, and this also happen for all the values of ξ
smaller [than this].

[…] dans la série f (x) + pξ + qξ2 + rξ3 + &c. qui naît du dévelopment de f (x + ξ), on
peut toujours prendre ξ assez petit pour qu’un terme quelconque soit plus grand que la somme
de tous les termes qui le suivent; et que cela doit avoir lieu aussi pour toutes les valeurs plus
petites de ξ .

The statement is vague. We shall try to clarify the content of the theorem by looking
at its proof.

Lagrange began (Lagrange 1797, art. 11; 1813, art. I.3) by pointing out that f (x)
is “what is independent of the quantity ξ” in f (x + ξ), that is, “the part of f (x + ξ)

that remains when the quantity ξ vanishes.” Hence, f (x + ξ) is “equal to f (x) plus a
quantity that must disappear if ξ = 0,” which could therefore be expressed as a product
having a positive power of ξ as a factor. But, he argued, since “in the expansion of
f (x + ξ) cannot enter any fractional power of ξ ,” it follows that this product has to be
of the form ξ P1(x, ξ), where P1(x, ξ) is a function of x and ξ that “does not become
infinite for ξ = 0,” so that: f (x + ξ) = f (x)+ ξ P1(x, ξ). The same argument can be
iterated—assuming that Ph(x, ξ) = Ph(x, 0)+ ξ Ph+1(x, ξ) (h = 1, 2,…)—to prove
that:97

f (x + ξ) =
h∑

k=0

pk(x)ξ
k + Ph+1(x, ξ)ξ

h+1 (h = 0, 1, . . .), (79)

where p0(x) = f (x), Pk(x, ξ) (k = 1, 2, . . .) are functions of x and ξ that do not
become infinite for ξ = 0, and pk(x) = Pk(x, 0).

If the power-series expansion theorem is accepted, this argument poses no prob-
lems, since the crucial equalities Ph(x, ξ) = Ph(x, 0) + ξ Ph+1(x, ξ) (h = 0, 1,…),
where P0(x, ξ) = f (x + ξ), immediately follow from this theorem, namely from
the equality Ph(x, ξ) = ∑∞

k=h pk(x)ξ k−h, if ξ is small enough for the power-series
expansion of f (x + ξ) to converge to this function.

Fraser (1987, pp. 42–43) has suggested a different interpretation, however. For him,
Lagrange’s proof of the equalities (79) is part of his proof of the power-series expan-
sion theorem. This last proof should thus not be understood in the way we suggested in
Sect. 3.1. Fraser thinks that in proving the power-series expansion theorem Lagrange
did not suppose that any function f (x + ξ) has a generalized power-series expansion:

97 As pointed out in footnote 41, we use ‘pk (x)’ (k = 0, 1, …) to replace Lagrange’s symbols ‘ f x’, ‘p’,
‘q’, &c. In the same vein, we use ‘Ph+1(x, ξ)’ (h = 0, 1, . . .) for Lagrange’s symbols ‘P’, ‘Q’, ’R’, &c.
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having proved that “no expansion of f (x +ξ) in powers of ξ can contain any fractional
or negative powers of ξ ,” he instead proved the equalities (79) and used them to obtain
the equality

f (x + ξ) =
∞∑

k=0

pk(x)ξ
k . (80)

According to Fraser, Lagrange’s proof of the equalities (79) rests then on an implicit,
and unjustified lemma he calls ‘factor lemma’:

Lemma 1 (Factor lemma) If g(x, ξ) is a function of x and ξ such that g(x, 0) = 0,
then g(x, ξ) = ξαG(x, ξ), where α > 0 and G(x, ξ) is a function of x and ξ that
becomes neither infinite nor null for ξ = 0.

In our view, this interpretation involves at least three difficulties.
The first concerns functions like x log(1 + ξ) having log(1 + ξ) as a factor. To

insure that these functions satisfy the factor lemma—for example, that x log(1 +
ξ) = ξαG(x, ξ), for some appropriate positive exponent α and function G(x, ξ) —,
Lagrange could have appealed to two arguments. He could either have observed that
log(1 + ξ) can be expanded in a power series, or he could have relied on the equality
(32) in order to rewrite this factor under the form

r (1 + ξ)
1
r − r = ξ + 1 − r

2r
ξ2 + &c. = ξ

(
1 + 1 − r

2r
ξ + &c.

)
, (81)

with r infinitely large. Still, as already observed above (especially footnote 79), both
in the Théorie and in the Leçons, Lagrange got the power-series expansion of the
logarithm by appealing to the power-series expansion theorem, and deduced, in the
Leçons, the equality (81) from this very power-series expansion. Hence, had he actu-
ally relied on the factor lemma in order to proof the power-series expansion theorem,
he would have fallen into a circularity. No doubt, the power-series expansion of the
logarithm could have been obtained by different arguments than Lagrange’s. But this
would hardly have been done without either supposing that log(1 + ξ) has a power-
series expansion or relying on some geometric arguments involving the quadrature of
the hyperbola.

The second difficulty concerns the very nature of a proof of equalities (79) based
on the factor lemma. This proof would consist, indeed, in a reiteration of the following
argument:

(i) Ph(x, ξ) = ph(x)+ P∗
h+1 (x, ξ)

(ii) Ph(x, ξ) = ph(x)+ ξαPh+1 (x, ξ)
(iii) Ph(x, ξ) = ph(x)+ ξ Ph+1 (x, ξ) ,

where P∗
h+1 (x, ξ) is such that P∗

h+1 (x, 0) = 0, α is positive, Ph+1 (x, ξ) becomes
neither infinite nor null for ξ = 0, and P0(x, ξ) = f (x + ξ) , p0(x) = f (x). The
factor lemma would enter into this argument to justify the passage from (i) to (ii),
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whereas the passage from (ii) to (iii) would be justified by the previous conclusion
that “no expansion of f (x + ξ) in powers of ξ can contain any fractional or negative
powers of ξ .” But, neither this lemma, nor this conclusion are suitable for justifying the
assumption of (i), that is, the supposition that Ph(x, ξ) is equal to Ph(x, 0) = ph (x)
plus a function of x and ξ that vanishes for ξ = 0. Now, if the power-series expansion
theorem is not accepted, this supposition is hard to justify, especially in the general
case where Ph(x, ξ) is not merely a function of x + ξ, but rather a function of x and
ξ . Hence the factor lemma would not have been the only unjustified strong assump-
tion entering into such a proof. Lagrange would thus have derived no real advantage
from proving the power-series expansion theorem this way, rather than the way we
described in Sect. 3.1.

The third difficulty relates to a simple remark: neither the equalities (79) nor their
proof figure in the Leçons. Had Lagrange conceived these equalities as part of his proof
of the power-series expansion theorem, he would have regarded them as a fundamental
piece of his theory and would hardly have excluded them from the Leçons.

These difficulties suggest not adopting Fraser’s interpretation and maintaining that
Lagrange’s proof of equalities (79) is not part of his proof of the power-series expansion
theorem. This is because we discard Fraser’s suggestion and consider that Lagrange’s
proof of equalities (79) relies on this very theorem, namely on the identification of the
functions Ph(x, ξ) with the series

∑∞
k=h pk(x)ξ k−h .

But then, what role do equalities (79) have in Lagrange’s theory? If this question
had no plausible answer, Fraser’s interpretation would gain credence, despite its dif-
ficulties. Still, a plausible answer does exist: these equalities allow the proof of two
other results.

The first consists in the following equalities (Lagrange 1797, art. 11; 1813, art. I.3):

Ph+1(x, ξ) = Ph(x, ξ)− ph(x)

ξ
;

ph+1(x) =
[

Ph(x, ξ)− ph(x)

ξ

]
ξ=0

(h = 0, 1, . . .). (82)

These equalities, which follow immediately from equalities (79), are algorithmi-
cally equivalent to the equality involved in the modern definition of derivatives as
limits of the incremental ratio. 98 But they provide no operator endowed with an alge-
bra and specific properties, and allow the (recursive) computation of the derivatives

98 Note however the difference between

ph+1(x) =
[

Ph(x, ξ)− ph(x)

ξ

]
ξ=0

that is,
f (h+1)(x)

(h + 1)! =
⎡
⎣ Ph(x, ξ)− f (h)(x)

h!
ξ

⎤
⎦
ξ=0

and

f (h+1)(x) =
[

f (h)(x + ξ)− f (h)(x)

ξ

]
ξ=0

.
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of f (x) only if it is possible to factor out the increment ξ from the numerator of the
relevant ratios.99 This is not a problem for Lagrange, since, in his view, the derivatives
of f (x) are not defined by these equalities, which merely provide a procedure for
computing them in some cases.

The second result is just the theorem on the sufficiently small increment. To
prove it (Lagrange 1797, art. 14; 1813, arts. I.6) , Lagrange identified the remain-
ders ξ h Ph(x, ξ) (h = 1, 2 . . .) with the series

∑∞
k=h pk(x)ξ k and used the equali-

ties Ph−1(x, ξ) = ph−1(x) + ξ Ph(x, ξ) to argue that the products ξ Ph(x, ξ) vanish
for ξ = 0. Hence, he implicitly used the equality

∑∞
k=0 pk+h(x)ξ k = Ph(x, ξ) =

Ph−1(x,ξ)−ph−1(x)
ξ

, which makes it clear that he was not proving but rather assuming

the convergence of
∑∞

k=0 pk(x)ξ k to f (x + ξ) around ξ = 0.
To be more precise, the proof runs as follows.
Since ξ Ph(x, ξ) are functions of ξ that vanish for ξ = 0, they can be taken as

the expressions of curves referred to a Cartesian system of co-ordinates ξ, y passing
through the origin of this system. Moreover, unless such an origin is a singular point
of these curves—which can be the case only if x takes certain particular values—these
curves are continuous around it 100 and thus approach the ξ -axis before cutting it, so
as to come so close that their distances from it become smaller than any given positive
quantity. Hence for any given positive quantity, it is always possible to find a positive
quantity δ such that the ordinates y = ξ Ph(x, ξ) of these curves are smaller than this
quantity in absolute value, if |ξ | ≤ δ.101

99 It follows that these equalities lead to the determination of the derivatives of f (x) only for algebraic
functions, since in case of transcendental ones, ξ can be factored out from the differences Ph(x, ξ)− ph(x)
only replacing Ph(x, ξ) with their power-series expansions. Moreover—as Lagrange remarked, consider-
ing the example of the function f (x) = √

x (Lagrange 1797, art. 13; 1813, art. I.5)—even in the case of
algebraic functions can sometimes be “more expeditious” to compute the derivatives of f (x) by relying on
the power-series expansion of f (x + ξ).
100 Lagrange wrote: “after this point.” He thus seems that he tooke ξ to be non-negative. The generalization
of his argument to the case of any ξ is easy, however.
101 To avoid misunderstandings we quote Lagrange:

[…] consider the curve of which ξ would be the abscissa and one of the […] functions [ξ Ph(x, ξ)]
the ordinate. This curve will cut the axis in the origin of the abscissas, and, unless this point is singu-
lar, which can only happen for some particular values of x […], the path of the curve will necessarily
be continuous after this point. Hence, this curve will gradually come near the axis before cutting
it, to the effect that it will approach it within a quantity smaller than any given quantity. Thus, one
could always find an abscissa corresponding to an ordinate smaller that any given quantity, and then
any value of x smaller [than this one] will also correspond to an ordinate smaller than the given
quantity.

[…] en considérant la courbe dont ξ serait l’abscisse, et l’une de[s][…] fonctions [ξ Ph (x, ξ)] l’ordonnée, cette
courbe coupera l’axe à l’origine des abscisses; et, à moins que ce point ne soit un point singulier, ce qui ne peut
avoir lieu que pour des valeurs particulières de x […], le cours de la courbe sera nécessairement continu depuis
ce point; donc elle s’approchera peu à peu de l’axe avant de le couper, et s’en approchera par conséquent d’une
quantité moindre qu’aucune quantité donnée; de sorte qu’on pourra toujours trouver une abscisse ξ correspon-
dant à une ordonn ée moindre qu’une quantité donnée; et alors toute valeur plus petite de ξ répondra aussi à des
ordonnées moindres que la quantité donnée.

So Lagrange did not explicitly refer to absolute values, but, as it is obvious that he did not restrict his
arguments to increasing functions, this is implicit.
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It follows that, insofar as ph−1(x) does not vanish—which can only happen if x
takes certain particular values—it is possible to find a positive quantity δ such that∣∣ξ h Ph(x, ξ)

∣∣ < ∣∣ξ h−1 ph−1(x)
∣∣ , if |ξ | ≤ δ. But as ξ h Ph(x, ξ) = ∑∞

k=h pk(x)ξ k,

this means that it is possible to find a positive quantity δ such that
∣∣ξ h−1 ph−1(x)

∣∣ >∣∣∑∞
k=h pk(x)ξ k

∣∣ , if |ξ | ≤ δ.
This argument holds only if the upper bound δ of the absolute values of ξ depends

on h and x . Lagrange’s language has poor tools for specifying this necessary condition.
Still, it is clear that his argument can at most prove the following result:

Theorem 8 For any function f (x + ξ), any non-negative integer h, and any value
of x such that this function has a power-series expansion

∑∞
k=0 pk(x)ξ k and ph(x)

does not vanish, there is a positive quantity δ such that

|ξ | ≤ δ ⇒
∣∣∣ξ h ph(x)

∣∣∣ >
∣∣∣∣∣

∞∑
k=h+1

pk(x)ξ
k

∣∣∣∣∣ . (83)

But, does Lagrange’s argument actually prove this theorem? We claim it does.
The remainders ξ Ph(x, ξ) are understood in this argument as geometric quantities,

namely ordinates of curves. Lagrange thus seems to have followed an old tradition in
conceiving segments as universal magnitudes, i.e., magnitudes capable of representing
quantities of any kind. This allowed him to reduce what he tooke to be a property of
any function to a property of one-piece curves. Insofar as the former is a property of
any function, there is no need to justify the fact that the functions ξ Ph(x, ξ) have it.
But insofar as one-piece curves can be opposed to multi-piece curves, this property
can be viewed as a special one.

Thus, by introducing curves alongside functions, Lagrange managed to transpose a
property of certain curves—namely one-piece curves—to all functions. Though, muta-
tis mutandis, this property is what we call ‘continuity’ (following Cauchy), Lagrange
did not view it as a property of a class of functions, but rather as a property of one-piece
curves reflected in a property of any function: in his view, its introduction obeys only
to a descriptive purpose and not to the purpose of characterizing an appropriate class
of functions (Grabiner 1990, p. 143; 1981a, p. 95).

Furthermore, insofar as what is described is the behavior of a one-piece curve in
the neighborhood of a point where it is defined, this property does not concern this
point but a neighborhood of it. In other words, Lagrange was not saying that a function
f (ξ) is continuous at some point ξ = a if (and only if), for any given positive quantity
ε, there is a positive quantity δ such that | f (ξ)− f (a)| < ε, if |ξ − a| ≤ δ. He was
rather arguing that any function f (ξ) which is defined for a certain value ξ = a—
which is not a singular one—is such that, for any given positive quantity ε, there is a
positive quantity δ such that f (ξ) is defined and | f (ξ)− f (a)| < ε, if |ξ − a| ≤ δ.102

102 Despite such an essential difference, the way Lagrange formulated his property certainly prefigures
Cauchy’s definition and even the Weierstrassian ε-δ interpretation of it. This is not an isolated fact: in order
to prove the remainder theorem, Lagrange used several arguments that are amazingly close to Cauchy’s
and Weierstrass’s techniques. The point has been often made (for example by Grabiner 1981a, pp. 56–76,
and Grabiner 1990, pp. 171–214), and we shall not dwell on it. We shall confine ourselves instead to a
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Once this last statement is accepted, Lagrange’s argument seems to be thoroughly
correct and actually to prove theorem 8.103 As we shall see in the next section, this last
theorem is, however, too weak for correctly playing the role that, in the first edition
of the Théorie, Lagrange assigned to the theorem of the sufficient small increment
within his proof of the remainder theorem.

5.2.2 Two lemmas for the remainder theorem: presuppositions of uniformity

The theorem of the sufficient small increment enters into this proof as a premise for
proving a lemma from which the remainder theorem is then deduced. In the second
edition of the Théorie, Lagrange proved the same lemma by relying on the equality
f (x +ξ) = f (x)+ξ P1(x, ξ) rather than on the former theorem.104 Still, the argument
in the second edition presents difficulties similar to those presented by that of the first
edition.

In the Leçons, this lemma is replaced by another lemma whose proof depends nei-
ther on the theorem of the sufficiently small increment nor on the equality f (x + ξ) =
f (x)+ ξ P1(x, ξ), or, more generally, on the equalities (79). This proof is also flawed,
however, and for reasons similar to those that undermine the proofs of the lemma of
the Théorie.

It therefore seems convenient to consider both lemmas before turning to the proofs
of the remainder theorem.

5.2.2.1 The lemma of the Théorie The lemma of the Théorie is the following
(Lagrange 1797, art. 48; 1813, art. I.38; the proofs are given in the same articles):

Lemma 2 (Lemma of the Théorie)

If a prime function of x like f ′(x) is always positive for any value of x from
x = a up to x = b, supposing that b be> a, the difference of the primitive func-
tions corresponding to these two values of x, i.e., f (b)− f (a), will necessarily
be a positive quantity.

Si une function prime de x, telle que f ′(x) , est toujours positive pour
toutes les valeurs de x, depuis x = a jusqu’ à x = b, b étant > a, la
différence des fonctions primitives qui répondent à ces deux valeurs de x,
savoir, f (b)− f (a), sera nécessairement une quantité positive.

Footnote 102 continued
reconstruction of these arguments within the context of Lagrange’s theory, which is quite different from
Cauchy’s and Weierstrass’s versions of the calculus (Fraser 1987, p. 52).
103 To prove theorem 8, it is necessary to identify the absolute value of ph−1(x) (h = 1, 2,…) with
the positive quantity ε. If this identification is left out, Lagrange’s argument provides a proof for another
theorem that he did not state explicitly, and that could be formulated as follows: for any function f (x + ξ),
any natural number h, any value of x such that this function has a power-series expansion

∑∞
k=0 pk (x)ξ

k ,

and any positive quantity ε, there is a positive value δ such that |ξ | ≤ δ ⇒
∣∣∣∑∞

k=h pk (x)ξ
k
∣∣∣ < ε.

104 It follows that—according to our understanding—the only effective role that the equalities (79) for
h > 0 have in the second edition of the Théorie is that of allowing the equalities (82) to be proved.
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Once more, the statement is vague. In to-day’s French, ‘positif’ often means ‘non-
negative’. But it is unclear whether Lagrange took ‘positif’ to mean this or rather
‘greater than zero’ or ‘positive’, in current English. Though this is a crucial detail if
the function f (x) is conceived as an algebraic quantity rather than as the expression
of a curve, Lagrange was apparently uninterested in it. Because he sought generality,
one could argue. But generality could hardly be a reason for licensing conflating the
conditions α > 0 and α ≥ 0, when an argument or result turns on their distinction.
Hence, we find it hard to account for Lagrange’s attitude. We shall therefore recon-
struct his arguments and results by interpreting them as strongly and charitably as
possible.

Lagrange’s proof can be divided into two parts (a reconstruction of this proof is
provided by Grabiner 1990, pp. 219–221).

The first part is different in the two editions of the Théorie.
In the first edition, he relied on the theorem of the sufficiently small increment to

state that ξ can be taken such that the term ξ f ′(x) in the power-series expansion of

f (x + ξ) be greater (in absolute value) than
∑∞

k=2
f (k)(x)

k! ξ k . Next, he took advantage
of this possibility to conclude that, if f ′(x) is “positif,” ξ can be taken small enough,

while remaining “positif,” for f (x + ξ)− f (x) =∑∞
k=1

f (k)(x)
k! ξ k to be “positif,” too.

In the second edition, he relied on the equality f (x + ξ) = f (x) + ξ P1(x, ξ)
and remarked that, insofar as P1(x, 0) = p1(x) = f ′(x), it follows that, if f ′(x)
is “positif, ” then, “from ξ = 0 up to a certain value of ξ, which one could take as
small as one wishes [depuis ξ = 0 jusqu’à une certaine valeur de ξ , qu’on pourra
prendre aussi petite qu’on voudra],” P1(x, ξ) has to be “positif ” too. He then used this
to conclude that, if f ′(x) is “positif,” ξ can be taken small enough, while remaining
“positif,” for f (x + ξ)− f (x) to be “positif ” too.

Let us consider these two arguments separately, by supposing—to begin with—that
f ′(x) > 0.

For the former argument to hold, it is enough to take the theorem of the sufficiently
small increment to be equivalent to Theorem 8. If f ′(x) > 0, it is indeed enough to
apply this last theorem for h = 1, together with Theorem 4, to conclude that there is
a positive quantity δ such that

0 < ξ ≤ δ ⇒
∞∑

k=1

f (k)(x)

k! ξ k > 0, (84)

from which

0 < ξ ≤ δ ⇒ f (x + ξ)− f (x) > 0 (85)

follows, if
∑∞

k=1
f (k)(x)

k! ξ k is replaced with f (x + ξ)− f (x).
For the latter argument to hold, it is necessary that the function P1(x, ξ) possess the

same property that Lagrange assigned to all the functions ξ Ph(x, ξ) (h = 1, 2, . . .) in
his proof of the theorem of the sufficiently small increment. If f ′(x) = P1(x, 0) > 0,
it follows that P1(x, ξ) = f (x +ξ)− f (x) > 0 in a right neighborhood of ξ = 0, and
there is thus a positive quantity δ such that the implication (85) holds. The assumption
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that P1(x, 0) = f ′(x) is not trivial, however. Either it is licensed by taking the first

derivative of a function f (x) to coincide by definition with
[

f (x+ξ)− f (x)
ξ

]
ξ=0

,which

is incompatible with Lagrange’s theory. Or it depends on the assumption that f (x +ξ)
has an expansion whose two first terms are f (x) and p0(x)ξ . But if this is assumed,
Lagrange’s latter argument—which is, at first glance, independent of the assumption
that f (x + ξ) has a power-series expansion—reduces to a merely linguistic variant of
the former.

The two arguments also resemble each other if it supposed that f ′(x) = 0. Nei-
ther of them can be used to prove implication (85), or even the weaker implication
0 < ξ ≤ δ ⇒ f (x + ξ) − f (x) ≥ 0. This means that either Lagrange excluded the
case f ′(x) = 0 from the range of his lemma—that is, he took the adjective ‘positif’
applied to both f ′(x) and f (x + ξ)− f (x) to mean ‘greater than zero’—or he sup-
posed that f ′(x) = 0 only if f (x) reduces to a constant (so that f (x +ξ)− f (x) = 0),
i.e., he excluded the values of x for which f ′(x) = 0, for any function that does not
reduce to a constant.

These are not the only difficulties of Lagrange’s proofs of the lemma of the Théorie.
A much more relevant one concerns the second part of these proofs, which is the same
in the two editions of the Théorie. To see this difficulty some preliminary remarks are
necessary.

In both foregoing arguments providing the first part of Lagrange’s proof, as well as
in Lagrange’s proof of the theorem of the sufficiently small increment, the functions
ξ Ph(x, ξ) (h = 1, 2, . . .) are considered as functions of the variable ξ alone. The
variable x is simply supposed to be such that the value ξ = 0 is not a singular value
of these functions and the function f (x + ξ) has a power-series expansion. Lagrange
merely supposed that for any function g(ξ) defined in ξ = 0 for which this point is
not singular, there is a neighborhood of this same point where |g(ξ)− g(0)| is smaller
than any given positive quantity ε. There is thus no room for any ambiguity concern-
ing the uniformity of this property. Indeed, if the variable x is not considered, this
neighborhood can only depend on ε.

When the functions ξ Ph(x, ξ) are instead considered as functions of two variables
x and ξ, the situation changes. Since it is one thing to assert that:

– [Con.1] A function g(x, ξ) which is defined for a certain value ξ = a whenever x
belongs to a certain interval Ix , is such that, for any given positive quantity ε and
for any x in Ix , there is a positive quantity δ such that, if |ξ − a| ≤ δ, then g(x, ξ)
is defined and |g(x, ξ)− g(x, a)| < ε.

And quite another to assert that:

– [Con.2] A function g(x, ξ) which is defined for a certain value ξ = a whenever
x belongs to a certain interval Ix , is such that, for any given positive quantity ε,
there is a positive quantity δ such that, for any x in Ix , if |ξ − a| ≤ δ, then g(x, ξ)
is defined and |g(x, ξ)− g(x, a)| < ε.

In the latter case, the property possessed by g(x, ξ) is uniform, since δ = δ(ξ); in the
former case, it is not, since δ = δ(x, ξ).

Suppose now that the functions ξ Ph(x, ξ) be understood, both in Lagrange’s proof
of the theorem of the sufficiently small increment and in the two foregoing arguments,
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as functions of the two variables of x and ξ . Nothing would insure that these functions
enjoy the property [Con.2]. The property that one would be licensed to ascribe to
them would rather be [Con.1]. In this way, one would obtain linguistic variants of
Lagrange’s proof and arguments, suitable for proving theorem 8 and implication (85)
respectively, under the assumption that δ depends on x (and that f ′(x) > 0).

But for the second part of Lagrange’s proofs of the lemma of the Théorie to be
sound, the implication (85) has to enter into it under the assumption that δ be indepen-
dent of x . And this assumption would be permitted only if it were possible to assign
to the functions ξ Ph(x, ξ) the property [Con.2].

Look at the details. Lagrange took ξ to be equal to b−a
n+1 . If b > a, for any positive

quantity δ there is a non-negative integer n such that b−a
n+1 ≤ δ. By relying on the impli-

cation (85), he concluded then that if all the derivatives f ′
(

a + k b−a
n+1

)
(k = 0, 1,…,n)

are “positif,” also the differences

f

(
a + (k + 1)

b − a

n + 1

)
− f

(
a + k

b − a

n + 1

)
(86)

and their sum

n∑
k=0

[
f

(
a + (k + 1)

b − a

n + 1

)
− f

(
a + k

b − a

n + 1

)]
= f (b)− f (a) (87)

are “positif.” Next, he deduced from this that if f ′ (x) is “positive” whenever x takes
all possible values “from x = a up to x = b [depuis x = a jusqu’à x = b]”, the
difference f (b)− f (a) is “positif ” too.

This argument is clearly based on the assumption that the functions ξ Ph(x, ξ) have
property [Con.2], which is an unproved and hardly acceptable assumption of uni-
formity. This makes this argument, and then Lagrange’s proof of the lemma of the
Théorie flawed.

It is implausible to argue that Lagrange saw the problem and deliberately made this
strong assumption. It is more likely that he could not tell the properties [Con.1] and
[Con.2] apart.

Having looked at this crucial difficulty of Lagrange’s proof, let us now try to elu-
cidate the exact content of the lemma.

Supposing that x take all the possible values “from x = a up to x = b,” it seems that
Lagrange referred unambiguously to the closed interval [a, b]. Lagrange’s argument
requires, however, neither that f ′ (b) > 0 nor that f ′ (b) ≥ 0. One could thus concede
that the antecedent of the lemma reduces to the condition that f ′ (x) is defined and is
“positif ” in [a, b), provided of course that f (x) is defined for x = b.

But how is ‘positif’ to be understood here? If we took this to mean ‘greater than
zero,’ or we took Lagrange to assume that condition f ′(x) = 0 may hold only if
f (x) reduces to a constant, his proof would pose no other problems. However, as we
shall see later, in proving the remainder theorem in the Théorie, Lagrange applied his
lemma under the condition that f ′(x) ≥ 0 and f (x) is not constant. Is there a way
to understand this lemma in such a way that it could be applied under this condition?
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As a matter of fact, there is one, but it depends on assumptions that are far from trivial.
Let us consider it.

It is clear that if f ′(a) �= 0, and the interval [a, b) contains only a finite number
of isolated values of x for which f ′(x) = 0, it is always possible to chose n so that
these values do not include anyone of the values a + k b−a

n+1 (k = 0, 1,…,n).105 In this
case, equality (85) applies and—apart for the unjustified assumption of uniformity—
Lagrange’s argument holds.

The requirement that f ′(a) �= 0 is too restrictive, however, since, in proving the
remainder theorem in the Théorie, Lagrange applied his lemma to two functions whose
derivatives vanish for the right bound of the relevant interval. To justify Lagrange’s
proof, it would thus be necessary to eliminate this requirement from the previous
statement. Fortunately, this can be done. The reason is the following.

Assume that f ′(a) = 0 and that the interval [a, b) contains only a finite number of
isolated values of x for which f ′(x) = 0. For any positive value δ, it is then possible
to take a value ā of x such that 0 < a − ā < δ and f ′(ā) �= 0. Now Lagrange clearly
supposed that if f ′(x) is defined for any x in [a, b), then f (x) is defined there as
well, and is thus such that, for any positive quantity ε, there is a positive quantity δ
such that | f (a)− f (ā)| < ε if |a − ā| < δ. From this it follows that for any positive
quantity ε it is possible to take a value ā of x such that the difference f (b) − f (ā)
differs from the difference f (b) − f (a) for a quantity that is smaller than ε. This is
enough to eliminate the condition f ′(a) �= 0, and to conclude that, if the interval
[a, b) contains only a finite number of isolated values of x for which f ′(x) = 0, the
equality (85) applies even if f ′(a) = 0.

All these considerations bring us to suggest the following reformulation of the
lemma of the Théorie:106

Lemma 3 If f (x) is not constant and its first derivative f ′(x) is defined and is non-
negative for any x in an interval [a, b) (a < b ) that does not contain infinitely many
values of x for which f ′(x) vanishes, and is such that f (x) is defined for x = b, then
the difference f (b)− f (a) is non-negative, too.

5.2.2.2 The lemma of the Leçons The lemma of the Leçons is the following (Lagrange
1801, p. 66; 1806, p. 86; we quote from the second edition; in the first one, Lagrange
considers only a right neighborhood of the origin):

Lemma 4 (Lemma of the Leçons) A function that vanishes when the variable does
will necessarily have, insofar as the variable increases positively, some finite values
having the same sign as those of its derivative function, or the opposite sign, if the
variable increases negatively, insofar as the values of the derivative function will con-
serve the same sign and do not become infinite.

105 In fact, it suffices that among the isolated values of x belonging to [a, b) for which f ′(x) = 0 there
are not infinitely many such that x−a

b−a is rational.
106 Ovaert (1976, pp. 187–188), and Dugac (2003, p. 74) also take f ′(x) and f (b)− f (a) to be non-neg-
ative, but Ovaert takes the interval from a to b to be closed.
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Une fonction qui est nulle lorsque la variable est nulle, aura nécessairement,
pendant que la variable croîtra positivement, des valeurs finies et de même sig-
ne que celles de sa fonction dérivsée, ou de signe opposé si la variable croît
négativement, tant que les valeurs de la fonction dérivée conserveront le même
signe, et ne deviendront pas infinies.

The statement is vague in this case also. To begin with, the terms ‘même signe’ and
‘signe opposé’ are not clear: for two functions to have the same sign, do they both have
to be greater or smaller than zero? Or is it enough for them both to be non-negative or
non-positive? Furthermore, it is not clear on what intervals the variable is supposed to
be increasing or decreasing, or the function to have the same sign as its first derivative
or the opposite sign.

Although these details are crucial if the function is to be viewed as an algebraic
quantity rather than as the expression of a curve, Lagrange ignored them, just as he
did in the Théorie for analogous details.107 Here again, we can only confine ourselves
to a reconstruction of his arguments and results, interpreting them as strongly and
charitably as possible.

To prove his lemma (Lagrange 1801, pp. 67–69; 1806, pp. 89–92),108 Lagrange
began by remarking that, if the first derivative f ′(x) of a function f (x) is not infinite
for a certain value of x, then, for this same value of x, the first two terms of the
power-series expansion of f (x + ξ ) are certainly “exact.” Hence, he continued, even
if the whole power-series expansion of f (x + ξ ) is not defined for this value of x, if
f ′(x) is not infinite for such a value, f (x + ξ) has, for this same value, an expansion
that begins with f (x)+ f ′(x)ξ, and all whose other terms include powers of ξ whose
exponent is greater that 1, to the effect that:

f (x + ξ) = f (x)+ ξ [ f ′(x)+ V (x, ξ)], (88)

where V (x, ξ) is a function of x and ξ such that V (x, 0) = 0.
These are strange claims within the context of Lagrange’s theory. Since, according

to the basic principles of this theory, f ′(x) is not defined for a certain value of x
if the two first terms of the power-series expansion of f (x + ξ) are not “exact” for
this value. It follows that, according to these principles, claiming that f ′(x) is not

107 This did not prevent Lagrange from remarking (Lagrange 1801, pp. 69–70; 1806, pp. 92–93) that within
the differential calculus a similar but incorrect statement can be proved. He argued that, according to this

calculus, if dy
dx is always “positif ” in an appropriate interval,

z∫
0

dy
dx dx should be too, since this is defined

as the sum of the ratios dy
dx . Then he remarked that this is contradicted by the function y = x

a(a−x) , since

dy
dx = 1

(a−x)2
is always “positf,” whereas

z∫
0

dy
dx dx = z

a(a−z) becomes “negatif ” when z is greater than a.

This is a strange claim, however: if z ≥ a, according to the principles of the differential calculus correctly

understood,
z∫

0

dx
(a−x)2

is not defined, so that the example of the function y = x
a(a−x) contradicts neither

the previous statement nor these principles.
108 A reconstruction of Lagrange’s proof is given in Grabiner (1981a), pp. 122–126, and (1990), pp. 181–
186. A simplified version of it—with the same shortcomings—is offered by Lacroix (1810–1819), vol. I,
p. 382.
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infinite for a certain value of x is the same as claiming that the first two terms of the
power-series expansion of f (x + ξ) are “exact” for this value. For the former claim
not to implicitly contain the latter, the function f ′(x) has to be defined independently
of the first two terms of the power-series expansion of f (x + ξ), for instance as the
result of an appropriate algorithm to be applied to f (x), or as the limit (or the value)
of the ratio f (x+ξ)− f (x)

ξ
when ξ tends (or is equal) to 0. Hence, the way as Lagrange

expressed himself here seems to implicitly contradict the principles of his theory, and
tacitly imply that f ′(x) is not defined according to them.

This could be viewed as no more than a slip of the pen. But then the starting point of
Lagrange’s proof cannot be taken to be the supposition that the first derivative f ′(x)
of a function f (x) is not infinite (as it appears at first glance), but rather the assumption
that equality (88) holds.

Be that as it may, Lagrange granted this equality, then applied to the function V (x, ξ)
a non-geometrical version of the argument he applied to the functions y = ξ Ph(x, ξ)
(h = 1, 2, . . .) in his proof of the theorem of the sufficiently small increment: if ξ
increases imperceptibly in absolute value starting from 0, the absolute value of V (x, ξ)
will increase just as imperceptibly from V (x, 0) = 0, so that, for any positive quantity
ε, there is a positive quantity δ such that109

|ξ | ≤ δ ⇒ |V (x, ξ)| < ε. (89)

Everything said in relation to this last argument holds here too. Lagrange was
merely describing the behavior of the function V (x, ξ), understood as a function of
the single variable ξ, in the neighborhood of the origin (where it is supposed to be
defined). Still, if this functions is taken to be a function of x and ξ, this description
amounts to taking for granted that it has the property [Con.1], but not necessarily the
property [Con.2].

Aside from this, it is far from clear whether Lagrange identified the function V (x, ξ)

with a generalized power series or with the ratio f (x+ξ)− f (x)−ξ f ′(x)
ξ

. As p1(x) =
f ′(x), from the comparison of the equality (88) with the second of the equalities (79),
one gets that V (x, ξ) = ξ P2(x, ξ). However, whereas in deriving these last equali-
ties, Lagrange had apparently assumed that the function f (x + ξ) has a power-series
expansion and identified the function P2(x, ξ) with the power series

∑∞
k=0 pk+2(x)

109 On this argument, see Grabiner (1974), p. 363. Here is what Lagrange wrote:

[…] since V vanishes when ξ does, it is clear that, letting ξ insensibly increase gradually after zero,
the value of V will also insensibly increase after zero, either positively or negatively, up to a certain
point, after which it will be able to decrease. Hence, one will always be able to assign to ξ such a
value that the corresponding value of V, be, independently of the sign, smaller than a given quantity,
and that the values of V be smaller [than this quantity] also for the values of ξ smaller than this
value.

[…] puisque V devient nul lorsque ξ devient nul, il est clair qu’en faisant croitre ξ par degrés insensibles depuis
zéro, la valeur de V croîtra aussi insensiblement depuis zéro, soit en plus ou en moins, jusqu’à un certain point,
après quoi elle pourra diminuer; que par conséquent on pourra toujours donner à ξ une valeur telle que la valeur
correspondante de V, abstraction faire du signe, soit moindre qu’une quantité donnée, et que par les valeurs
moindres de ξ la valeur de V soit aussi moindre.

(Lagrange 1801, p. 67; 1806, p. 90.)
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ξ k—which is supposed to be convergent around ξ = 0 —, the language he used in
the argument we are now considering is elusive enough to suggest that he wanted to
suppose a priori neither that x is such that f (x + ξ) has a power-series expansion,
nor that its generalized power-series expansion f (x) + ξ f ′(x) + ∑∞

k=2 pk(x)ξαk

converges to this function around ξ = 0 and V (x, ξ) =∑∞
k=2 pk(x)ξαk . But if this is

not assumed, nothing allows us to conclude that V (x, 0) = 0.
The only way to avoid a petitio principii thus is by openly defining the deriva-

tive f ′(x) of a function f (x) through the equality (88), provided that V (x, 0) = 0.
According to such a definition, the first derivative of f (x) would be the function g(x)
which, around ξ = 0, satisfies the condition

f (x + ξ) = f (x)+ g(x)ξ + V (x, ξ)ξ, (90)

where V (x, 0) = 0.
This resembles to the modern definition of the derivative of f (x) as the function

g(x) such that, around ξ = 0:110

f (x + ξ)− f (x) = ξg(x)+ ξV (x, ξ) [where lim
ξ→0

V (x, ξ) = 0 ]. (91)

But, even if many of Lagrange’s arguments could be rephrased (and perhaps clarified)
by adopting such a definition, ascribing it to him does not seem appropriate (Grabiner
1981a, pp. 116 and 120; 1990, pp. 157 and 182). It thus seems that Lagrange—despite
his proof of the power-series expansion theorem—tried to free his proof of the lemma
of the Leçons from the assumption that any function f (x +ξ) has, for any x for which
f (x) is not infinite, a generalized power-series expansion that converges to such a
function around ξ = 0. But he failed .

However, the functions f ′(x) and V (x, ξ) are defined and conceived, after having
stated the equality (88) and having argued that, for any positive quantity ε, there is
a positive value δ for which the implication (89) holds, Lagrange’s proof proceeds
according to an argument that closely resembles the argument used in proving the
lemma of the Théorie. It can be reconstructed as follows.

From these premises, Lagrange inferred that for any positive quantity ε, there is a
positive quantity δ such that:

|ξ | ≤ δ ⇒
{
ξ [ f ′(x)− ε] < f (x + ξ)− f (x) < ξ [ f ′(x)+ ε] if ξ > 0
ξ [ f ′(x)+ ε] < f (x + ξ)− f (x) < ξ [ f ′(x)− ε] if ξ < 0.

(92)

110 A generalization of this definition to any order h leads, in fact, to a definition resembling that of the
Peano derivatives (Peano 1891): a real function f (x) is h times Peano differentiable at x = x0 if there are
h + 1 real numbers ak (k = 0, 1, . . . , h) such that, in an appropriate neighborhood of x0,

f (x) =
h∑

k=0

[ak

k! (x − x0)
k
]

+ Fh(x) (x − x0)
k [where lim

x→x0
Fh(x) = 0 ].

The real numbers ak are then the Peano derivatives of order h at x = x0.
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He then argued that, as these implications depend on f ′(x) not being infinite, one can
replace x with x + kξ (k = 1, 2, . . . , n − 1), so that, if n is such that the derivatives
f ′(x + kξ) (k = 0, 1,…,n − 1) are not infinite, for any positive quantity ε, there is a
positive value δ such that, if |ξ | ≤ δ, all the inequalities

ξ [ f ′(x+kξ)−ε] < f (x+ (k+1) ξ)− f (x+kξ) < ξ [ f ′(x+kξ)+ε] if ξ > 0
ξ [ f ′(x+kξ)+ε] < f (x+ (k+1) ξ)− f (x+kξ) < ξ [ f ′(x+kξ)−ε] if ξ < 0

(93)

(where the derivatives f ′(x + kξ) are of course taken with respect to x) holds at the
same time. At this point, Lagrange introduced the hypothesis that all the derivatives
f ′(x + kξ) “have the same sign”111 and added up the inequalities, so as to get

ξ

n−1∑
k=0

[ f ′(x + kξ)] − nξε < f (x + nξ)− f (x)

< ξ

n−1∑
k=0

[ f ′(x + kξ)] + nξε if ξ > 0

ξ

n−1∑
k=0

[ f ′(x + kξ)] + nξε < f (x + nξ)− f (x)

< ξ

n−1∑
k=0

[ f ′(x + kξ)] − nξε if ξ < 0. (94)

Then, he took it for granted that ε can be taken smaller than

∣∣∣∑n−1
k=0[ f ′(x+kξ)]

∣∣∣
n , and

concluded that there is a positive value δ such that:

|ξ | ≤ δ ⇒

⎧⎪⎪⎨
⎪⎪⎩

0 < f (x + nξ)− f (x) < 2ξnF if ξ > 0 and f ′(x + kξ) > 0
−2ξnF < f (x + nξ)− f (x) < 0 if ξ > 0 and f ′(x + kξ) < 0
2ξnF < f (x + nξ)− f (x) < 0 if ξ < 0 and f ′(x + kξ) > 0
0 < f (x + nξ)− f (x) < −2ξnF if ξ < 0 and f ′(x + kξ) < 0,

(95)

where F = max
k=0,...,n−1

∣∣ f ′(x + kξ)
∣∣. Finally, he remarked that, as n increases when ξ

diminishes, the product ξn in the inequalities (95) can be identified with any variable
z, so that the difference f (x + nξ) − f (x) can be regarded as a function of z that
vanishes for z = 0 and whose first derivative is the same as the first derivative of
f (x + nξ) (since [ f (x + z)− f (x)] ′

z = f ′
z (x + z) = f ′

x (x + z) = f ′
x (x + nξ)).

The argument is flawed. In deriving the implications (92), Lagrange seems to have
treated the value of x as fixed. If it were, δ would depend only on ε. But the same

111 Lagrange specified that this means these derivatives are all “positives” or all “negatives.”
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argument applies for any fixed value of x . Hence, if a (finite) number n of values of x
were fixed in advance (whatever n may be), for any positive quantity ε, there would
be a positive quantity δ such that all the implications like (92) relative to these values
of x would hold at the same time, if |ξ | ≤ δ. But in Lagrange’s argument, the n values
of x are not fixed in advance but depend on the increment ξ,which is in turn supposed
to be such that |ξ | ≤ δ. So the argument holds only if the value δ occurring in the
implications (92) is independent of x, that is, if the function V (x, ξ) has the property
[Con.2] (rather than merely the property [Con.1]).

Also in this case, Lagrange’s argument is therefore actually subject to a uniformity
assumption. Moreover, this assumption closely resembles the ones that figure in the
second part of Lagrange’s proofs of the lemma of the Théorie.112

This same assumption of uniformity is also needed to justify the identification of the
product ξn with any variable z and the interpretation of the difference f (x+nξ)− f (x)
as a function of z.

But it is still not enough to justify Lagrange’s appeal to the condition ε <∣∣∣∑n−1
k=0[ f ′(x+kξ)]

∣∣∣
n . For

∣∣∣∑n−1
k=0[ f ′(x+kξ)]

∣∣∣
n depends on ξ, which is supposed to be smaller,

in absolute value, than the positive quantity δ, which in turn depends on the choice
of ε. This was first pointed out by Bolzano (1817, pp. 19–20), who saw a gap in La-
grange’s proof of the lemma of the Leçons that could only be filled using the theorem
of intermediate values (Sebestik 1964, pp. 142–143). In fact, this theorem was implic-
itly used by Lagrange in his proof of the remainder theorem, both in the Théorie and
in the Leçons (see Sects. 5.2.3.1, 5.2.3.2). But he did not use it to prove his lemma.

Let us now return to the conclusion of Lagrange’s argument. Let ϕ(z) be the dif-
ference f (x + nξ) − f (x) regarded as a function of z for nξ = z. Supposing that
f ′(x + nξ) = ϕ ′(z) is not infinite and has “the same sign” as f ′(x + kξ) (k =
0, 1, . . . , n − 1), and that z varies on any open interval like (0, t) or (−t, 0), the
consequent of the implication (95) reduces to

0 < ϕ(z) < 2z� if z > 0 and ϕ ′(z) > 0
−2z� < ϕ(z) < 0 if z > 0 and ϕ ′(z) < 0
2z� < ϕ(z) < 0 if z < 0 and ϕ ′(z) > 0
0 < ϕ(z) < −2z� if z < 0 and ϕ ′(z) < 0,

(96)

where z is supposed to vary on any interval Iz like (0, t] or [−t, 0), the function
ϕ ′(z) is supposed not to become infinite in the corresponding open intervals like (0, t)
or (−t, 0), and � = max

z∈Iz , z=0

∣∣ϕ ′(z)
∣∣ (since max

z∈Iz

∣∣ϕ ′(z)
∣∣ ≥ max

k=1,...,n

∣∣ f ′(x + kξ)
∣∣ ≥

max
k=1,...,n−1

∣∣ f ′(x + kξ)
∣∣ , and

∣∣ f ′(x)
∣∣ = ∣∣ϕ ′(0)

∣∣).

112 Note that if the function V (x, ξ) is identified with the ratio f (x+ξ)− f (x)−ξ f ′(x)
ξ , the statement that

for any positive ε the implication (89) holds for a certain positive δ reduces to the statement that the function
f (x) is differentiable. It follows that if one maintains that Lagrange identified the function V (x, ξ)with the

ratio f (x+ξ)− f (x)−ξ f ′(x)
ξ

, one also has to maintain that his argument is actually subject to the condition
that any function is uniformly differentiable in an appropriate interval (Ovaert 1976, p. 190).
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In fact, Lagrange explicitly wrote neither the inequalities included in condition (96),
nor any of the inequalities entering into our reformulation of his proof. He merely
expressed these inequalities discursively. Instead of explicitly writing the inequal-
ities included in the implication (95), he claimed, for example, that “the quantity
f (x + nξ) − f (x) will be […] included between zero and 2nξ P ,” where P corre-
sponds, in our notation, to ±F . He therefore did not provide the exact meaning of the
expression ‘same sign’, explicitly at any rate.

It is clear that Lagrange’s argument does not require that none the derivatives
f ′(x + kξ) (k = 0, 1, . . . , n − 1) vanish, but only that their sum does not vanish.
It follows that, according to this argument, the inequalities included in conditions
(96) hold even if the derivative ϕ ′(z) is non-negative or non-positive in the inter-
val Iz, provided it vanishes nowhere on the interval. Moreover, if all the derivatives
f ′(x + kξ) (k = 0, 1, . . . , n − 1) vanished, for any choice of ξ such that 0 < |ξ | ≤ δ,

the function f (x) would reduce to a constant. But in this case all the differences
f (x + (k + 1) ξ) − f (x + kξ) (k = 0, 1, . . . , n − 1) would then vanish, and the
function ϕ(z) = f (x + nξ) − f (x) would vanish too for any z on [0, t] or [−t, 0].
Hence if ϕ ′(z) vanished everywhere on [0, t) or (−t, 0], then ϕ(z) would vanish on
[0, t] or [−t, 0].

Asϕ(0) = 0 by hypothesis, this suggests the following reformulation of Lagrange’s
lemma:

Lemma 5 Suppose that ϕ(z) is any function of z such that ϕ(0) = 0 and t is a
positive value of z: if 0 ≤ ϕ ′(z) < ∞ on the interval [0, t), then 0 ≤ ϕ(z) < ∞ on
[0, t]; if −∞ < ϕ ′(z) ≤ 0 on the interval [0, t), then −∞ < ϕ(z) ≤ 0 on [0, t];
if 0 ≤ ϕ ′(z) < ∞ on the interval (−t, 0], then −∞ < ϕ(z) ≤ 0 on [−t, 0]; if
−∞ < ϕ ′(z) ≤ 0 on the interval (−t, 0], then 0 ≤ ϕ(z) < ∞ on [−t, 0].

5.2.3 From the lemmas to the remainder theorem

Though Lagrange’s proofs of his lemmas are actually flawed, he thought otherwise.
He was probably also convinced that they hold for the limit-points of the intervals in
question. Let us now see how they work in his proofs of the remainder theorem.

5.2.3.1 The proof of the Théorie Let us begin with the proof offered in the Théorie
(Lagrange 1797, arts. 45–53; 1813, arts. I.33–I.40; a reconstruction of Lagrange’s
proof is offered in Alvarez-Jimenez 1997, pp. 121–125).

From the power-series expansion theorem and Theorem 4, according to the suc-
cessive substitutions x → x − ξ and ξ → xz, where z is “any arbitrary quantity”
(of course a variable one), Lagrange first obtained (Lagrange 1797, art. 45; 1813, art,
I.33): 113

f (x) =
∞∑

k=0

xk zk

k! f (k)(x − xz). (97)

113 From the equality (97), Lagrange derived en passant the Maclaurin expansion of any function, simply
by supposing that z = 1.
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Then (Lagrange 1797, art. 47; 1813, art. I.35), 114 by applying to this expansion the
same argument that leads to the equalities (79), he concluded that:

f (x) =
h∑

k=0

[
xk zk

k! f (k)(x − xz)

]
+ xh+1 Rh+1(x, z) (h = 0, 1, . . .), (98)

where Rh+1(x, z) = zh+1 Ph+1(x−xz, xz) is a function of x and z that vanishes for z =
0 (and that Lagrange apparently identified with the series

∑h
k=h+1

xk−h−1zk

k! f (k)(x −
xz)).

As this equality follows from the power-series expansion theorem and the Theo-
rem 4 for appropriate substitutions, the derivatives involved can be taken to be deriv-
atives with respect to x − xz. To understand Lagrange’s argument it is convenient to
make it explicit (by using the same notational trick used in Sects. 3.3 and 4).

By deriving both members of the equalities (98) with respect to z, and observing
that

[
f (k)x−xz (x − xz)

] ′z = −x
[

f (k+1)x−xz (x − xz)
]

(99)

(k = 0, 1, . . .), Lagrange obtained

0 = −x f ′x−xz (x − xz)+
h∑

k=1

[
xk zk−1

(k−1)! f (k)x−xz (x − xz)

− xk+1zk

k! f (k+1)x−xz (x − xz)

]

+xh+1
[
Rh+1(x, z)

] ′z (h = 0, 1, . . .),

(100)

and by simplification:115

[
Rh+1(x, z)

] ′z = zh

h! f (h+1)x−xz (x − xz) (h = 0, 1, . . .). (101)

Since Rh+1(x, 0) = 0, it follows that the remainders Rh+1(x, z) are the primitives

of f (h+1)x−xz (x − xz) zh

h! with respect to z that vanish when z does.116

To prove the remainder theorem, Lagrange had then to estimate these primitives.
This is what the lemma of the Théorie is for (Lagrange 1797, arts. 49–53; 1813, art,
I.39–40).

114 We use the symbols ‘Rh+1(x, ξ)’ (h = 0, 1, . . .) to replace Lagrange’s symbols ‘P’, ‘Q’, ‘R’, &c.
115 Lagrange detailed his argument leading from the equalities (98) to the equalities (101) only for h = 0.
116 By assuming that x − xz = a this allows rewriting the equality (98) as

f (x) =
h∑

k=0

(x − a)k

k!
[

f (k)(a)
]

+ 1

h!
x∫

a

(x − t)h
[

f (h+1)(t)
]

dt.

Lagrange left this implicit, however, probably to avoid the use of a definite integral.
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Suppose that ϕ(z) is any function of z whose first derivative has the form zhφ(z),
where h is a non-negative integer and φ(z) is any other function of z. Suppose also
that a and b (a < b) are two values of z such that φ(z) is defined in [a, b] and
M = max

z∈[a,b]φ(z) and N = min
z∈[a,b]φ(z).

117 Since, for z ∈ [a, b], both the functions

zh [M − φ(z)] and zh [φ(z)− N ] are non-negative, from Lemma 3 it follows that, if
the interval [a, b] does not contain an infinity of values of z for which zh [M − φ(z)] =
zh [φ(z)− N ] = 0, the differences between the primitives of these functions evaluated
for z = b and z = a are non-negative as well:118

M

h + 1

[
bh+1 − ah+1

]
+ ϕ(a)− ϕ(b) ≥ 0

N

h + 1

[
ah+1 − bh+1

]
+ ϕ(b)− ϕ(a) ≥ 0; (102)

that is,

ϕ(b) ≤ M

h + 1

[
bh+1 − ah+1

]
+ ϕ(a) ; ϕ(b) ≥ ϕ(a)+ N

h + 1

[
bh+1 − ah+1

]
.

(103)

Let us now suppose that ϕ(z) = Rh+1(x, z). From (101) it follows that:

ϕ ′(z) = zh

h! f (h+1)
x−xz

(x − xz) and φ(z) = 1

h! f (h+1)
x−xz

(x − xz). (104)

As Rh+1(x, 0) = ϕ(0) = 0, it suffices then to let a = 0 and b = 1 to infer, from the
inequalities (103):

z ∈ [0, 1] ⇒ Nh

(h + 1)! ≤ Rh+1(x, 1) ≤ Mh

(h + 1)! , (105)

117 Once again, Lagrange’s language is rather vague concerning the bounds of the interval he was consid-
ering:

Let M be the greatest and N the smaller value of Z [i.e., φ(z), in our notation] for any value of z
included between the quantities a et b.

Soit M la plus grande, et N la plus petite valeur de Z pour toutes les valeurs de z comprises entre les quantities
a et b.

(Lagrange 1797, and art. 49; 1813, art. I.39)

Still, the nature of his argument makes now it clear that the interval is closed. As remarked by Grabiner
(1990, p. 155), Lagrange was here supposing that a function has a maximum and a minimum in a closed
interval where it is defined, which, in modern terms, amounts to the intermediate value theorem. But this
was not a problem for him, since a later step in the proof (see Sect. 5.2.3.2) relies quite explicitly on the
intermediate value property.
118 Indeed Lagrange took zh [M − φ(z)] and zh [φ(z)− N ] to be “positif” and used ‘>’ where we use
‘≥’. But it is clear, from the definition of M and N , that M − φ(z) = 0 and [φ(z)− N ] = 0 for certain
values of z in the relevant interval. Thus, we cannot see how to avoid taking Lagrange’s adjective ‘positif’
as meaning ‘non-negative’ here, and his symbol ‘>’ as denoting the relation ≥.

123



Lagrange’s theory of analytical functions 185

where

Nh = min
z∈[0,1] f (h+1)

x−xz
(x − xz) = min

t∈[0,x] f (h+1)(t)

Mh = max
z∈[0,1] f (h+1)

x−xz
(x − xz) = max

t∈[0,x] f (h+1)(t). (106)

At this point Lagrange took it for granted that if Rh+1(x, 1) lies between two val-
ues taken by a function f (h+1)(t) in [0, x]—as insured by the implication (105)—the
equality

Rh+1(x, 1) = f (h+1)(u)

(h + 1)!

holds for an appropriate u in [0, x]. This is just the theorem of intermediate values,
which he thus took for granted.

If so, it suffices to assume that z = 1 in the equality (98) to obtain:

f (x) =
∑h

k=0

[
xk

k! f (k)(0)

]
+ xh+1

(h + 1)! f (h+1)(u) (h = 0, 1, . . .), (107)

for an appropriate u in [0, x]. The equality (62), and thus, the remainder theorem, are
finally obtained by generalization, that is, by interpreting the x in f (x) as 0 + x, then
replacing 0 with x and x with ξ .

Once Lemma 3 is accepted, much of Lagrange’s proof reduces to a formal proce-
dure. To carry out the proof, Lagrange nonetheless had to assume that the variable
z occurring in the general equality (98) takes the particular value z = 1, and thus,
that the function Rh+1(x, z) is defined for this particular value of z. This reduces the
generality of such an equality. In modern terms, this is the same as transforming the
Taylor expansion of the function f (x) centered on the indeterminate difference x −xz
into the Maclaurin expansion of the same function. Strictly speaking, the functions for
which this last expansion is not defined should thus be excluded from the remainder
theorem, given the way it is proved in the Théorie.

5.2.3.2 The proof from the Leçons This was possibly one of the reasons for which
Lagrange replaced, in the Leçons, the foregoing proof with a different one. The new
proof goes as follows (Lagrange 1801, lecture IX; 1806, lecture IX).

For any function f (x + ξ) in which the value of x is supposed to be fixed, let ρh+1
and σh+1 (h = 0, 1, 2, . . .) be the values of x + ξ such that

f (h+1)(ρh+1) = max
ξ∈[0,η] f (h+1)(x + ξ)

and

f (h+1)(σh+1) = min
ξ∈[0,η] f (h+1)(x + ξ), (108)
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where η is any given positive quantity.119 It follows that when ξ belongs to [0, η],
the differences f (h+1)(ρh+1) − f (h+1)(x + ξ) and f (h+1)(x + ξ) − f (h+1)(σh+1)

are both non-negative.120 Hence, according to lemma 5, if f (h+1)(x + ξ) becomes
infinite for no value of ξ in [0, η] (so that f (h+1)(ρh+1) and f (h+1)(σh+1) are finite,
and the differences f (h+1)(ρh+1)− f (h+1)(x +ξ) and f (h+1)(x +ξ)− f (h+1)(σh+1)

become infinite for no value of ξ in [0, η]), the primitives of these differences (with
respect to ξ ) are both non-negative when ξ belongs to [0, η].

By evaluating the constants that enter into these primitives for these same primitives
to be null for ξ = 0, one obtains

ξ f (h+1)(ρh+1)+ f (h)(x)− f (h)(x + ξ) ≥ 0

and

f (h)(x + ξ)− ξ f (h+1)(σh)− f (h)(x) ≥ 0. (109)

Insofar as f (h)(x + ξ) becomes infinite for no value of ξ in [0, η], a further appli-
cation of lemma 5 leads to

ξ2

2
f (h+1)(ρh)+ ξ f (h)(x)+ f (h−1)(x)− f (h−1)(x + ξ) ≥ 0

and

f (h−1)(x + ξ)− ξ2

2
f (h+1)(σh)− ξ f (h)(x)− f (h−1)(x) ≥ 0. (110)

119 Lagrange’s language is again vague on the bounds of the interval in question. Concerning the case
h = 0 he wrote:

First let p and q [i.e., σ1 and ρ1 in our notation] be the values of x + ξ that make the derivative
function f ′(x + ξ) is the smallest and the greatest, regarding x as given, and letting ξ vary from
zero up to whatever given value of ξ .

Soient d’abord p et q [that is, σ1 and ρ1 in our notation] les valeurs de x + ξ qui rendent la function dérivée
f ′(x + ξ) la plus petite et la plus grande, en regardand x comme donné , et faisant varier ξ depuis zéro jusqu’à
une valeur quelconque donnée de ξ .

(Lagrange 1801, p. 70; 1806, pp. 93-94.)

Here again the argument seems to make it clear that the interval is closed. As x is supposed to be fixed,
but indeterminate, the existence of a value like η such that the function f (h)(x + ξ) is defined when ξ
belongs to [0, η] is not a problem for Lagrange. It follows that he was here supposing, as in his proof of the
Théorie (see footnote 117), that a function has a maximum and a minimum in a closed interval where it is
defined. But even here this poses no problem, since a subsequent step of his proof relies quite explicitly on
the assumption of the intermediate value property.
120 Lagrange also took the differences f (h+1)(ρh+1)− f (h+1)(x+ξ) and f (h+1)(x+ξ)− f (h+1)(σh+1)

to be “positives” and wrote ‘>’ where we write ‘≥’. Still, from the definition of ρh+1 and σh+1 it follows
that these differences vanish for certain values of ξ in [0, η]. Here again it seems one has to take ‘positif’
to mean ‘non-negative’ and ‘>’ to denote the relation ≥.
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It is thus enough to apply lemma 5 h + 1 times to obtain

ξ h+1

(h + 1)! f (h+1)(σh+1)+
h∑

k=0

f (k)(x)

k! ξ k ≤ f (x + ξ) ≤ ξ h+1

(h + 1)! f (h+1)(ρh+1)

+
h∑

k=0

f (k)(x)

k! ξ k, (111)

whenever the derivatives f (h+1)(x +ξ) do not become infinite for ξ in [0, η]. A similar
argument works for ξ in [−η, 0], and leads to a similar result:

ξ h+1

(h + 1)! f (h+1)(ρh+1)+
h∑

k=0

f (k)(x)

k! ξ k ≤ f (x + ξ) ≤ ξ h+1

(h + 1)! f (h+1)(σh+1)

+
h∑

k=0

f (k)(x)

k! ξ k, (112)

where ρh+1 and σh+1 are the values of x + ξ such that

f (h+1)(ρh+1)= max
ξ∈[−η,0] f (h+1)(x+ξ) and f (h+1)(σ1)= min

ξ∈[−η,0] f (h+1)(x+ξ),
(113)

whenever the derivatives f (h+1)(x + ξ) do not become infinite when ξ belongs to
[−η, 0].

If the theorem of intermediate values is taken for granted, the inequalities (111)
and (112) taken together are equivalent to the remainder theorem. However, instead
of formulating the theorem explicitly in full generality, Lagrange merely pointed out
that the inequalities (111) and (112) provide the limits of the remainder of the power-
series expansion of any function f (x +ξ) prolonged up to any finite order, gives some
examples (Lagrange 1801, pp. 74–77; 1806, pp. 99-103), and deduced the equality
(107), which is now understood as a particular consequence of a more general result
(Lagrange 1801, p. 78; 1806, p. 105).

By discussing Lagrange’s proof of the lemma of the Leçons , we have observed that
he trieds—unsuccessfully—to free this proof from the assumption that any function
f (x + ξ) has, for any x for which f (x) is defined and is not infinite, a generalized
power-series expansion that converges to such a function around ξ = 0. This is con-
firmed by the previous argument. To obtain the inequalities (111) and (112 ), Lagrange

constructed step by step the partial sum
∑h

k=0
f (k)(x)

k! ξ k of any order h, starting from
the derivative f (h+1)(x+ξ), considering its maximum and minimum in an appropriate
interval centered on ξ = 0 and applying the algorithm of the primitives. Supposing
that this algorithm and the derivatives entering into his construction are given indepen-
dently of the consideration of any expansion of f (x +ξ), this procedure is completely
independent of any presupposition of convergence and suggests the modern proof
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of the remainder theorem, which is based on the definition of the remainder as an
appropriate finite difference.

It was Lagrange himself who suggested the possibility of understanding the remain-
der in such a way, when he applied the inequalities (111) and (112) to the example of
the function xm :

Through these limits [those of the reminder of the power-series expansion of
(x + ξ)m], one is preserved from the difficulties that can result from the non-
convergence of the series, since, as whatever n-th term is to the following in the
ratio of 1 to m−n+1

n
ξ
x , in order for the series to be convergent, it is necessary that

the quantity m−n+1
n

ξ
x be, independently of the sign it has to have, smaller than

the unity. If ξ
x < 1, it is clear that the series will always become convergent,

since the last value of m−n+1
n is −1.

Par le moyen de ces limites, on est à couvert des difficultés qui peuvent résulter de la non-
convergence de la série; car, comme un terme quelconque nème est au suivant dans le rapport de
1 à m−n+1

n
ξ
x , pour que la série soit convergente, il faut que la quantité m−n+1

n
ξ
x , abstraction

faite du signe qu’elle doit avoir, soit moindre que l’unité. Si ξx < 1, il est clair que la série finira

toujours par être convergente, puisque la dernière valeur de m−n+1
n est −1.

(Lagrange 1801, p. 75; 1806, p. 100.)

Though Lagrange did not use the remainder theorem to evaluate the convergence of
his series (he used d’Alembert’s test instead: Alembert 1768, p. 171), it is clear that
he supposed that the equality

(x + ξ)m =
h∑

k=0

(
m
k

)
xm−kξ k + Ph+1(x, ξ)ξ

h+1 (114)

(where Ph+1(x, ξ) =
(

m
h

)
(x + j)x−h−1 , for an appropriate j in [0, ξ ]) holds even

when the power-series expansion of this (x + ξ)m is divergent.
But if this expansion is not taken to converge to the function (x + ξ)m on an appro-

priate interval, how could Lagrange have defined the derivative of xm? And, more
generally, how could he have assumed the algorithms of the primitives and the deriv-
atives to be given without assuming that there is a power-series converging to any
function f (x + ξ) around ξ = 0?

No consistent answer seems to be possible. Lagrange was possibly thinking
that the step-by-step procedure included in the proof of the remainder theorem of-
fered in the Leçons manages to obtain, as it were, constructively, the partial sum∑h

k=0
f (k)(x)

k! ξ . This is what the following passage, occurring at the end of this proof,
suggests:

The foregoing analysis successively provides again, as one can see, the terms of
the expansion of f (x +ξ). But it is has the advantage of expanding this function
as far as one wishes, and of providing the limits of the remainder.
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L’analyse précédente redonne, comme l’on voit, successivement les termes du développement
de f (x + ξ); mais elle a l’avantage de ne développer cette fonction qu’autant que l’on veut, et
d’offrir des limites du reste.

(Lagrange 1801, p. 73; Lagrange 1806, p. 98.)

However, this advantage can at most be operational, since Lagrange’s theory col-
lapses if the existence of a power-series expansion of any function f (x +ξ) is not pre-
viously assumed. Though many of the shortcomings of Lagrange’s theory are reflected
in this difficulty, his attempt to free his proof of the remainder theorem from a previous
supposition of convergence also shows his capacity to see beyond the bounds of this
theory and suggest a possible alternative.

This explains why the remainder theorem has been one of the few original results
contained in the Théorie and the Leçons that have survived the theory, and why this
has been possible only thanks to a dramatic change in the role of this theorem within
the system of the calculus.

6 Conclusions

In a sense, both the Théorie and the Leçons are more philosophical essays than treatises
intended to obtain particular mathematical results. They are part of a foundationalist
agenda. The fact that this agenda was never really accepted by Lagrange’s contempo-
raries contrasts with another fact: that it was the most careful attempt to integrate the
calculus within the program of 18th-century algebraic analysis. Its failure is then also
the failure of this ambitious program.

We hope our account not only contribute to a better understanding of Enlighten-
ment mathematics, but also shows, on a relevant example, that the problem of the
foundation of mathematics is by no means peculiar to twenty-century mathematics. It
has been addressed before in different occasions and in different ways. For Lagrange,
it was not a problem of the certainty of the ultimate bases of mathematics. It was a
matter of generality and internal organization; it was essentially a question of purity
of method.

Appendix

The first edition of the Théorie (Lagrange 1797) appeared on Prairial and V (May
20th to June 18th 1797) at the Imprimerie de la République, while the Leçons were
first published in 1801 (Lagrange 1801), as the tenth volume of the second edition of
the Leçons de École Normale de l’an III. This was an addition to the lectures actually
delivered at the École Normale de l’an III, since Lagrange’s five lectures at this school
were devoted to more elementary subjects.121

121 See: Ecole Normale III (D), vol. I, pp. 34-55, lecture of 16th Pluviôse (February 4th, 1795); Ecole
Normale III (L) vol. III, pp. 227–253, 276–310, 463–489, lectures of 6th Ventôse (February 24th, 1795),
1st Germinal (March 21th, 1795), and 6th Germinal (March 26th, 1795), respectively; and vol. IV, pp.
401–420, lecture of 22th Germinal (April 11th, 1795). The same lectures are also reprinted with the same
pagination in Ecole Normale III (NE), vol. I, Débats (lecture of 16th Pluviôse), vol. III, Leçons (lectures
of 6th Ventôse, and 1st and 6th Germinal); vol. IV, Leçons (lecture of 22th Germinal). Lagrange also par-
ticipated in a debate, with Laplace, on 11th Pluviôse (January 30th, 1795), and was present when Laplace
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Table 1 The structure of Lagrange’s treatises

Théorie, 1797 Leçons, 1801 Leçons, 1806 Théorie, 1813

Introduction
(i) 1–10 I–VI I–VI 1–2, part 1

16–44 VIII VIII 8–32, part 1
(ii) 54–107 VII VII 41–95, part 1

170–184 X–XX X–XXII 61–76, part 2
(iii) 11–15 IX IX 3–7, part 1

45–53 33–40, part 1
(iv) 108–169 \ \ 1–60, part 2

77–87, part 2
185–228 1–47, part 3

Table 2 Reformulation of the edifice of the Calculus in its pure part

Théorie, 1797 Leçons, 1801 Leçons, 1806 Théorie, 1813

Derivative of a function / VII VII /
with respect to any
function of its variable

Derivative equations 54–57 X X 41–44
and transformation
of functions

Formulas relative to / X–XI X–XI /
to trigonometric
functions

Arbitrary constants 58–61 XII XII 45–48
occurring in the
solution of derivative
equations

Solution of some 62–70 / / 49–57
derivative equations 79–84 67–72

Theory of singular 71–76 XV–XVIII XIV–XVII 58–63
primitives

Applications to series and 76–78 / / 64–66
equations of 3rd degree

Expansion of any function 97–99 / / 85–87
of a root of the equation
z = x + f (z)

Function of several 85–96 XIV and XX XIX–XXI 73–84
variables and partial 100–107 88–95
derivative equations

Theory of the Multiplier / XIII XIII /
Finite difference / XIX XVIII /

equations
Calculus of variations 170–184 / XXI–XXII 61–76, part 2

Footnote 121 continued
read the program of all the mathematical lectures on first Pluviôse (January 20th, 1795): Ecole Normale III
(D), vol. I (and Ecole Normale III (NE), vol. I, Débats), pp. 5–23; Ecole Normale III (L), vol. I (and Ecole
Normale III (NE), vol. I, Leçons ), pp. 16–21. Lagrange’s lectures and his and Laplace’s interventions in
the debate of the 11th Pluviôse have been more recently published in Dhombres (1992), pp. 193–265, by
A. Daham-Dalmédico. The program read by Laplace on the first Pluviôse is also published there, pp. 45–47.
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Table 3 Geometrical
applications

Théorie, 1797 Théorie, 1813

Tangents and points 108–130 1–19, part 2
of contact of curves

Maxima and minina 131–133 20–26, part 2
160–169 51–60, part 2

Quadrature and 134–136 27–29, part 2
rectification

Curves in space 139–159 32–50, part 2
and surfaces

Volumes and 137–138 30–31, part 2
areas of surfaces 77–87, part 2

Table 4 Mechanical
applications

Théorie, 1797 Théorie, 1813

Speed, acceleration, 185–189 1–6, part 3
and force

Composition of motions 190–194 7–10, part 3
and forces

Curvilinear motion and 195–200 11–16, part 3
equation of motion

Motion in a 201–205 17–24, part 3
resistant medium

Motion on a surface and 206–210 25–30, part 3
principle of virtual velocity

Centre of gravity and 211–218 31–38, part 3
rotation of surfaces

Vis Viva and 219–228 39–47, part 3
conservation of energy

Many documents attest that Lagrange taught his theory of analytical functions at
the École Polytechnique between 1795 and 1799. When the École centrale des trav-
aux publics—which later became the École polytechnique —was created in 1794,
Lagrange was made president of the Conseil de l’École, but he only taught there from
Spring 1795 (Dahan 1992, 179–180).

A note contained in the third volume of the Correspondance sur l’École Polytech-
nique (1814, 1, p. 93) attests that the Théorie and the Leçons include the matter taught
during the years 1795, 1796 and 1799.

In introducing his course for the an VII (on 7th Pluviôse an VII: January 26th,
1799) Lagrange presented it as being devoted to “the theory of functions,” claiming
that his aim was to expound this theory “with more detail than in the printed work”
(Lagrange 1799, p. 232). This suggests that the Théorie includes the matter taught in
1795 and 1796, and the Leçons the matter taught in 1799.

This is confirmed by a note included in certain copies of the first edition of the
Théorie, bound as the ninth cahier of the Journal de l’École Polytechnique (see for
example the copy digitalized by Gallica: FRBNF36048706), which first appeared an
IX (September 23th, 1800 to September 22th, 1801), where it is explicitly said that “the
Théorie des fonctions analytiques […] has been the subject of the lectures delivered
by Mr. Lagrange at this École in 1795 and 1796,” while “ in 1799 Mr. Lagrange has
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taken up the calcul de fonctions as subject of his lectures at the École polytechnique”
in delivering twenty lectures published in the twelfth cahier of the same Journal .

This refers to a reprint of the first edition of the Leçons (including some minor
revisions), which first appeared in Thermidor an XII (July 20th to August 18th, 1804),
where the Leçons are presented as a “commentary and a supplement” to the Théorie,
corresponding to Lagrange’s course at the École for 1799 (for further details on the
publication of the Leçons, see Grattan-Guinness 1990, I, 195–196).

Again, a note by de Prony in the second cahier of the Journal de l’ École Poly-
technique, which first appeared on Nivôse and IV (December 22th, 1995 to January
20th, 1996), mentions “an elementary course of analysis” that Lagrange gave at the
École from the 5th Prairial and IV (May 24th, 1796), where he presented “a matter
belonging only to himself whose object is the proof of the fundamental principles of
the differential and integral calculus” (de Prony 1796. p. 208).

That Lagrange actually presented his theory at the École Polytechnique in 1795-
1796 is, however, called into question by the manuscript 1323 of the library of the
École des Ponts et Chausses containing an account of lectures given by Lagrange at
the École Polytechnique in 1796 and 1797: only one of these lectures has to do with the
theory of analytical functions; this was delivered between the 5th and the 16th Messi-
dor an VIII (June 23th to July 4th, 1797), and is nothing but a general presentation of
the Théorie, whose first edition had appeared about a month before (this lecture has
been edited in Pepe 1986).

After 1799, Lagrange only returned to his treatises to make additions and changes in
style and organization. The most relevant additions concern the calculus of variations.

The second edition of the Leçons (Lagrange 1806), which came out in 1806, in-
cludes, among many more local changes, two new lectures on this matter, which had
received no attention in the first edition (on Lagrange’s treatment of the calculus of
variations in these lectures, see Fraser 1987, pp. 49–50; on his different approaches
to this subject at different stages of his career see Fraser 1985).

The second edition of the Théorie (Lagrange 1813), which appeared in 1813—the
year of Lagrange’s death—only contains local changes, most of which are purely
stylistic.

The following four tables show the organization of the various subjects dealt with in
Lagrange’s treatises. The first shows how the four components mentioned on page 101
are distributed. The three others show how the different topics that components (ii)
and (iv) concern enter into these treatises.

In all the tables, the Arabic and Roman numerals refer to the articles of the Théorie
and the lectures of the Leçons, respectively.
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