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Abstract This study is the foundation of a new interpretation of the introduction
and the three first books of Diophantus’s Arithmetica, one that opens the way to a
historically correct contextualization of the work. Its purpose, as indicated in the title,
is to renew the traditional discussion on the methods of problem-solving used by Dio-
phantus, through the detailed exposition of a new analytical framework that aims to
give an account of the coherence and progressive nature of the material included in
the three first books of the Arithmetica. One outcome of this new ‘toolbox’ is a new
conspectus of the problems and solutions contained in the latter, which is presented
in appendix. The first part of the article clarifies, as a necessary preliminary, the key
notions and terminology underlying our analysis. Among these new concepts is the
notion of “method of invention,” which accounts in general for any way, by which
“positions” (hypostaseis) are used in the Arithmetica. The next part proposes a com-
plete inventory of the various methods of invention found in the three first books.
Finally the last part presents the above mentioned conspectus and proposes a series of
preliminary conclusions that can be drawn from it.
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2 A. Bernard, J. Christianidis

In a nutshell, the issue between the traditionalists, who barge into foreign
mathematical worlds through the mathematical door, and the new historians
of mathematics, who insinuate themselves into ancient mathematical cultures
through what one can call the historical door, is the position of the former that
form and content are independent variables in the mathematical domain that can
be separated arbitrarily without thereby damaging the identity and wholeness
of ancient texts, while the latter question this arbitrary separation, pointing out
the errors and distortions to which it necessarily leads and exposing the blatant
anachronism that is its inseparable companion.

Sabetai Unguru1.

1 Introduction

This study is the foundation of a new interpretation of the introduction and the three
first books of Diophantus’s Arithmetica, one that opens the way to a historically correct
contextualization of the work. Ever since the Middle Ages and the Renaissance, deter-
mining the exact character of this treatise, its purpose, the goal of its author, and the
nature of the mathematical practice involved in it, has been the subject of much spec-
ulation by both ancient and modern mathematicians, and historians of mathematics.

If we restrict ourselves to the modern period, in which the history of mathemat-
ics became a discipline, we shall see that the above discussion continues to focus
on a few central questions that are still unsettled. It is not our objective here to sur-
vey these questions but to focus on one of them, which is indicated in the famous
judgment passed by Hermann Hankel on Diophantus’s work. Having discussed the
impossibility of recognizing any “principle of grouping” of the 50 classes of prob-
lems he recognized in Diophantus, beyond the fact that simplest problems come first,
he continues by discussing Diophantus’s solutions: “Almost more different in kind
than the problems are the solutions, and we are completely unable to give an even
tolerably exhaustive review of the different terms which his procedure takes. Of more
general comprehensive methods, there is in our author no trace discoverable: every
question requires a quite special method, which often will not serve even for the most
closely allied problems. It is on that account difficult for a modern mathematician,
even after studying 100 Diophantine solutions to solve the 101st problem. . .”; after a
few emphatic sentences expressed in a brilliant language, he concludes: “in this way
the reader also hurries with inward unrest from problem to problem, as in a game
of riddles, without being able to enjoy the individual one. Diophantus dazzles more
than he delights.” As he himself finally confesses, this judgment is a reflection of his
own experience on reading Diophantus: “that is the general impression which I have
derived from a thorough and repeated study of Diophantus’s arithmetic.”2

1 From Unguru’s introduction to Chap. 6, “Methodological Issues in the Historiography of Greek Mathe-
matics” in (Christianidis 2004).
2 The quotation is from Hankel’s 1874 brilliant book Zur Geschichte der Mathematik in Alterthum und
Mittelalter, and the translation—which is worth reading in full—is taken from Heath 1910 (repr. 1964),
p. 54–55.
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Diophantus’s Arithmetica I–III 3

As Heath’s commentary shows, this judgment, even by Hankel’s time, was not
shared by all scholars: Heath refers to Nesselman, who had a different view, and refers
back to Euler’s more favorable judgment.3 Generally speaking, most of the subsequent
historical studies on Diophantus have followed the implicit agenda that this debate laid
down.

In particular, Heath, discussing Hankel’s quotation, says that “it might be inferred
from these remarks of Hankel that Diophantus’s object was less to teach methods than
to obtain a multitude of mere results” (Heath 1910/1964, 55). This comment epito-
mizes one basic dilemma on which the historians of the last century were called to
take a position. In this respect, it is important to notice that while Heath talks about
“teaching of (general) methods” as opposed to “obtaining mere results,” he disregards
completely the didactic dimension involved in the first option he himself makes, and
he only examines the generality of Diophantus’s solutions. The fact that the afore-
said phrase belongs to a long chapter of his book entitled “Diophantus’ methods of
solution” is quite characteristic.

This article again takes a position on this much-discussed issue of the methods
of problem solving used by Diophantus. At the same time, however, we aim at
renewing this discussion in a twofold sense. First, by concentrating on what we call
the “methods of invention,” that is, the methods through which Diophantus solves
the main difficulty (or difficulties) involved in each problem, instead of considering
the “methods of solution” as a whole. And second, by bringing to the fore a dimension
of the Diophantine work which is often overlooked by traditional scholarship, namely
the interpretation of Diophantus’s work not only as a problem solving undertaking
but, at the same time, as an enterprise aiming at a subtle purpose: to give the reader
the means to solve problems.

The objective of this article, as indicated in the title, is to renew the earlier discussion
by presenting a new analytical framework that aims to give an account of the coher-
ence and progressive nature of the three first books of the Arithmetica. One outcome
of this new ‘toolbox’ is a new conspectus of the problems and solutions contained in
the latter, which is presented in the first appendix.

The choice of analyzing only these books is justified on two grounds. First, Dio-
phantus’s own introduction says that the search for progression implied that the easiest
treatments should be put at the beginning as if there were elements for the rest4; this
implies that we might expect the organization of the problems to be more easily iden-
tified at the beginning of the whole series of the problems than at the end. The second
reason is that the position of these three first books survived in Greek as precisely the
three first books among the thirteen announced by Diophantus, as is beyond question,
whereas the subsequent books, either in Arabic or in Greek, are both more complex
and, since the Arabic books plausibly come next, oblige us to take into account the
bias introduced by the translation process.5

Beyond the interpretative problem raised by Hankel, the analysis of Diophantus’s
text also raises philological problem, pertaining to the question of possible inter-

3 (Heath 1910/1964, 55–56).
4 Arithm. 16.2–4.
5 For the Arabic books attributed to Diophantus, see (Sesiano 1982; Rashed 1984).
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polations or displacements in the course of the textual transmission. Our working
hypothesis, in this respect, is to consider the introduction and three first books of the
Arithmetica as a whole that reasonably reflects the beginning of a coherent work,
which originally encompassed thirteen books. We take this part of the Arithmetica
in its entirety, as edited by modern scholars (Tannery and Allard),6 as being part of
this coherent whole, voluntarily ignoring, for the moment, any decision to exclude
parts of this work as ‘interpolated’ or ‘inauthentic.’ Like modern editors, we are con-
vinced that there are such ‘interpolated’ passages and will indicate in due course which
parts are interpolated according to our reading. But we will show that, on the basis of
our toolbox, it will be possible to propose new and reasonably convincing criteria that
might enable us to declare such or such a passage ‘interpolated,’ beyond the traditional
(stylistic and philological) criteria.

This article has three parts. The first clarifies, as a necessary preliminary, the key
notions and terminology underlying our analysis (part 2). Among these new concepts
is the notion of “method of invention,” which accounts in general for any way, by
which “positions” (hypostaseis) are used in the Arithmetica (2.6). The next part pro-
poses a complete inventory of the various methods of invention found in the three first
books (part 3). Finally the last part presents the conspectus we mentioned above and
proposes a series of preliminary conclusions that can be drawn from it (part 4).

2 The key notions and terminology underlying the analysis of Arithmetica I–III

2.1 Synoptic presentation of our ‘analytical toolbox’

As was mentioned above, the purpose of this analysis is to account for the bulk of the
problems treated in books I–III of the Arithmetica. It is not, therefore, to account only
for the statements of the problems, but for the progressive nature of their treatments,
taken as a whole. To investigate this set of statements-and-treatments, we need specific
analytical tools that we list and explain in this part. The structure of the conspectus
found in the first appendix and presented in part 4 is fundamentally based on these
tools and therefore reflects, in a very condensed way, their basic use.

Most of these tools and notions are directly borrowed from Diophantus’s own
vocabulary, so that this list can be read as clarifying some key terms of Diophantus’s
vocabulary: they are indicated below by a parenthesis containing the corresponding
Greek term. Other tools are present through linguistic patterns or specific formulas in
his treatise, although they do not receive specific names in the original treatise. In such
cases, we tried to invent relevant categories and names that would be as intuitively
close to their object as possible.

For the sake of clarity, we distinguish between the following types of tools:

(a) The first characterizes precisely the correspondence between problem and solu-
tion and how the latter is related to the former as ‘answer.’ The related terminol-

6 Our analysis is based on the two available editions of the text. The most recent is André Allard’s (Allard
1980) and is not yet published. The second one is Tannery’s (1893–1895). Since the second remains the
most available edition, our usual references refer to Tannery’s edition.
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Diophantus’s Arithmetica I–III 5

ogy includes the notion of problem (problêma), statement of a problem (protasis),
prescription (epitagma), to solve a problem (lyein), and solution of a problem.

(b) The second tool is the system of qualifications, names and designations (epôny-
miai) used for numbers, since the treatment of problems relies on the clever use
of these verbal and conceptual possibilities. The related terminology includes the
generic notion of number (arithmos); its various qualifications with reference to
the task stated in the problem (like sought, given, found numbers), to the algo-
rithmic prescriptions within the statement (like ho loipos, ho genomenos) or to
their kinds (like squares or cubes); its possible designations (epônymiai) when
numbers are understood as species (eidê).

(c) The third constitutes, in a sense, our ‘atomic’ unit of analysis of the treatments,
namely the notion of position (hypostasis), which is the correspondence between
numbers of the statement and species formed from elements of the “arithmeti-
cal theory”. With respect to position, we also introduce the term expression to
designate the second term of the correspondence.

(d) The fourth are related to the various end-points of the chain of positions that
constitute each treatment of a problem. We introduce specific terms for such
end-points, namely equations, double equations (diploisotês), dead ends. The
two first terms are related to the generic term equality (isotês) and equal (isos)
used in Diophantus, but we shall see that the latter are used in various contexts
and not only for the ending points of solutions.

(e) The last tool will enable us to characterize the use of repetition in the progres-
sion of Diophantus’s problems: they are the notions of method of invention and
heuristic explanation. The two expressions are not Diophantine, although they
voluntarily allude to the terms invention (heuresis) and the verb to invent (heurein)
as well as to the notion of way (hodos) all used by Diophantus.

The notion of “method of invention” is, in turn, the key basis of the following part,
which proposes an inventory of such methods.

In general, one can see that most of these notions and tools directly correspond
to Diophantus’s own vocabulary or borrow key elements of it. In any case, they are
meant to reflect recognizable aspects of the study. Furthermore, they are retrieved in
the final conspectus, of which they are the basis.

For each of the above terms and the corresponding notions, we first propose signif-
icant examples explaining their meaning; then a generic characterization, including
the specific Greek terms, expressions or formulas attached to it. Finally, we indicate
how these notions are retrieved in the final conspectus.

2.2 The duality between problems and their treatments or solutions

2.2.1 The various ways by which the notion of “problem” might be understood in the
Arithmetica

The notion of problem, taken in the most straightforward sense, refers to a textual
unit in the manuscript tradition of the Arithmetica, comprehending the statement of an
arithmetical task (asking for numbers verifying specific constraints) as well as the treat-
ment or ‘solution’ of this task: this treatment leads to determined numbers checking
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the constraints. Such “problems” are classified by book and number in Tannery’s or
Allard’s edition, following number already found in the manuscripts.7

Diophantus, though, does not refer to such textual units when referring to problems:
even when the text happens to refer to a previously treated problem, this is never done
by a precise reference to a given book or to any textual unit within it, but rather to a
specific task or challenge that is, or not, fulfilled.8 Even more important is the fact that
a problem in the “textual” sense might encompass several problems in the ‘functional’
or ‘challenging’ sense of the term: this is the case, in particular, when Diophantus is
led to state auxiliary problems in the course of a given solution.

A good example is problem III.10, which is among the first cases, in which such
auxiliary problems are found. The problem (or task) stated at the beginning is (a) “to
find three numbers so that the <product> on any two of them, adding to itself a given
number, makes a square” (Arithm. 158.2–4). The given number is further specified
as being 12 and, in the course of the treatment, Diophantus is led to make 52 dyna-
meis and 12 units a square number. He then remarks that, if 13 were a square, then
obtaining an equation that would bring to this end would be easy.9 Thus, he is led to
the following remark: “since it is not so, I am led to (b) finding two numbers, so that
their <product> be a square and, furthermore, so that each of them with 12 makes
a square” (Arithm. 158.22–24). He then remarks that if he finds squares instead of
just numbers, the product of them will automatically be a square; so that “it <i.e.,
the aforesaid problem> becomes <a new problem, namely:> (c) to find two squares,
each of which with 12 units makes a square” (Arithm. 158.26–27). Two new problems
are formulated here, which are distinct from each other (the second is more specific
that the first) and from the problem that led to them, which is recalled near the end of
the treatment of III.10 by the expression “I come to the <problem> at the beginning.”
(Arithm. 160.4).

In general, then, the word problem (problêma) and the related expression to pro-
pose a problem (proballesthai), when they are not specified by a proposition number,
is usually used by Diophantus to designate a task or challenge containing an internal
difficulty. Such a problem therefore calls for some activity or action to solve this dif-
ficulty and build a possible answer.10 Stylistically, such problems are characterized
by verbs like “heurein,” “diairein,” “zêtein,” “poiein,” which all refer to a task to be
performed. The word problem, within the introduction of the Arithmetica, obviously

7 When used in this sense, we usually append the book and proposition number, unless the context
makes clear that this meaning is intended: thus “problem III.10” refers to the whole textual unit (Arithm.
158.2–160.11).
8 On this point see (Netz 1998).
9 That is, it would be easy to posit the square and thus create a solvable equation. Indeed, 52 was previously
obtained as the product of 4 (which is a square) and 13 (which is not). If, then, 13 had been chosen a square
(like 4), the product would have been a square: it would then have been easy to make a position for the
still indeterminate square so as to obtain a ‘good’ equation. The process of obtaining the ‘right’ equation is
called isôsis in this passage (‘equalization’).
10 This meaning is akin to the original meaning, which these words have in ancient rhetoric, in which
the problem is a challenge set to an orator by his audience, the action itself of “challenging” being called
“proballesthai” (Bernard 2003; Knorr 1986). The obvious difference here is that the kind and the contents
of the problems is not the same as those found in rhetoric, and furthermore the human context is not defined
in Diophantus.
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Diophantus’s Arithmetica I–III 7

is used with this meaning, the second occurrence referring to the internal “weaving”
of difficulties which is characteristic of arithmetical problems (Arithm. 4.10). When
a problem calls for the “unraveling” of its intrinsic difficulty, the conclusion of the
treatment is sometimes formulated as poiousi to problêma: “<the found numbers>
make the problem.”

An example of an explicit reference to the proposition of a problem, that is, the
“setting” itself of the task, is found in an interesting remark within problem II.3. The
statement is to find two numbers, such that their product has a given ratio to their
sum or difference. One number is set 1 arithmos, the other 2 arithmoi, according to
the following explanation: “indeed they <i.e., the two sought numbers> can be also
proposed in given ratio” (Arithm. 84.16–17). This obviously alludes to the fact that one
might have looked for two numbers in given ratio, with the same other prescriptions.
This problem is stated in general and solved in the first book.

The notion of ‘problem as a task’ cannot be too sharply separated from the ‘textual’
meaning, as the example of “problem III.10” shows: although the later contains four
different treatments, corresponding to three statements, clearly the first and fourth
give to the whole its thematic unity, which is summarized by the recurring statement
treated twice. Thus, this example shows that it is important, for analytical purposes,
to pair the statement of a problem and any of its specific treatments. Such a notion of
statement and ‘elementary treatment’ is somehow intermediate between ‘problem as
textual unit’ and ‘problem as task’; to designate this notion, we will also use here the
term problem, eventually followed by a number identifying which problem is exactly
designated (like problems III.10.1, 2a, 2b, 3 in this case).

The final conspectus, when read vertically, basically refers to this very last notion of
problem: thus, each line corresponds to one ‘elementary problem’ and its correspond-
ing treatment. Thus, problem III.10 (as a textual unit) actually corresponds to four
different lines, the first being the first attempt to build a treatment, leading to a dead
end; the second and third correspond to the above-mentioned auxiliary problems, the
last line corresponds to the same statement than the first, but with a different treatment.
Thus, problem III.10 contains four treatments and ‘problems’ (the third meaning of
the term), but three different problems in the second meaning (problem as task). Since
the conspectus, as well as our analysis, follows the third meaning, we consider that
we have here four different problems. The thematic unity is classically indicated by
the name of the four problems, which all begin with ‘III.10.”

These distinctions appear to be useful not only for the analysis of auxiliary prob-
lems, as in problem III.10, but also for the analysis of “variants” of a same problem,
as in problem II.8, which can then be identified as containing two different problems
II.8 and II.8 alit., although the statement remains the same.11

That these distinctions are also useful for a detailed understanding of the structure
of Diophantus’s treatment might also be recognized from the ways by which the state-
ment of a problem might be ‘decomposed’ into various prescriptions (epitagmata).
Some of these prescriptions might be considered to constitute problems by themselves,

11 This example will be studied in more detail below (2.4.2).
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as we shall now see. Clarifying the notion of epitagma will also help us to elucidate
the intimate connection between the notions of problem and solution.

2.2.2 Prescriptions (epitagmata) stated within the statement (protasis) and recalled
within the treatment of a problem

The word epitagma is the substantive name corresponding to the verb epitassein,
which is used in various means to designate anything that might be prescribed, that
is, a prescription. This might be some relationship that the sought number(s) should
satisfy, but it might as well designate the given number when the problem is instanti-
ated.12 In some cases, therefore, the epitagma just means “problem” or, more precisely,
is used by Diophantus to emphasize the prescriptive aspect or aspects of a prob-
lem13: this is the case, in particular, in the conclusive formula “poiousi to epitagma,”
“<the found numbers> satisfy the prescription,” that is synonymous of “poiousi to
problêma.”14

The prescriptive aspect of the statement usually consists in verbal statements
asking one to obtain a number or numbers of a certain kind. These prescrip-
tions are introduced, therefore, by verbs in the infinitive, like dielein, poiein,
heurein etc., eventually completed by a formula like “hopôs . . .,” “hina . . .”
again followed by a verb. In other words, epitagmata cannot be dissociated
from the verbal formulas by which the problem is effectively proposed, namely
the protasis (that is, statement or proposition) or the problem. For this reason,
the set of prescriptions constituting the problem is sometimes named “ta tês
protaseôs.”15

These “prescriptions” make a bridge between the statement and its treatment. For
they are obviously contained, so to speak, within the dense formulas that constitute
the statement. But these “general prescriptions” are also recalled within the treatment
of the problem: they are then detailed into “elementary prescriptions,” for which the
name epitagma is again used. Such a use within the treatment of a given problem
can be recognized through the analysis of typical expressions, in which “epitagma”
is associated with “lyein,” to solve, that is, when one of the prescriptions is said to
be solved. For example, problem III.1 asks to find three numbers, such that if the
square on any of them be removed from the sum of all three it remains a square. Then,
having posited 5 dynameis for the sum and one arithmos for the first number, and
2 arithmoi for the other, Diophantus concludes that “two of the epitagmata are now
solved” (Arithm. 138.11). For the sum, which was posited 5 dynameis wanting the

12 We shall come back to this use in Sect. 2.3.1 and see that the distinction between epitagma as verbal
prescription and epitagma as specification of a ‘given’ problem should not be exaggerated.
13 This must be contrasted with the basic nuance contained in “problêma,” in which the emphasis is laid
on the challenging aspect for someone, as we have seen.
14 The expression is used in the conclusion of five problems in book III (6, 7, 10, 12, and 15).
15 Thus, in problem I.28 the expression “they make what is said in the proposition” is used as identical
with the expression “they make the problem,” the latter formula being the conclusion of a whole series of
Diophantus problems. See “Index graecitatis apud Diophantum” (Arithm., ii, p. 281), s.v. “protasis” (kai
poiousi (vel poiei) ta tês protaseôs).

123



Diophantus’s Arithmetica I–III 9

square on the first, namely 1 dynamis, or wanting the square on the second, namely
4 dynameis, makes a square in each case: two of the “elementary prescriptions” are
thus fulfilled. Thus, the two notions of epitagma and lyein (solving) are intimately
connected to each other. In book III, this connection is made clear by the many places
in which prescriptions (epitagmata) are explicitly mentioned to be solved.16

By generalization, then, the notion of prescription (epitagma) might be logically
applied to any case in which the ‘general prescription’ contained in the statement
is explicitly recalled within the treatment and, at the same time, decomposed into
its elementary components. A standard example is problem II.20, in which it is
asked to find two numbers such that the square of either added to the other gives
a square. In the course of the treatment, the two numbers are posited “so that the
square on the first, adding to itself the second, makes a square” (Arithm. 114.14–
15); that is, so that the first prescription, which is here explicitly stated, is fulfilled
or solved. Then the other prescription included in the problem is recalled by the for-
mula loipon esti: “it remains that the square on the second, adding to itself the first,
<shall> make a square” (Arithm. 114.15–17); in other words, the second epitagma
has to be checked. In this case as in general, these explicit reformulations enable
one to identify what are the two epitagmata that constitute the whole of the prob-
lem. The statement of the problem might thus be said to be explicitly reformulated
and ‘decomposed,’ within the course of the treatment, into its various “elementary
prescriptions.”

In almost all of the problems of books I–III, determinate numbers are found once
all the epitagmata have been solved and the requested arithmos is determined. In some
cases, though, determinate numbers are found for one of these “partial prescriptions,”
as if it was treated as a separate problem. In this case, therefore, we chose to rep-
resent in the conspectus such epitagmata as separate problems, since we can make
separate treatments correspond to them. Problem III.15 alit., for example, has three
prescriptions,17 the first of which is treated and “solved” separately: two determinate
numbers are explicitly found, that “solves one of the epitagmata” (Arithm. 172.11–
15). This decomposition of the treatment of problems into sub-problems, each one of
them corresponding to a separate prescription, only appears in a few problems of the
three books.18

As we have seen, the particular notions of problems and prescriptions that we have
elucidated are hardly separable from the key notion of treatment or solution of the
problem. As a synthesis of this first explanation, we shall go back to this last notion.

16 III.1: esti duo tôn ep. lelymena (Arithm. 138.11); III.12: lysomen hen tôn ep. (Arithm. 166.13); III.14:
hina êi lelymena duo tôn ep. (Arithm. 170.12); III.15 alit. and III.16: kai lelytai hen tôn ep. (Arithm. 170.2
and 178.11). In III.15 alit. we also find kai menei hen tôn ep. (Arithm. 174.19) and in III.17 the prospective
expression exês dei kai ta loipa duo ep. kataskeuasthai (Arithm. 180.14). Many more similar examples are
found in other books, like in the (Greek) book “IV.”
17 ? X, Y, Z : XY + X + Y ⇒ � (E1), Y Z + Y + Z ⇒ � (E2), Z X + X + Z ⇒ � (E3). The various
symbols we use in the abbreviated transcriptions of the problems are explained in the 2nd appendix.
18 Beyond problems III.15 alit. and III.16 (which is very close to the latter), we have I.20, perhaps II.28
and II.29. All other cases, in which a problem is divided into “sub-problems” are cases, in which auxiliary
problems are introduced, like in III.10.
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2.2.3 The notion and role of solving (lyein) problems within their Diophantine
treatment or solution

The previous discussion shows that we have generally used the terms ‘treatment’ or
‘solution’ to designate the process by which a problem is solved, that is, by which its
difficulty is unraveled: this meaning is directly deduced from, and coherent with, the
very first occurrence of lyein in the introduction of the Arithmetica. It is then opposed to
the notion of weaving (plekesthai) applied to the statements of the problems. The latter
being weaved into internal difficulties, solving (lyein) them just means the contrary,
that is, to unravel the difficulty. Therefore also, this notion must be sharply distin-
guished from the numerical results of this process, for which Diophantus sometimes
uses the expression “heurêmenoi arithmoi” or “heuriskomenoi arithmoi”.19

Within the course of the treatments, unraveling the difficulty of the problem is
essentially done by the choice of one or several relevant positions (on which more
below) and then, after the establishment of the equation, by finding the value of the
arithmos. For this very last process, Diophantus also uses lyein, to solve, but does
not apply it to a problem but to an equation. The corresponding procedures used to
solve equations are definitely different and distinguished from the general process of
‘solution’ applied to a problem.20

Furthermore, the verb lyein mostly appears within solutions themselves in asso-
ciation with epitagma. We have seen the example of problem III.1 above. Similarly,
in problem III.12 we find: “if, therefore, having exposed some square <number>,
we shall set some part of it for the third, and the remainder for the product of the
first and second, we shall solve one of the prescriptions” (lysomen hen tôn epitag-
matôn) (166.1–3, emphasis added). The meaning cannot be clearer: if we do that, then
we solve one of the requests; to solve means to “do” something, it designates some
specific process which is part of the entire treatment. The same meaning of “lyein”
is found in other instances within the third book of the Arithmetica. For example in
problem III.14 we read: “Let them be set the first 1 arithmos, the second 4 arithmoi
and 4 units, the third 1 unit, so that two of the prescriptions might be solved” (hina êi
lelymena duo tôn epitagmatôn) (Arithm. 170.1–2, emphasis added).

All this shows that the most important part of the solution of a problem, which
includes the solution of an equation, is actually not the latter, but the first part, by
which positions are found for the numbers in the statement. As we have explained
elsewhere, what Diophantus takes as a theme within the Arithmetica is the conversion
of a problem to equation and not the solution of the equation; the latter seems to be of
secondary importance in his work.21

19 See “Index graecitatis apud Diophantum” (Arithm., ii, p. 271), s.v. “heuriskein.” For example in problem
III.15 it is said that “these numbers being found” (Arithm. 160.4), speaking of the determinate numbers
found in the first part of the solution. See also 2.3.1 below
20 For the discussion of this second meaning of ‘lyein’ (to solve), see 2.5.4.
21 See more on this in (Christianidis 2007). Note that these notions of solution and solving of a problem are
distinct from the one they usually have for a modern mathematician, namely the outcome of the treatment
of the problem, whether numbers, or equations, or figures (for the solution) and obtaining this result (for
solving). The Diophantine notion is closer to the notion of resolution, but note also that the Latin resolutio
sometimes refers to the Greek analysis.
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Correspondingly, therefore, we shall use here the word solution to designate gener-
ally the whole treatment of a problem, and write more specifically about “the core of
the solution” (or any similar expression) for the most and main part of it, namely the
progressive conversion from the statement to an equation. Such an understanding is
all the more useful and legitimate that it helps to differentiate between two ‘problems’
(in the third meaning of the term) that might share the same statement, or lead to the
same equation, but that might neatly differ by their ‘solution’ in the strict sense.22

2.3 The possible statuses of numbers within the problems and their solutions:
qualifications and designations

We have thus seen that epitagmata are crucial for the core of the solution of any prob-
lem, for they represent re-statements (i.e., reformulations of the statement), within
the latter. Moreover, epitagmata are both formulated with references to the specific
operations that are prescribed, and to the numbers on which they apply, or of which
they are the results. We need, therefore, to identify how these numbers are named or,
better said, qualified.

Indeed, most of these numbers are generically called “number” (arithmos) by Dio-
phantus, either explicitly or not. This term obviously is generic and might receive var-
ious specifications, according to the function numbers have within statements and/or
treatments. These distinctions, as far as statements and epitagmata are concerned, are
established at the level of the qualifications that apply to numbers (like found, given,
loipos, genomenos, etc.), according to the roles they have either within the statement
or its reformulations. Some of these qualifications (like found, given, etc.) might refer
to the general task that defines the problem (2.3.1); others (like loipos, tetragônos,
pleura, etc.) might refer to an operation that defines them (2.3.2). ‘Qualified numbers’
have generally to be grammatically understood as common names or nouns and are
used within epitagmata. As such, they must be distinguished with other names, like
dynamis, which are used as ‘designations’ (epônymiai) for numbers, when they are
used as terms of the “arithmetical theory” and are explicitly the result of an ‘artifi-
cial’ process of naming (onomasia) (2.3.3). We might finally define the generic (and
non Diophantine) notion of constraint (2.3.4), which includes epitagmata as well as
qualified numbers like tetragônoi.

2.3.1 Numbers qualified by reference to the general task of the problem

Sought (alternatively, required or requested) numbers correspond to the Greek zêtoum-
enoi arithmoi in Diophantus and naturally designate the numbers, the finding of which
is called for by the statement of the problem.23 This qualification is explicitly used
within the treatment, usually in formulas like “let the sought number be set . . .”
(tetachtô ho zêtoumenos . . .), or similar expressions. Within the statement, they are

22 We shall see a good example of this with problem II.8. See 2.4.2 below
23 In the abbreviated transcription of protaseis that we will use throughout the article in order to avoid
full-scale quotations, we will use the letters X, Y, Z . . . to denote the sought numbers.
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12 A. Bernard, J. Christianidis

recognized by the fact that they are the object(s) of the verbs defining the main tasks
and the numbers to be found (like heurein, dielein, etc.).

Sought numbers are most of the time qualified by ordinal or comparative adjectives
like ‘the first, the second’ (ho prôtos, deuteros), ‘each of’ (hekastos) or ‘the remain-
ing one’ (ho loipos), the greater / the lesser (ho meizôn / elassôn) when other sought
numbers have been designated already. The latter qualifications are of course the basic
means, by which epitagmata might be distinguished from each other; but they might
also be used in the statements of problems.

The given or prescribed numbers (epitachthentes or dedomenoi arithmoi), as their
name indicate, are those numbers that are liable to be further prescribed within a
specific sentence which comes after the general statement but before the treatment
proper. In problem III.10, for example, the ‘given number’ in the basic statement is
specified by the sentence “let the <number> 12 be further prescribed” (epitetachtô dê
ton 12). That the verb epitassein is here used in a coherent manner with the meaning of
epitagma clarified above24 is clear from several such ‘further specifications,’ in which
not only the given number or numbers receive a determinate value, but the verb used
in the statement is also recalled, as in problem II.12 (Arithm. 100.1–3, repeating the
statement with determinate numbers). Given numbers, therefore, are inseparable from
a specific form of prescription, namely, a prescription which is slightly delayed.25

Within the statements, numbers other than sought or given appear under explicit
qualifications. In problem III.10 stated above, for example, the product of each pair26

added to 12 shall make a square: such numbers might be designated as ‘partial results’
corresponding to some prescribed operation. Problem II.9 asks for the addition the
same <sought> number to two given numbers, so as to make each of them squares:
such numbers are characterized by their kinds, like “a square” (in books II and III),
“a cube” (in other books). In these two cases, they are not given. We shall generally
designate by indeterminate numbers, then, those numbers present in the statements
or their reformulations and that are not given.27 The term is non-Diophantine, but
the notion is useful for the analysis of solutions and the numbers thus qualified are

24 Cf. 2.2.2.
25 Such ‘differed prescriptions’ are sometimes called instantiated problems, but this name might be mis-
leading, since the distinction between ‘general’ and ‘instantiated’ statements or problems is not an explicit
concern in Diophantus. The statement of these ‘differed prescriptions’ sometimes follows a condition of
solvability that Diophantus calls “prosdiorismos.” The name appears in the statement as well as within the
treatment.
26 Literally, the <number formed> under (hypo) the pair of numbers.
27 Note that the Greek expression arithmos aoristos is used by Diophantus in a thoroughly different mean-
ing. For the meaning of this expression, which however does not appear at all in the problems of the first
three books of the Arithmetica, see (Klein 1968/1992, 134). In the Tannery’s edition of the Greek text of
the Arithmetica the word “aoristos” appears, in fact, once in the introduction, when Diophantus defines the
technical term “arithmos” of the arithmetical theory. Thus, in Tannery’s text the “arithmos” is defined as
“having in itself an indeterminate multitude of units” (echôn en eautôi plêthos monadôn aoriston) (Arithm.
6.4). However, this word does not exist in any of the known manuscripts of the Arithmetica, and it is in fact
inserted into the text by Tannery himself, who ‘corrected’ the text of the manuscripts by taking into account
a lecture of the text found in a letter of the Byzantine scholar Michael Psellos (11th century). This letter is
published in the second volume of Tannery’s edition (Arithm. ii, 37–42). For an elucidating and convincing
discussion of the whole issue see the corresponding comment of Rashed in his edition of the Arabic books
of the Arithmetica (Rashed 1984, iii, 121).
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easily identified. Their names refer to operations and will be explained in the next part
(2.3.2).

Within the final conspectus, all these various qualifications of numbers are retrieved
and enumerated within the first columns. Furthermore, in any of our abbreviated tran-
scriptions of the statements, we will always use determinate numbers instead of the
“given numbers” as such.

Found numbers (heurêmenoi or heurethentes arithmoi) is an expression used
(although rarely) for the determinate numbers that satisfy the prescriptions of the prob-
lem. In problem III.10.3, for example, the opening formula is “those numbers having
been found” (toutôn heurethentôn), referring to the determinate numbers effectively
found in III.10.2b. Such numbers, by definition, can be only found after the treat-
ment, once the arithmos has been determined. They are the completely determinate
multitudes of units, or parts of unit, that complete the solution of a problem.

The “epitagmatic” qualifications listed above have in common that they designate
the role of numbers within the statement of a problem or within its solution, when the
prescriptions are reformulated. Concerning indeterminate (that is, non given) numbers,
we have seen that it is important, in parallel, to regard some of these qualifications
with reference to operations, be they part of an epitagma or not.

2.3.2 Numbers qualified by reference to operations

Diophantus’s introduction makes it clear that numbers might be distinguished by spe-
cific kinds, such as “square,” “cube,” “side” whenever they are to be considered, within
the statement, in relation to each other. The basic kinds of numbers enumerated in the
introduction are the following: (a, b) square numbers (tetragônoi) and their sides
(pleurai), which are respectively the numbers resulting from the multiplication of a
number by itself, and the squared number itself; (c) cube numbers (kyboi), resulting
from the multiplication of a square number by its side; (d) numbers resulting from the
multiplication of a square number by itself, or (e) from the multiplication of a square
number by the cube of the same side, or finally (f) from the multiplication of a cube
by itself28 (Arithm. 2.18–4.7). In all cases, these qualifications are always referred to
specific operations that are here made explicit once and for all.

The following sentence of the introduction suggests that many other relations are
possible within the statement and ‘weaving’ of a problem: “from all these <kinds
of numbers>, either by addition, subtraction, multiplication or ratios, either to each
other or each of them relatively to their own sides, most of the arithmetical prob-
lems are woven” (Arithm. 4.7–10). One might also add, when comparing with the
actual statements, that the operations in question are most of the time made explicit
as well as their results. Thus, for example, the generic and instantiated statements of
problem I.7

From the same number, <it is asked> to remove two given numbers and make
the remainders have a given ratio to each other.

28 As indicated already in (Christianidis 2007, 295–296), these three last categories plausibly have no
specific names in this part of the Diophantine text.
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Let it be <further> prescribed to remove from the same number the numbers
100 and 20, and to make the greatest thrice the least.

Such a double statement not only prescribes operations to be performed, like
subtraction/removal (aphairesis) or ratio-making29 but also refers to the resulting
numbers, which are named ‘tous loipous’ (the remainders) in the generic statement,
and ‘ta meizona, ta elassona’ in the instantiated formulation. Similarly, a host of qual-
ifications are used in statements or in solutions and, like the ‘kinds’ of numbers listed
above, refer to an operation. The only difference with ‘kinds’ is that the operation in
question is explicitly contained in the prescription, whereas for kinds it refers to the
correspondence between names and operations that is made explicit in the introduction
only.

2.3.3 Qualifications vs designations (epônymiai) of numbers: kinds and species

The vocabulary of ‘qualifications’ by reference to operations is characteristic of state-
ments and epitagmata, be they stated or reformulated, and is used only for them. But
Diophantus’s introduction makes clear that numbers might also receive a designation
(epônymia) and then become the terms or elements of the “arithmetical theory” (sto-
icheia tês arithmêtikês theôrias).30 Most of these terms are what is later called species
(eidê), like the arithmos, the dynamis, the kybos, the dynamodynamis, and so on. But
a simple multitude of units (monads) might also be a term in the theory—more pre-
cisely, it can also play this role. The designations refer to some kind of relationship
between species, insofar as they signify it: this is explicitly said by Diophantus when
he comes to the multiplication of species: “they might by clear to you, for they are
almost prefigured in their very naming (onomasia)” (Arithm. 6.24–25).

The usefulness of the distinction between kinds and species of numbers, which par-
allels the distinction between ‘common names’ (or qualifications) and epônymiai, is
that it points out toward different contexts, in which they play different roles. Kinds and
qualifications of numbers are for the statement or the reformulation of its prescriptive
contents; species (and designations) are for the terms of the “arithmetical theory” and
are used to compose what we will call below expressions within a position. For exam-
ple, if we are told that an indeterminate square is set, in the course of the solution, as
“1 dynamis,” this “1 dynamis” is a term of the “arithmetical theory.” Similarly, if we
are told that an indeterminate square is set, in the process of solution, as 25 units,
these 25 units just play the role of a term of the “arithmetical theory”; in this case,
they obviously do not have the status of given numbers of the problems.31

29 A ratio is not itself an operation, but it is usually translated into a multiplication by Diophantus. In the
example the prescribed ratio 3 to 1 implies a multiplication by three (Arithm. 24.10–11).
30 Translating epônymia by designation follows Tannery’s proposal. What should be the ‘right’ translation
of this word, and more fundamentally, how the notion itself is to be understood, is a difficult question that
will not be discussed here.
31 In our abbreviated transcriptions, we will use we use lower case letters like x, x2, x3, etc. to denote the
species of numbers, that is the terms of the “arithmetical theory.” We keep the usual number symbols for
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We must finally remember that there are two terms which are formally transversal
to the two contexts (statements and “arithmetical theory”), namely the terms arithmos
and kybos. The latter makes its appearance from the book IV onward and will not
concern us here. The former is most of the time kept implicit when understood as
having a role (and the corresponding qualification) within the statement, and it is most
often explicitly used when it designates the species of alogos arithmos, as defined in
Arithm. 6.3–5.

Within the conspectus, kinds of numbers are, like qualifications, retrieved on the
left columns, in which the statements are analyzed into their various components. The
last notion, which is mentioned in the same place, is the notion of constraint, which
we shall now clarify.

2.3.4 Kinds of number as condensed prescriptions: the notion of constraint

In problem III.10, which was taken as example above (cf. 2.2.1), the difficulties in
problems (a) or (b) are essentially based on three prescriptions that end with an inde-
terminate square to be obtained. The difficulty in problem (c), by contrast, is made of
two such prescriptions: each of the sought numbers, added to 12, must make a square;
but, furthermore, these numbers have to be squares. These ‘imposed kinds’ therefore
act as if they were also epitagmata. Like them, they partially express the specific dif-
ficulty of each problem and act as constraints on the solution. In general, therefore,
we shall call a constraint (of a stated problem) any element within the problem that
calls for a treatment or solution.

That kinds of numbers are close to prescriptions might easily be recognized if we
artificially translate the one into the other. For example, instead of asking to divide a
square into two squares numbers, as in the actual statement of problem II.8, we might
as well ask to divide a square number into two numbers, so that these parts might make
squares. In this new and highly artificial formulation, what was before expressed as a
‘requested kind’ becomes a verbal epitagma. But, of course, the artificiality of such
a formulation comes from the fact that the operation called for by this artificial epit-
agma is actually contained in the very notion (and name) of ‘square’ (tetragônos), as
explained in Diophantus’s introduction.

The notion of a constraint has no specific name in Diophantus but, on the one hand,
we have just seen that it is very close to the notion of prescription; moreover, it can
be unambiguously recognized from both the statement and the treatment, the latter
having to take into account, so to speak, such constraints. The recognition of the latter
is important for the analysis of Diophantus’s solutions, insofar as to each of the con-
straints might correspond a specific choice within the treatment that “answers” and
“solves” these constraints. But we have to note that there is no explicit concern for
how many constraints there are in a problem or for the whole set of all found numbers
that might observe a given set of constraints: such a concern is typically modern.

Footnote 31 continued
determinate numbers that are used as terms of the “arithmetical theory.” Kinds of numbers, especially the
squares, are denoted by the sign �, eventually followed by capital letters like U2.
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Within the conspectus, the total of constraints is indicated in a specific column. The
abbreviations we use for the statement of problems also make clear the distinction
between the various kinds of numbers and the various kinds of constraints.32

2.4 The analysis of the main stage of the solution into a chain of positions

2.4.1 The various stages of the solution and their relative importance

In order to introduce the next key notion of our ‘analytical toolbox,’ namely position
(hypostasis), let us check the structure of a standard example, in which this meaning
is made clear, namely problem I.12:

To divide a prescribed number into two numbers twice, so that one of the <num-
bers obtained> from the first division should have a given ratio to one of the
<numbers obtained> from the second division, and the remaining <number>
of the second division should have a given ratio to the remaining <number> of
the first division.

This is a standard statement, which includes four sought numbers, three given data
and two prescriptions. The given number is then further prescribed as being 100 and
the two given ratios as the double and triple. Here is the treatment:

Let the least of the second division be set (tetachthô) 1 arithmos. The great-
est <among the numbers obtained> from the first division, therefore, will be 2
arithmoi, and, consequently, the least from the first division <will be> 100 units
wanting 2 arithmoi; and since the greatest from the second division is the triple
of the latter, this will be 300 units wanting 6 arithmoi. There remains that the
<numbers> of the second division, composed with each other, should make 100
units; but, when they are <indeed> put together, they make 300 units wanting
5 arithmoi. The latter are equal to 100 units, and the arithmos becomes 40 units.

<Let us come> to the positions (epi tas hypostaseis). I have set (etaxa) the
greatest of the <numbers out> of the first division 2 arithmoi, this will be 80
units; <I have set> the least of the same division 100 units wanting 2 arithmoi,
this will be 20 units; <I have set> the greatest of the second division 300 units
wanting 6 arithmoi, this will be 60 units; <I have set> the least of the second
division 1 arithmos, this will be 40 units. And the proof is clear.

This part is the complete solution and is clearly composed of distinct, consecutive
parts. The first it the “setting” of various numbers evoked in the statement (the two
parts of the given numbers for each division). Then an equation is obtained, on which
the various operations, which are described in a general manner in the introduction,
might be performed. Unlike most of the previous problems I.1–11, but very much like

32 Thus, the three above problems (a), (b) and (c) are abbreviated in the following manner:
(a) ? X, Y, Z : XY + Gvn ⇒ �(U2), Y Z + Gvn ⇒ �(V 2), X Z + Gvn ⇒ �(W 2).
(b) ? X, Y : XY ⇒ �(U2), X + 12 ⇒ �(U2), Y + 12 ⇒ �(V 2).
(c) ? X, Y : �X,�Y, X + 12 ⇒ �(U2), Y + 12 ⇒ �(V 2).
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in the huge majority of the following problems, these operations are not fully stated
here.

The arithmos once determined, the solution continues with the standard clause “to
the positions” (epi tas hypostaseis). What follows is, very clearly, the series of sought
numbers with their corresponding expressions. Although the term hypostasis in most
of its occurrences within the ‘epi tas hypostaseis’ clause is associated with the verb
tassein (tetachthô, tassô, etaxa), which means “to set,” it is remarkable that the first
‘matching pair’ recalled has not been introduced by ‘tetachthô’ before, but by ‘estai’.
In general, then, the term hypostasis, translated here, following Tannery, as “position,”
might plausibly be interpreted as referring in general to the explicit correspondence
between one number evoked in the statement and some combination of species of the
“arithmetical theory.” While the formula used for such ‘positions’ might be, like here,
explicitly recalled by a formula like ‘I have set’ (etaxa), the ‘values’ of the sought
numbers, in most cases, are directly calculated.

The solution is finally completed by a proof (apodeixis), which is here left implicit.
It consists in checking that the found numbers indeed satisfy the prescriptions.

The case of problem I.12 is representative of many of Diophantus’s treatments.
Among these various parts of a standard solution, indeed, only the first is usually
developed and given in full for the majority of the problems in Arithmetica I–III. In
particular, the solution of the equation obtained (when the latter is quoted) is most
often not fully worked out. There are many problems in which, as in I.12 here, it is
skipped altogether and replaced by the final ‘value’ of the arithmos; the proof is absent
as well, or referred to as ‘clear.’

By contrast, what is present and, so to speak, prominent in most treatments is the
series of positions (hypostaseis), each one being introduced by specific justifications,
or calculations, or both. In other words, to each obtained position corresponds a ‘posi-
tioning,’ a specific process by which it is obtained.

2.4.2 Differentiating variants through positions: the case of problem II.8

Problem II.8 represents an interesting ‘test’ for the analysis by positions and position-
ing. For it includes one statement (to divide a given square number, be it the number
16, into two squares)33 but proposes two variants. In the terms proposed above, there
is one problem with the meaning of ‘task,’ but two problems (II.8 and II.8 alit.) if to
the statement we add each of the two treatments proposed. The positions of the first
of them are the following:

Let the first (sought square) be set 1 dynamis; then the other <square> will be
16 units wanting 1 dynamis; therefore, 16 units wanting 1 dynamis will have to
be equal to a square. I form <plassô> the <aforesaid> square from any number
of arithmoi wanting as many units as there are in the side of the 16 units; be it
2 arithmoi wanting 4 units. The square itself will be 1 dynamis <and> 16 units
wanting 16 arithmoi. (Arithm. 90.12–17)

33 In abbreviation: ? X, Y :�X, �Y, X + Y ⇒ 16.

123



18 A. Bernard, J. Christianidis

Here four positions are successively introduced. First the position for the first of the
two sought square numbers is introduced by the formula “let it be set” (tetachthô).34

Next, the position for the second sought square is deduced from the first position and
from the prescription of the problem; it is therefore introduced by “ho ara heteros
estai.”35 Then the third position for the side of the same square is introduced in two
steps; first by an explanation, introduced by the verb “I form” (plassô), that gives the
general form that should be adopted36 and then by choosing a particular case, which
is introduced by the formula “let it be <then>.”37 The last position is for the square
itself (that is, the second sought number) and is directly deduced from the position for
the side.38

The chain of positions for the variant is the following:

Let it be set, again, the side of the first <sought square> 1 arithmos, and <let it
be set the side> of the second, any number of arithmoi wanting as many units
as there are in the side of the divided <square number>; be it, then, 2 arithmoi
wanting 4 units. The squares, therefore, will be 1 dynamis, on the one hand, and
1 dynamis <and> 16 units wanting 16 arithmoi, on the other hand. (Arithm.
92.4–7)

Here there are again four positions, but they are not at all the same as in the first
treatment: the two first are set for the sides of the sought squares (and not one for the
first sought square, as before)39 and two are deduced from these, namely the squares
of these sides: the positions of the two sought numbers are thus obtained.40 The dif-
ference between the treatments thus becomes very clear from the comparison of the
positions, which can be summarized in the following table:

P # Positions of the 1st solution Positions of the alternative solution 
1 X := 1x2 foedis X := 1x
2 Y := 16 – 1x2 side of Y := 2x – 4 
3 side of Y := 2x – 4 X := 1x2

4 Y := 4x2 + 16 – 16x Y := 4x2 + 16 – 16x

In the aforementioned examples the positions were introduced by expressions like
“tassô,” “tetachthô,” “plassô,” “estô,” “estai ara,” etc. But positions might be intro-
duced by other expressions as, for example, the expression “that is to say” (toutesti)
by which the last position is introduced in problem II.14 (Arithm. 104.10). Therefore,
what is important in order to recognize in general when a position is introduced in the
solution of a problem is not the presence of one or another of the above verbs in the

34 In abbreviation: X := 1x2.
35 This position is Y : = 16 − 1x2.
36 Namely, mx−√

16· in modern transcription where m is “any number we wish.”
37 This position can be abbreviated into sY := 2x − 4, in which sY designates the side of Y .
38 In abbreviation: Y := 4x2 + 16 − 16x .
39 In abbreviation: sX := 1x, sY := 2x − 4 (same convention that before, sX and sY are the sides).
40 In abbreviation: X := 1x2, Y := 4x2 + 16 − 16x .
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text, but the marking off when a key element of the statement of the problem is being
translated into the language of the “arithmetical theory.” This brings us to a more
general and synoptic characterization of ‘position’ and to the corresponding notion of
expression.

2.4.3 Position and expression: general characterization

In general, then, we will use here the term position to translate what is called hypos-
tasis in most of its occurrences in the Greek text of the Arithmetica.41 Both the Greek
term and its English translation share the interesting characteristic that they might
evoke the corresponding process.42 This process is the “setting” or “positioning” in
the terms of the “arithmetical theory” of one of the indeterminate numbers appearing
in the statement of a problem. The position, qua result of this setting, is the realized
correspondence between one indeterminate number, on the one hand, and an arranged
combination of some terms of the “arithmetical theory,” on the other. It is announced in
the text by various verbs beyond “tetachthô” or “tassô,” like “peplasthô” or “plassô,”
“estai” or “estin” or “estô,” “poiêtô,” “ginetai,” etc. and preceded by sometimes com-
plex explanations.

Although Diophantus has no generic name for the combination of species in ques-
tion,43 is it always easily recognizable and will be called here an expression. From the
above characterization, it is therefore clear that positions are not reducible to expres-
sions: an expression does not express, by itself, the whole process of “setting” nor the
precise correspondence with the constituents of the problem. Only the explicit and
verbal description of the “setting” does this.44

Let us note that the word “hypostasis” seems to be used, within the Arithmetica,
with a variety of meanings that is not restricted to its meaning as ‘position.’ But the
latter is still the most frequently used meaning among all the occurrences of the term.
As mentioned above in the examples, it is indeed found within the “epi pas hyposta-
seis” clauses that conclude many treatments of the problems.45 “Epi tas hypostaseis
<poiêsomen>” means to go back to the positions, in order to put into the “expres-
sions” the numerical value of the arithmos that has already been found, and to find
thus the numerical values of the sought numbers that the statement of the problem

41 “Position” in English is inspired by the Latin positio adopted by Tannery in his translation of the “epi
tas hypostaseis” clause (ad positiones), which as a rule concludes the treatment of the problems.
42 To hypostasis corresponds hyphistêmi; to position correspond to set, to posit.
43 In the introduction, Diophantus uses such periphrases such as “hyparchonta eidê kai leiponta,” Arithm.
14.5, 7, 8, 9.
44 In the following, we will use specific abbreviations to distinguish the two notions of position and expres-
sion. Thus, the position (as result) will be denoted by the sign :=, while the expression will be given by
the simple combination of concrete numbers and lower case letters, like 1x, 1x2, 2x + 5, 5x − 7, etc. For
example, the positions in problem I.15 are X := 1x + 30 and Y := 2x − 30, while the expressions are
respectively, 1x +30 and 2x −30. Note, that the signs + and − in expressions should not be understood with
reference to operations, but qualify the species behind it as “forthcoming” or “existing” (hyparchonta), on
the one hand, and “wanting” (leiponta), on the other. See more on this, which is true also in Arabic algebra,
in the interesting (Oaks 2009).
45 97 problems within the Greek text of the Arithmetica have this clause.
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was calling for. This meaning is confirmed by the use of the verb “etaxa,” I have
posited, following this clause in some of its occurrences, as in problem I.12 above.
The most explicit occurrence of the term with this meaning is in the statement “the
obtained position is ineffective” (scholazei hê gegenêmenê hypostasis) that appears
in the alternative solution of problem III.15 (Arithm. 174.3–4). The meaning of this
clause is that the last positioning obtained does not serve our purpose because it
leads to something impracticable.46 Problem IV.19 provides another clear-cut exam-
ple in which the term hypostasis is undoubtedly used and made clear as bearing the
meaning of position. Indeed this problem, which is solved “in the indeterminate” (en
tôi aoristôi), has the following concluding remark: “For to seek <to solve a prob-
lem> indeterminately means that the positioning (hypostasis) <must be> such that,
of whatever <multitude of units> someone wishes the arithmos to be, when he sets it
to the positions (epi tas hypostaseis poiêsas), the prescription is preserved” (Arithm.
232.6–8).47

There seem to be other occurrences of hypostasis with a different meaning, namely
“numerical value,” as in the striking example of problem I.39, where the text has
“the hypostasis of the arithmos is not manifest (adêlon)” (Arithm. 78.19). Another
occurrence is within problem III.12 (Arithm. 166.17).48 There are also a couple of
other occurrences in which the interpretation of hypostasis as numerical value seems
possible. We do not discuss here in detail these occurrences, for this is not our present
purpose here, and requires more detailed analysis.49

Hypostasis, finally, is used once in the introduction, within the following sentence:
“All this (touto) should be worked out with subtlety (philotechneisthô) within the
hypostaseis of the statements, as far as possible, and until one species is left equal to
one species” (Arithm. 14.21–22). This occurrence is somewhat mysterious, because
this is the very first place in which this notion is used. Since the “touto” unambiguously
refers to the kind of calculations on species and combination of species previously
described (Arithm. 6.22–14.20) and since such calculations are performed within the
treatments of the problems, this meaning is perfectly coherent with the meaning of
hypostasis as “position.” Indeed, the calculations in question are usually implied in
the passage from one position to the other, or by the heuristic explanations that justify
it, as we shall see.

46 This same expression is further made clear in the next problem where a similar situation is described
by “we will fall into the same difficulty <as in the last problem>” (eleusomai ôsautôs eis aporon, Arithm.
176.14).
47 Hypostasis has the same meaning when it appears in the other instances of “solutions in the
indeterminate.”
48 “And the lesser is 16 units, the greater 64 units; and whatsoever of them will be used in order to produce
the equation I will find the numerical value (tên hypostasin) of the x ; for, if we say the 64 units of the greater
to be equal to 1x + 54, we obtain the x <to be> 1 unit; if, again, we say the 16 units of the lesser to be
equal to 1x + 54, we obtain the x <to be> 1 unit” (Arithm. 166.14–20).
49 In particular, this would lead us to discuss both Diophantus’s precise meaning in the aforesaid places and
the interpretation of Byzantine commentators, who have generally interpreted hypostasis with this second
meaning.
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2.4.4 The importance and usefulness of positions for our analysis

From the above examples (I.12 and II.8, II.8 alit.), it is clear that positions and
the corresponding ‘positioning’ have a double role in Diophantus’s treatment of an
arithmetical problem. On the one hand, they serve to find out the equation.50 Thus,
the equation in the problem I.12 is obtained after five positions have been found and
by equating the expression found for the very last with the given number.51 On the
other hand, positions give also the means for determining the sought numbers in the
final part of the solution.

Thus, one could say that they play the role of “bridges” that connect the state-
ment of the problem with its counterpart within the “arithmetical theory”: indeed,
through the setting of positions, the problem is transferred within the “arithmetical
theory” to the equation; conversely, from the obtained positions the calculation of the
sought numbers is made possible, once the numerical value of the arithmos has been
found.

For the same reason, it is clear that the process of setting the chain of positions
plays a crucial role in Diophantus’s strategy for solving arithmetical problems. It
would hardly be an exaggeration to say that this process constitutes the core of the
solution or unraveling of each problem (see 2.2.3 above). The expressions themselves
are most of the time chosen (for the first position or positions) or calculated (when
they belong to a position derived from others) only because they are made to corre-
spond, within a position, to one of the numbers considered in the problem. That is, the
correspondence provided by positions is also what makes it possible to justify what
calculations should be performed and on which expressions, as we shall see.

Only within the treatment of the finally obtained equation are operations performed
on the expressions that are on each side (merê) of the equation: these calculations and
their rationale are specific to equations and are explained once and for all in the intro-
duction.52 Generally speaking, therefore, these specific operations are kept distinct
from the deduction-like procedures, by which positions are obtained.

In general, therefore, the leading motive of solutions is bestowed on the deductive
‘chaining’ of positions, which forms the core of the solution as a whole. For the same
reason, it is important to identify how the chaining of positions comes to an end in
general (2.5) and how positions might be justified (2.6).

2.5 The end-point of a coherent chain of positions: equation, double equation and
dead end

By our own choice of definition for the notions of problem (as the couple of a statement
and a particular treatment) and position (as defining our ‘minimal’ unit of analysis),
we have to complete the picture by listing here all the possible ways in which, in
the three first books of the Arithmetica, the coherent chaining of positions comes to

50 Equation is actually not the only possible ‘end-point’ of the chaining of positions; see below, 2.5.
51 On the notion of the equation on the way they might be obtained in general see below, 2.5.1.
52 On the solution of equations and the specific operations practiced on them, see more below (2.5.4).
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an end. Only five cases arise within books I–III: three of them have been met in the
above examples and directly lead to the equality between two expressions (2.5.1);
one is explicitly named by Diophantus and requires a special procedure to reach an
equation: this is the double equation (2.5.2); finally a chain of positions might arrive at
a dead end (2.5.3). We complete the list with some remarks on the difference between
equation and what we call here ‘prospective equalities,’ the same word isos being used
with respect to two different notions at least.

2.5.1 Directly ending with an equality between expressions (or equation)

The example of problem II.8 discussed above (2.4.2) illustrates one straightforward
way to stop the chain of positions in a given solution: by equating two expressions
obtained for the same indeterminate number. Indeed, two positions for the indetermi-
nate square and its side have been found. One can then equate the two expressions
posited for the same number: “the latter <tauta, i.e., 4x2 + 16 − 16x> are equal to
16 units wanting 1 dynamis <16 − 1x2>” (Arithm. 90.16–17). This phrase describes
an equation that is the outcome of the procedures applied until then. The statement of
the equation marks the beginning of a new kind of procedure, applied this time to the
equation, the outcome of which will be the finding of the arithmos: “Let the wanting
be added and let the similar terms <be subtracted> from similar terms: 5 dynameis
<are> equal to 16 arithmoi, and the arithmos becomes 16 fifths.” (Arithm. 90.17–19).
In the column entitled “ending point” of the conspectus, this case is signalled by “ee,”
standing for “expression equal to expression.”

A second way to end the chain of positions is illustrated by problem I.12 discussed
above (2.4.1): the last position obtained (the sum of the two numbers obtained from
the second division is obtained 300 − 5x) makes it possible to equate the expression
300 − 5x to the given number 100. In the conspectus, such a case is signalled by “eg,”
standing for “expression equal to given <number>.”

Finally, problem I.15 asks to find two numbers, such that, when each of them takes
a given number from the other, the remainders have to each other a prescribed ratio.
The first positions yield for these remainders the expressions 2x −80 and 1x +80. The
concluding sentence giving the equation says that “it remains that 1x +80 is the triple
of 2x −80. Thrice the lesser, henceforth, are equal to the greater <of the two numbers
obtained>” (Arithm. 36.24–26). Thus, the final equality is obtained after converting
the one expression (2x − 80) by a simple multiplication by three, obtaining 6x − 240
and equating the result to the other expression 1x + 80. The conversion of one of the
expressions, derived from part of one of the prescriptions, has to be done before the
equation is obtained.53 In the conspectus, this case is symbolized by “ece,” standing
for “expression equal to converted expression.”

Note, that in all three cases we will here call the obtained equality the finally obtained
equation or, when there is no ambiguity, simply the equation. By this term, therefore,
we mean equalities that are exclusively formulated in the terms of the “arithmetical the-
ory” and, eventually, in the terms of the given numbers of the problem (when there are

53 Note that this way of obtaining the equation could easily be replaced by a supplementary position and
an equation of the “ee” type.
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such given terms). “Exclusively” means that no more indeterminate number enters the
equality. Furthermore, we shall also speak about a valid equation, when the arithmos
might effectively be found from such the equation by the procedures indicated in the
introduction.

As can be seen from the above examples, finally obtained equations are recognized
within the text by their situation (at the end-point of a chaining of positions) and by
clauses containing the word “equal” (in full or in abbreviated form), such as, “are
equal” (isoi eisin, isa eisin), “these <are> equal” (tauta isa), etc. relating to each
other expressions with expressions or with given numbers. Valid equations are recog-
nized by the fact that the statement of the final equation is immediately followed by
the determination of the arithmos.

We must note, however, that in many cases Diophantus uses the word ‘isotês’ as
well as the adjectives ‘isos’ and ‘isa’ in a broader sense than the aforesaid use with
reference to ‘equations’ or ‘valid equations’ only. For example, in problem II.8, the
sentence “16 units wanting 1 dynamis will have to be equal to a square” (Arithm. 90.13)
does not refer to the finally obtained equation, but to what we might call a “prospec-
tive equality” or an “equation-to-be-obtained.” We shall go back to this subtle but
important point below (2.5.4).

2.5.2 Ending the positions with a double equation (diploisotês)

A typical example of “standard” double equation is given in problem III.13, which
asks to find three numbers so that the product of any two of them, when the third
number is subtracted, makes a square.54 The first positions are Y Z − X := 4x2 + 15x
and X Z − Y := 4x2 − (1x + 4) and, for each of them, the formula used is “the
<rectangle> on the second and third <numbers> wanting the first is 4 dynameis 15
arithmoi, equal to a square” (Arithm. 168.3–4, emphasis added). Here, as in II.13 alit.,
this last clause must obviously be read “which must be made equal to a square,” in
accordance with the previous sentence, which recalls that the product of the 2nd and
3rd number “must produce a square” (Arithm. 168.5–6). Then the text reads “again
the equation obtained is double” (ginetai . . . diplê hê isôsis, 168.10) and this formula
immediately opens toward the special procedure applied in this case,55 from which two
equivalent equations are obtained,56 each of them leading to the very same arithmos.57

In general, then, double equations (translating diploisotês, diplê isotês or diplê
isôsis) are a special form of end-point of a chain of positions. First introduced in
problem II.11, they are formed when two different expressions must be made simul-
taneously equal to indeterminate squares. When such a form appears, they are most of
the time explicitly introduced within the text by special formulas like “kai estai/ginetai
diplê hê isotês.” This “transition” immediately introduces a special treatment, based

54 ? X, Y, Z : XY − Z ⇒ �(U2), Y Z − X ⇒ �(V 2), Z X − Y ⇒ �(W 2).
55 The excess of one expression on the other is 16x + 4, which is decomposed as the product of 4 units
and 4x + 1 (Arithm. 168.10–12); from these factors two squares might be calculated, one on half the sum,
the second on half the difference of these two factors (ibid. 168.13–15).
56 Either 4x2 + 15x = (2x + 5/2)2, on the one hand, or 4x2 − (1x + 4) = (2x − 3/2)2, on the other.
57 Here, the text does not make explicit the valid equations but only the arithmos obtained: 25/20.
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on a calculation on the difference between the two expressions, that (a) enable one to
find the two indeterminate squares and (b) to obtain one of two (equivalent) finally
obtained equations, from which the arithmos is found.58 Any double equation, there-
fore, actually “hides” two valid equations that are equivalent to each other, so that the
arithmos can be effectively deduced from either of them.

Note that it is unclear whether “diplê hê isôsis” designates the double treatment
or the couple of obtained equalities themselves. The distinction is not easily made,
because the form of double equation immediately calls for the corresponding treat-
ment.

The double equation occurs, as far as the first three books of the Arithmetica are
concerned, 9 times (in a total of more than 100 solutions), and its first occurrence is
found in problem II.11. Any double equation actually hides a valid equation, which
is the result of the “equalization” leading from the one to the other. In the conspectus,
this case is symbolized by “de,” standing for “double equation.”

2.5.3 Ending the chaining of positions with an explicit failure: dead end

An interesting case of such ‘explicit failure’ or dead end is found in problem III.10.59

Taking X := 13x, Y := 1/x , and Z := 4x for the first positions and thus solving two
of the prescriptions, one has to check the third prescription (X Z + 12 must produce
a square): “there must also be, furthermore, that the first and third <sought number>
with 12 units should make a square; but the first and third is 52x2; there will have
to be, therefore, that 52x2 + 12 make a square” (Arithm. 158.18–20). These straight-
forward statements are immediately followed by the following remark: “. . . and if
the numbers of the 13 units <from which 52 was obtained> of the first <position
of> number was a square, the equalization would be easy to handle <eucherês ên hê
isôsis>” (Arithm. 158.20–21). Here isôsis refers to the process of “equalization” that
would lead to a valid equation, once the indeterminate square is found.60 Meanwhile,
an intermediary discussion is introduced that leads to this rectification: “but since it is
not so, I am led to <the following problem>: to find out two numbers so that . . ..”61

The formula “moi apêktai eis to heurein” typically marks the transition between the
dead end proper and the auxiliary problem to which the “correction” of the problem
leads.

Dead ends might take the form of apparently “normal” double equations or of pro-
spective equalities. The important and distinctive characteristic of dead ends is that,
whatever the point at which the treatment is declared “sterile” or defective, this point
indicates the fact they are not amenable to a direct treatment leading either to new
positions or to the arithmos without a revision being performed which usually leads

58 That, once the two squares have been found, it is indifferent to take one or the other equation to obtain
the arithmos, is very clearly explained in problem III.12 (Arithm. 166.14–20).
59 The statements implied in problem III.10 are presented and discussed above (2.2.1). The abridged form
of the first statement is ? X, Y : XY + 12 ⇒ �, Y Z + 12 ⇒ �, Z X + 12 ⇒ �.

60 This is done a bit later in Arithm. 160.4–10, once the position for X Z +12 has been found to be 1x2 +12
and not 52x2 + 12.
61 This formula introduces problem (b) discussed above.
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to an auxiliary problem. Therefore and in general, such “dead ends” are essentially
recognizable by the fact that they are not followed by further new positions or by the
determination of the arithmos but by a discussion of why the equation is sterile and
how it might be modified.

We must note that the argument pointing out the “sterility” of the treatment does
not bear, in general, on the solvability of the problem obtained, but on the fact that, if
the choice of numbers within the previous positions had been different, the problem
could then have been solved. There is no theoretical implication, therefore, about the
solvability of the obtained equation or problem: a “dead end” only means that a first
treatment leads to the idea that a modified treatment would lead to a “better,” that is,
more manageable problem. For the same reason, “dead ends” always appear as first
steps and they are usually complemented by the solution of an auxiliary problem and
to a “backward reasoning” (on which more below 3.3.5).

There are exactly four dead ends in book III.62 In the conspectus, this kind of ending
point is indicated by a cross “X.”

2.5.4 Equations and prospective equalities

Problem II.13 aliter prescribes to subtract two given numbers (6 and 7, in the instance)
from the same number so that the result is a square.63 A first series of positions guar-
antees that one of the prescriptions is solved.64 Then the text continues: “One must
therefore also subtract 7 units from the 1 dynamis and 6 units and make <the result>
a square; therefore, 1 dynamis wanting one unit is equal to a square” (Arithm. 102.13–
15). The last part of this sentence is obviously not the end-point of the positions, but
is an elliptical paraphrase of the beginning and must be read, therefore: “therefore
1x2 − 1 <must be> equal to a square.” This is not yet a finally obtained equation65

but only an equation-to-be-obtained: the equation still has to be completed and, for
this purpose, one ought to obtain a position for the indeterminate square to be obtained
and use the corresponding expression. This is indicated in the immediately following
sentence: “I form the square from 1x −2; the square itself, therefore, is 1x2 +4−4x”
(Arithm. 102.16–17). Only then a finally obtained equation is formed by equating this
expression to 1x2 − 1: “the latter <i.e., the expression for the square> are equal to
1 dynamis wanting 1 unit”—these last words, and only them, refer to the equation
effectively obtained. In this case, as often, the procedures that lead to the arithmos are
not detailed and the arithmos is immediately given: “and the arithmos becomes 5/4”
(Arithm. 102.17–18).

In general, then, we do not count here as “equations” in the strict sense defined above
certain equalities, in which indeterminate numbers belonging to the statement still enter
and which, therefore, require further positioning. Such equalities are recognized by

62 Problems 10, 11, 15, and 16.
63 ? X : X − 6 ⇒ �(U2), X − 7 ⇒ �.
64 X := 1x2 − 6 and U2 := 1x2 for the indeterminate square corresponding to 6.
65 Contrarily to what Tannery’s disposition of the text suggests: here as always, he misleading isolates the
last part of the sentence from the rest, as if we had obtained an equation in a modern manner. Allard’s
edition does not artificially isolate the equation in the same manner.
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the fact that they are introduced with adjectives like “isos,” “isê,” etc. and that they
are sometimes named “isôsis” by Diophantus. But they are introduced in such a way
that they can be replaced by “deêsei . . . isos einai,” “ison poiein” or “loipon esti” with
no change of meaning. As mentioned above, such equalities have to be understood as
equations-to-be-obtained. We shall also designate them as “prospective equalities.”

By contrast, we designate by equation, either alone or within the expression “dou-
ble equation,” the end-point of a series of positions that solves a given problem and
the beginning point of special procedures leading to the final determination of the
arithmos, without any introduction of new positions. Such equations, understood as
“dividing points” between the two kinds of procedures, are recognizable within the
Diophantine text (either in the introduction or in the few problems in which the equa-
tions are explicitly solved) by the fact that they indeed divide between the two sets
of procedures (those enabling to make positions, and those that enable to find out
the simplified equation, out of which the arithmos can be determined) and by special
formulas used to introduce them.

The procedures that are applied to equations (not to problems) and that lead to the
arithmos are part of what might be called the solution of an equation, corresponding
to the use of the verb lyein in the few cases, in which it is used with reference to an
equation. These procedures are (1) the manipulation of the equation through the two
basic operations on equations, which are “to remove like from like” (<aphairein>

homoia apo homoiôn) and “to supply the wanting species <on each side>” (prosthei-
nai ta leiponta eidê),66 so as to receive either the form of what we called “simplified
equations” above, namely “one species equal to one species” or the form “two species
equal to one species,” and (2) the finding out of the numerical value of the “arithmos.”

As mentioned before, the two concepts, solution of a problem, and solution of an
equation, should not be confused. The solution of a problem comprises more than
the mere solution of an equation, namely, the positioning that unravels the core of
the difficulty intrinsic to the problem; and, as we already said (cf. 2.2.3 above), the
positioning is really the main focus subject of the Arithmetica. The solution of an
equation, by contrast, only constitutes a very distinct part of the whole solution of a
problem and, most often, is not fully worked out in actual solutions (see 2.4.1 above).

2.6 The use of repetition within series of positions: the notion of method of invention

So far, we have defined and/or generalized terms that are present in Diophantus and
have clarified the structure of solution. We here introduce a new notion that might help
us to categorize the various ways, by which positions are introduced. We shall first
discuss the use of heurein (to invent) with the problems and propose a definition of
“invention” that is coherent with this use. Then, for the sake of a finer characterization
of the various “modes of positioning,” we shall introduce two important notions, that
of ‘heuristic explanation’ (2.6.2) and that of ‘method of invention’ (2.6.3). We shall

66 Arithm. 14.11–20. These operations respectively correspond to the muqābala and jabr operations
described in al-Khwārizmı̄’s famous treatise of algebra, but they are standard in the ancient mathemati-
cal vocabullary.
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define the latter notion through the examples already given and then show that this
definition is legitimate, taking into account of Diophantus’s own words at the end of
the introduction.

2.6.1 To find or invent (heurein) numbers and positions within the solutions
of problems

The word invention usually translates the Greek heuresis, which is used by Diophantus
in the introduction. The verbs to find or to invent usually translate the corresponding
verb “heuriskein,” which is used by Diophantus within the problems. This straight-
forward translation should not let us forget a simple, but important problem: does the
(single) use of invention (heuresis) in the first sentence of the preface correspond to
the use of the verb heurein within the problems?

Strictly speaking, the verb “heuriskein” is used for the numbers to be found in each
problem. For example Diophantus writes in one of the statements that directly follow
problem I.38: “Similarly, in the same <way>, can be found (heurethêsontai): two
numbers in a given ratio such that the square of the greater has to the lesser a given
ratio” (Arithm. 76.11–12). But the verb might also refer to the finding out of positions,
as is shown by the following occurrence in problem I.21: concerning a sought number
that already was posited, it is said, “but <this number> was already found <to be> 1
arithmos <and> 10 units” (alla kai 1 arithmos <and> 10 monades heurethê) (Arithm.
48.26–27). This refers to the first positioning of the number discussed in 48.13–14.
There are other examples, especially in the fifth Greek book, in which Diophantus
uses the verb “heuriskein” not for determinate numbers but for expressions.

Since finding out the determinate numbers that fulfill the prescriptions of the prob-
lem derives from their preliminary positioning, the two uses of the verb appear to
be coherent with each other. Moreover, since invention (heuresis), taken in the Dio-
phantine sense, might be interpreted as directly referring to what we have mentioned
above to be the main part of the solution of a problem,67 namely the establishment of
positions, it seems also legitimate to call here “invention” the very process in general,
by which positions are established for the solution of problems.

Nevertheless, we strongly emphasize that to translate the Diophantine heuresis (as
used in the introduction) and to define invention in the above manner are distinct oper-
ations. To make them equivalent or not must still be considered to be a question that
calls for more contextual elements.68 For the sake of this analysis, though, we do not
need to discuss this point: it is sufficient to understand ‘invention’ in the above man-
ner, with reference to the solutions of problems. At least, this definition is justified on
account of the compatibility with Diophantus’s use of the verb heurein for the ‘finding
out of positions’ and is sufficient for this analysis.

67 This thesis has been proposed in (Christianidis 2007).
68 The basic reason for this is that heuresis is used in the introduction in a markedly different manner,
and with different connotations, than in the problems. In comparison, this single occurrence calls for more
comparison with the tradition of ancient rhetoric, as already suggested in (Christianidis 2007). We shall
come to this separate problem in the conclusion of this article.
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2.6.2 Comparing and distinguishing the ways, in which positions are established:
heuristic explanations

The above analysis and examples show, that positions are often (though not always)
introduced with explanations or justifications. From this comes the characteristic sim-
ilarity between a logical reasoning and the establishment of the chain of positions.
Since we have generally called ‘invention’ the way in which positions are established,
we will here call heuristic explanation any justification of a given position or set of
positions. As we have seen, they are usually introduced by such words like “ara,”
“epei,” “epeidêper,” “hina,” “ôste,” or other equivalent expressions. The expression
‘heuristic explanation’ is purely ours and has no equivalent in Diophantus, although
what this expression designates within the text is clearly defined.

In what follows, heuristic explanations will naturally play a significant role in the
identification and characterization of the various ways in which positions are intro-
duced. But many of these ways are not (or not only) signaled by these heuristic expla-
nations. In other words, we can characterize these ways, even when they are only
partly explained or when the rationale is absent. The reason is that the establishment
of a position is basically expressed in the form of procedures, explaining what we shall
do, whereas heuristic explanations have to do with the rationale for these procedures,
explaining why we should perform them. The difference between the two, though,
should not be exaggerated, because procedures might in some cases enter a heuristic
explanation, as we shall see, or because heuristic explanations might become super-
fluous once they have been repeated several times. Procedures used to obtain positions
are usually exposed through significant repetitions that are recognizable through the
vocabulary used or their ‘typical context.’ Recognizing them calls for an active com-
parison between various treatments, whereas explanations tend to make the use of
analogy superfluous.

We need, therefore, a new analytical artifact for the analysis of repetition within
the ways, by which positions are introduced: this is the notion of method of invention.

2.6.3 The notion of method of invention: its definition and legitimacy

(i) Examples and definition

Let us take the four positions obtained within the solution of problem I.12 (cf.
2.4.1 above), that we might abbreviate as: ? X, Y : 100 ⇒ X + Y (E1), 100 ⇒ Z +
W (E2), (W < Z and Y < X), X : W ⇒ 2 : 1 (E3), Z : Y ⇒ 3 : 1 (E4)

P # Positions Heuristic explanation Ref. 
1 W := 1x none
2 X := 2x Pnone 1, E3

3 Y := 100 – 2x Pnone 2, E1

4 Z := 300 – 6x kai epei estin + E4 3, E4

5 Z + W := 300 – 5x loipon esti + E2

P
P1, P4, E2

Equation (eg): 300 − 5x = 100 from P5 and the given number.
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The third column indicates the type of heuristic explanation and the next column
refers to the implicit reference requested by the position (either one or more previ-
ous positions or one prescription). In this example, the last four positions are clearly
obtained in a similar way: in each case, one previous position and one prescription
serves as reference and ‘guide’ for the position, which consists in a straightforward
deduction that follows one calculation step implied by the epitagma. The very first
position is clearly of a different kind, since it comes first (and cannot, therefore, take
into account any previous position) and has no heuristic explanation; on the other
hand, it is clearly similar to the ‘first position’ made in problems 1–4 of book I. These
five positions, therefore, must fall into two distinct categories.69

Taking now as example problem II.8 (complete text in 2.4.2 above), the
solution of which is summarized in the following table: ? X, Y : 42 ⇒ X +
Y (E1),�X (E2),�Y (E3).

P # Positions Heuristic explanation Remarks 
1 X := 1x2 EenoN 2

2 Y := 16 – 1x2 PenoN 1, E1

3 Side of Y := 2x – 4 deêsei ara + E3 // 4 is the side of the 
given square, 2 is arbitrary 4 Y := 4x2 + 16 – 16x

Equation (ee): 4x2 + 16 − 16x = 16 − 1x2 from P2 and P4

In this case, the two first positions are obtained through the two methods already
used in problem I.12: the first position is obtained in the same way in the two problems,
and the 2nd of problem II.8, like the last four in problem I.12, is obtained through
a calculation referring to the first prescription of the problem and the first position.
Only the last two are characterized by the formula ‘plassô,’ used in this problem for
the first time and by the reference to the type of equation to be obtained. This way of
obtaining a position is repeated and used several times in several problems of books
II and III, whenever one needs to position an indeterminate square.

These elementary examples suggest that, whatever the position considered, it is
always possible to compare the way in which it is obtained to similar cases, of which
it is therefore the repetition—with the exception, of course, of the very first occur-
rences.

In general, then, we use here the expression method of invention to denote any regu-
lar procedure actually found in Diophantus’s work that (a) ends up with the formation
of one or more positions and (b) which is repeated in several problems in a clearly
similar way.

The first clause (a) might be also expressed in the following way: a method is a
procedure belonging to the core of the solution (cf. 2.4.1 above); the second clause
(b) points out the fact that these procedures are subject to repetition and are therefore
liable to be compared to each other.

69 In the nomenclature that will be presented in part 3, the first is a ‘simple, non-derivative position,’ the
three following are ‘derivative’ and ‘direct reworking.’
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(ii) Legitimacy

Like ‘heuristic explanation,’ the notion of ‘method of invention’ is our own inven-
tion and does not belong to Diophantus’s vocabulary. Even the notion of “double
equation,” which Diophantus does name explicitly, as we have seen, is actually not a
method of invention, by our own definition70: it is at best a useful technique of “equal-
ization” by which a pair of prospective equalities is transformed into two equivalent
equations.71 Yet, just as a ‘heuristic explanation’ designates specific and well-defined
aspects of Diophantus’s text, the notion of ‘method of invention’ corresponds to spe-
cific and recognizable regularities of the text that are announced in the last paragraph
of Diophantus’s introduction. Because of the importance of this paragraph we consider
it useful to give below its full translation.72

From now on, we shall follow the way along the propositions (epi tas protaseis
chôrêsômen hodon), having at our disposal much collected matter on the species
themselves. Since <the things involved in the collected matter> are many in
number and large in size, <and since> for this reason they are mastered only
slowly by those who acquire them and <since> there are in them things that are
difficult to memorize, I thought it worth to divide what in them is susceptible
<of being divided>, and moreover to arrange those being at the beginning, by
way of elements, from the most simple to the most complex, as it seems con-
venient to do. In this way, indeed, their route might become easier to follow for
the beginners and their introduction will be memorized. As for their complete
treatment, it will be done in thirteen books.

This passage, although essential,73 is difficult to translate because it is very allusive.
What is characteristic and puzzling is the fact that Diophantus actually does not make
clear what he speaks about. He uses a number of participles (ontôn, bebaioumenôn,
epidechomena, echonta) and pronouns (auta, autois, autôn), which are all indetermi-
nate. The question is indeed whether these terms refer to one and the same thing or to
several, and which ones. The crucial observation is that all of them are in the neuter
gender and therefore cannot refer to the statements (protaseis, which is feminine).
Neither can they refer to the species (eidê) in the way they have been introduced,
because although they are in the neuter gender, they obviously cannot be said to be
“many in number” and even less “large in size.”74

70 Cf. 2.5.2 above.
71 Indeed, it does not lead to one or several positions but only permits to obtain a valid equation. See 2.5.4
above and the explanations given in problem III.12 (Arithm. 166.14–20).
72 Arithm. 14.25–16.7 T, 378.9–17 A.
73 It is curious that modern studies on Diophantus seem to neglect this paragraph. The most that they
usually see in it is a rather conventional closing sentence of the introduction. For example Heath does not
consider the paragraph so important so as to give it a complete translation (Heath 1910/1964, 131).
74 The difficulty of this passage is manifest in the way it appears in Allard’s edition of the sentence trans-
lated above by “Since <the things involved in the collected matter> are many in number and large in size.”
This translation is based on Tannery’s edition, which proposes for the Greek text the reading “Pleistôn
d’ontôn tôi arithmôi kai megistôn tôi ogkôi” (Arithm. 14.27–28 T). Allard, for his part, proposes for the
same text the reading “Pleistôn d’ontôn tôn arithmôn kai megistôn tôi ogkôi” (Arithm. 378.10–11 A). The
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The most straightforward interpretation is that these “things” which are qualified
as “many” (pleista) and “large” (megista) refer to the same things, to which the mys-
terious “collected matter” also refers, since this matter is also qualified as “much”
(pleistê) in the previous sentence. The plausible reason why this cannot be said is that
it shall be discovered along the way, just as the aforesaid sentence explicitly says. This
interpretation is confirmed by the fact that, a few lines before, the author alludes in
a hardly less mysterious way to the “positions of the statements,” on which the oper-
ations and rules presented henceforth in the introduction are to be “worked out with
subtlety” (philotechneisthô). The word and notion of “position,” indeed, has not be
explained nor used at this stage, although it appears to be crucial within the treatment
of the problems and only then.75 In other words, the indeterminate “things” of which
Diophantus speaks of designate in all probability the whole multitude of techniques
and arguments that have to be learned within the treatments of the problems themselves.
This use of indeterminate pronouns to designate these arguments is coherent with what
is found within the problems themselves, especially in the solutions in which a series
of positions is skipped because it is similar to a previously given model: the similarity
is simply indicated by “dia ta auta”76 or “dia tôn autôn”77.

Furthermore, it is important to remark that, in spite of the relative silence of Dio-
phantus on the nature and contents of the “collected matter” he alludes to, he does
say that its arrangement is not arbitrary, but proceeds from the most elementary to
the most complex. It is therefore logical to try to specify and name what has been left
unsaid, by following very carefully the way, in which the elements of this “matter”
are exposed. In this respect, the crucial and easy observation that even a superficial
reading of the treatments shows, is that there are indeed arranged in progressive order
and obviously follow some patterns, almost any treatment being most often similar to
others, with very few exceptions. In most cases, indeed, the repetition of these patterns
is made explicit by Diophantus, with words like “palin,” “homoiôs,” “hôs pro toutou”
etc. and by other features that we will detail below (part 3). On the other hand, as
we have seen in the above examples, not all treatments are similar to each other, but
certain “patterns” obviously differ from the others. Precisely these two features, that
the “patterns of solutions” are repetitive, on the one side, and non-uniform, on the
other, legitimate the project of determining, from a careful analysis of the solutions
to the problems, what are the main classes of such patterns. Such classes we call here
“methods of invention,” introducing an expression that is not found in Diophantus but
actually refers to patterns that are recognizable within the text.

The above explanation makes clear the legitimacy of the definition we proposed.
As for the usefulness of it, it will be recognized from the possibility of ‘categorizing’
methods of invention: this is the purpose of the inventory of such methods, to which
we shall now turn.

dative “tôi arithmôi” in the text of Tannery is changed in the genitive “tôn arithmôn” in Allard’s text. But
the obtained reading “Since the numbers are many and large in size” proposed by Allard is meaningless.
75 Cf. 2.4 above.
76 Like in I.18 (Arithm. 40.20) or in I.19 (Arithm. 44.5).
77 For example in I.25 (Arithm. 60.3).
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3 Inventory of the methods of invention

3.1 Introduction: the leading principles of the inventory

Taking as our basis the previously defined notion of ‘method of invention,’ we have
checked all the problems78 within the first three books of the Arithmetica and found
out that they can indeed all be classified in a few, recognizable categories. As we have
seen, the crucial adjective, in the last sentence, is ‘recognizable.’ For Diophantus, on
the one hand, no more introduced any specific name for most of the methods he effec-
tively uses in the treatments of his problems than he used any generic name for what
we called “method of invention.” On the other hand, the recognizable regularities of
the specific vocabulary and situation of each ‘positioning’ allow us to build categories
among these methods.

The particular names chosen here for each method of invention, therefore, are
entirely ours. But they are not arbitrary, because our definition of each method refers
in any case to specific terms and/or formulas that are recurrent and recognizable.
Accordingly, these names have been chosen in a way that tries to reflect the gist
of the procedure. In other words, anyone using the characterization we propose for
each method in terms of the recognizable signs, by which it is recognized for each
position or series of positions, should be able to check our classification. Accordingly,
we indicate, for each new method introduced in our inventory, what these ‘signs of
recognition’ are, that enable one to identify each method.

We must note, however, that our inventory, though not arbitrary, cannot be entirely
objective or faithful to the text, for two main reasons. The first and main reason is
that it is not always possible to classify unambiguously each way of obtaining one
(or more) positions under one or the other method. This might be due to the some-
times elliptical formulations implied by the accidents of the textual transmission. This
might also come from the original wording, especially since a detailed explanation or
characteristic expression given for the first occurrences of a method might naturally
become afterward elliptic.79 But, in the first place, it belongs to the natural limits of
any such enterprise of ‘artificial’ classification that the actual occurrences do not fit
exactly the proposed schema: what one can expect from this is, at best, a reasonable
correspondence leaving out only few ambiguous cases.80 In other words, some hes-
itations are allowed and inevitable in certain cases; but since, on the whole, most of
the cases fall unambiguously under one heading, our classification can be considered
to be reasonably faithful to the text.81

The second reason is that the choice for the ‘signs of recognition’ is partly guided
by the text, and partly by our own appreciation of what differences should be counted

78 ‘Problem’ should be understood with the precise meaning defined above, in 2.2.1: as the pair of a
statement and one particular treatment.
79 This phenomenon is characteristic of the ancient mathematical literature at large.
80 The problem, mutatis mutandis, is the same as the one mentioned by Bernard Vitrac in his paper on the
notion of dynamis (Vitrac 2008, 82), in which he also proposes a classification of the uses of this notion in
the ancient mathematical literature, depending on the various possible contexts and authors.
81 We shall come back to the possible ambiguities of our analysis and their significance in part 4.4.
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as ‘essential’ or ‘negligible’ each time. This choice, therefore, could be changed and is
open to more or less specifications, under certain limits. As mentioned, our general cri-
terion for defining methods of invention was that it should enable one to distinguish one
method from the other, with little ‘personal’ variability. But we have also introduced,
within each heading, variants that account for possible specifications introducing, for
each method, subtler distinctions in their uses: distinguishing one variant from another
is more open to personal appreciations.

With these two important caveats in mind, it must be noted that our method is essen-
tially inductive. The essentially modern term ‘method’ we chose should not induce
anyone to think that we are looking, like some of the Renaissance mathematicians, to
some hidden art that Diophantus would have consciously hidden away. Our purpose
is both more modest and, in a sense, historically stronger: we would like to account for
the structure of Diophantus’s problems taken as a whole and in their actual wording.
For the very same reason, our classification cannot be considered valid beyond the
three books we have taken into consideration. To take into account more books, either
within the remaining three kept in Greek or within the four Arabic books attributed to
Diophantus, would inevitably lead to a different (and plausibly richer) classification.

From the examples given above (2.6.1), we can see that methods of invention in
general fall into two distinct categories, namely those that permit one to obtain the
first position(s) within the given treatment of a given arithmetical problem; and those
that permit one to obtain further positions that depend on these first positions. For this
reason, we call the latter “derivative” and we also begin our inventory with them (3.2);
non-derivative methods, the repetitive character of which is essentially related to the
fact that problems form series, will be studied in the second stage (3.3).

3.2 Derivative methods

3.2.1 Introduction: example and definition

The examples of problems I.12 and II.8, given above, have made clear the difference
between ‘first’ and ‘derived’ positions. Problem I.22 will show us a more sophisti-
cated example of the difference between the two, as well as providing an initial idea
of the various kinds of possible derivations. Its statement is the following: to find three
numbers so that if the first gives the third of itself to the second, the second the fourth
of itself to the third and the third the fifth of itself to the first, then, having given and
received, all three numbers become equal to each other.82

The statement and the seven positions constituting the core of the solution can be
summarized in the following manner:

? X, Y, Z : X − 1/3 X + 1/5 Z ⇒ U (E1),

Y − 1/4 Y + 1/3 X ⇒ U (E2),

Z − 1/5 Z + 1/4 Y ⇒ U (E3)

82 This formulation is not a literal quotation, but a mixture of the generic (Arithm. 50.21–23) and instantiated
(ibid. 52.1–3) version of the problem.
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The equation is obtained by equating the expressions posited in P7 and P3 (ee):
13 − 4x = 1x + 3. The arithmos is deduced to be 2 units.83

We can observe that these seven positions are not obtained in the same way: the two
first do not depend on any previous position.84 All the others, by contrast, can be called
derivative, because they are derived from these two first. In this case, the derivation
essentially relies on the intelligent observation of the required prescriptions, which are
very explicitly stated or reformulated within the corresponding heuristic explanations.

In general, then, methods of invention will here be called “derivative” when they
fundamentally depend on (and are derived from) positions and expressions already
obtained within one and the same treatment. As such, they might be opposed to the
methods used for the first positions within a given treatment. We simply call the latter
“non-derivative” and shall treat them in the following section (3.3).

Derivative methods naturally enable one to obtain a significant proportion of all
positions obtained in books I–III (slightly more than half of them).85 They fall under a
limited number of recognizable categories that we now enumerate. In the above exam-
ple (problem I.22), the derivation depends either directly on the prescription or on its
reformulation; this is not always the case, though, and checking the references accord-
ing to which the derivation is justified enables us to build three distinct categories of
non-derivative methods, which we call the reworking method (3.2.2), quasi-simulation
(3.2.3), and plassô-method (3.2.4).

3.2.2 The reworking method and its two basic variants

This method is the one used in the previously given examples I.12 (for positions
2–5) and I.22 (for positions 3–7). The important point is that, in all cases, the oper-
ation effectively done on each expression follows a prescribed operation. In gen-
eral, following this method, as the name indicates, just means to deduce a new
position by applying more or less complex operations to one or several of the
expressions obtained in previous positions, these operations being in turn indicated

83 No particular explanation is given in this case on the treatment of the equation, which is left implicit.
84 The (non derivative) method for these two will be named later the “two-at-once method” (see 3.3.2
below).
85 On a total of some 560 positions for books I–III, 311 are obtained by derivative methods.
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within one of the prescriptions of the problem, either directly or in a reformulated
form.

For this method, therefore, the implicit or explicit reference to one or several
prescription(s) of the problem is always present and determinant. For prescriptions,
by their own nature (cf. 2.2.2) have a procedural form, in which the operations to
be performed, as well as the partial results obtained, are made explicit. This cru-
cial feature of the statements makes it possible to refer to such operations. For the
same reason, going through positions by reworking is equivalent to saying that the
operations indicated by the prescriptions are performed on the expressions already
obtained.

This special kind of reference also constitutes the basic criterion that dis-
tinguishes this derivative method from others. As the above example makes
clear, the aforesaid reference to prescriptions is often made explicit within heu-
ristic explanations by formulae like “and since” (kai epei estin), “it remains
<to obtain>” (loipon estin, loipon einai), “I wish furthermore” (loipon thelô, epei
thelô), “we must have furthermore” (deêsei, deêsei ara), each time followed by the
explicit restatement of the prescription, usually in a slightly different form. The
paraphrase might include, in particular, some expressions already found and the
restatement.86

In our abbreviated transcriptions of the treatments, we always indicate the applica-
tion of this method by the abbreviation “rw” (for “reworking”).

Beyond this general definition and abbreviation, two basic variants might be intro-
duced, depending on the way the new expressions are deduced from the preceding
ones. We shall now examine some cases, showing that reworking is not necessarily as
“easy” or “straightforward” as it may seem.

(i) By direct or straightforward reworking of one or more positions [rw-d]

Problem I.22 mentioned and analyzed above shows the typical way in which the
fifth position (P5) is obtained from the previous one (P4). If we have a position for
the fifth of a number, then the position for the number itself is easily obtained by
multiplying the expression found for the fifth by five. Therefore, the simple operation,
here, is to multiply by five; it is indicated, within the heuristic explanation, by the
reference to the first prescription.

Such a kind of reworking might also imply several previous positions: in problem
I.22, for example, this is the case for the way in which the 6th position is calculated by
subtraction of the expressions contained in positions P4 and P5, or the third (P3) from
the expressions contained in the two firsts (P1 and P2). Similarly, when one has to
posit the sum of two or three numbers and when positions have already been obtained
for each one of them, this is a case of direct or straightforward reworking from several
previous positions.

Direct reworking is indicated by “rw-d” whenever we need to abbreviate the refer-
ence to it.

86 Let us note that, from the point of view of the ‘global’ economy of the complete chain of positions,
these heuristic remarks also help the reader to follow the total chain of the positions found, by following
the series of prescriptions that they help to solve—especially if the number of prescriptions is high.
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(ii) By the indirect reworking of one or more positions [rw-i]

In problem I.22 above, the fourth position is deduced from the three first positions
in a particular and, so to speak, ‘analytical’ manner. The reasoning, indeed, is the
following, when made totally explicit: we know that removing from the first number
(which is posited 3x by P1) 1 arithmos (which corresponds to the third), and receiving
something, which is precisely what we want to posit, we must obtain the expression
1x + 3. Then we can guess (and then posit) this “something” to be 3 − 1x : for, added
to 2x, it indeed makes 1x + 3.

Another example of indirect reworking is found in problems II.30 or II.31, in which
the first positions87 finally yield 12x2 (resp. 20x2 in II.31) for the product of the two
sought numbers. Then the two sought numbers are set 1x and 12x (resp. 2x and 10x
in II.31) so that the previous product is indeed obtained. This example shows that
‘reworking’ need not be “deterministic”: 3x and 4x, in the case of II.30, would have
been possible choices.

Indirect reworking is abbreviated by “rw-i” when needed.

(iii) Complex cases of reworking

Direct reworking, by its own nature, implies in most (if not all) cases, a reasoning:
this reasoning, be it explicit or not, basically consists in justifying an operation per-
formed on expressions, by recalling a prescription. We have seen, though, that prescrip-
tions might be reformulated so as to make clear what kind of reworking is expected.
The inherently ‘analytical’ character of indirect reworking might make it much more
complex. It implies, at least, a certain amount of “guessing,” as in the examples above.
In some cases, it might also imply the preliminary reworking and restatement of a pre-
scription in the form of a “prospective equality,” so as to make indeterminate numbers
appear, for which we already have a position.

A good example of this way of thinking is problem I.24, the statement of which is
to find three numbers such that, when each of them has taken a prescribed part of the
other two (taken as one), then the three numbers obtained are equal (Arithm. 56.12–
58.12). The two first positions with the first prescription enable one to posit, as a third
position, the three numbers together as 1x +3, and the number to be obtained as 1x +1.
Then one of the prescriptions to be observed is recalled in a slightly modified form:

. . . furthermore, it will have to be that the second number taking from the two
others, taken together, their fourth, shall become 1x + 1.88

Then this prescription is again transformed, with the obvious aim to obtain an inde-
terminate number only composed of the second sought number and the three together,
since we have obtained a position for the latter:

<Let us multiply> everything by four (panta tetrakis): hence, four times the
second adding to itself the two <others>, is also thrice the second, adding to
itself the three; thrice the second, therefore, adding to itself the three, makes
4x + 4.

87 They are obtained by the simulation method, on which more below (3.3.4).
88 That is, “one and the same number” in the statement has been replaced by the expression already found
by the position of this obtained number.
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We can thus deduce the position for thrice the second, by removing 1x + 1 (for the
three) to 4x + 4 (obtained through the previous operation). Then the second number
is obtained by direct reworking.

A similar line of thought seems to be followed in problem III.5, in which the sum
of the three sought numbers is posited 1x2 + 2x + 1 and the excess of two of them
together over the third is posited as 1 unit.89 This choice might be partly explained
by an implicit reworking of the prescription similar to the one used in I.24, which
amounts to saying that, if the two exceed the third by a square, then the three exceeds
twice the third by the same square: hence twice the third might be posited 1x2 + 2x
(indirect reworking, left implicit) and the third obtained (and posited) 1/2x2 + 1x by
direct reworking.

Reworking always takes as its reference either the special form of previous posi-
tions and the operations that they might suggest, or the operations contained within
the prescriptions, eventually transformed into prospective equalities. The two other
derivative methods take different references: a specific algorithm for quasi-simula-
tion (3.2.3), and the expression equal to an indeterminate square90 for plassô-method
(3.2.4).

3.2.3 Quasi-simulation

(i) Example and definition.

This method is used only for two special groups of problems in book I, namely
problems I.16–1991 and for the famous four problems I.27–30. The method consists
in deriving several positions at the same time, by considering one and the same algo-
rithm.

Let us take as example problem I.16, in which this method is met for the first time.
The statement asks to find three numbers so that any two of them taken together make
given numbers. The abbreviated form of the instantiated problem (with numbers 20,
30, and 40) is the following, together with the outline of the treatment:

? X, Y, Z : X + Y ⇒ 20 (E1), Y + Z ⇒ 30 (E2), Z + X ⇒ 40 (E3).

The equation 3x − 90 = 1x (ee) comes from P1 and P5.

89 These positions are again obtained by the method of simulation.
90 This is the only case that appears in the first three books. In other books, however, the case expression
equal to an indeterminate cube also appears. See for example the problems of the fourth Greek book: “IV.”
26 (Arithm. 250.5–6) and “IV.” 27 (Arithm. 250.19–20).
91 Excluding the alternative treatments 18 alit. and 19 alit.
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The crucial explanation, which is given for the three positions P2, P3, P4, is the
following:

Let the three be set 1 arithmos. And since the first and second <sought
numbers> make 20 units, if from the 1 arithmos I remove 20 units, I will
have the third, 1 arithmos wanting 20 units. For the same <reason>, the
first will also be 1 arithmos wanting 30 units, and the second 1 arithmos
wanting 40 units. (Arithm. 38.9–12)

The second sentence is clearly not meant to explain that, when I remove 20 units
from 1x, I obtain 1x − 20, as a literal and de-contextualized interpretation might sug-
gest. Just as what is obtained is “the third number,” “1 arithmos” has to be understood
as “the three numbers together,” “20 units” as “the first and the second” and, more
generally, as “two of these numbers”; “the third,” finally, can be understood generally
as meaning “the remaining number.” The general heuristic explanation is therefore
that, if from three numbers I remove any two of them, I obtain the third (that is, the
remaining one). This general explanation holds for the three positions P2, P3, and P4,

as the heuristic mention “for the same reason” (dia ta auta, 38.11) clearly indicates.
So the particularity of this method is that it is bestowed on one and the same common

algorithm for several positions. The latter are all derived though, since they depend
on the first position, which is not explained. The first position here is obtained by a
method that we call “all-together” method, on which more below (3.3.3.1).

Quasi-simulation is akin, to some extent, to indirect reworking in the sense that the
deduction of the new positions is not straightforward. But it is clearly distinct from
reworking, since what serves as basic reference here is the recognition of a specific
algorithm, which is neither the same as any of the prescriptions of the problem, nor
derived from it by some kind of reformulation.

The three “general” algorithms or relationships used for these problems (that we
might name “quasi-simulators”) are the following:

• “If from three (resp. four) numbers together I remove two (resp. three) of them I
obtain the third (resp. the fourth)”: problems I.16 (3 positions) and I.17 (4 posi-
tions).

• “Three (resp. four) numbers taken together are the same as twice one of them with
the excess of the two (resp. three) other numbers on this last number”: problems
I.18 (3 positions) and I.19 (4 positions).

• “If from half the sum of two numbers I add and remove half their difference, I
obtain the two numbers”92: problems I.27 to I.30 (2 positions each time).

Finally, as already stated, quasi-simulation is limited to a very special group of
problems that all involve the sum or difference of several numbers.

(ii) Remark on the name “quasi-simulation”

The name “quasi-simulation” adopted for this method derives from the following
observations.93 Like the method of simulation, quasi-simulation requires the explicit

92 The lesser is obtained by removing, the greater by adding.
93 Obviously, this part of our explanations should be read after having examined the description and analysis
of the method of simulation (3.3.4).
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statement of a procedure (here an algorithm in each case), from which several positions
(and not only one) can be deduced at once. The major difference with simulation is that
it does not justify the first position chosen—although it might have been used for this
purpose: on the contrary, the first position is given at the outset, without particular jus-
tification and therefore by one of the other methods that we will list afterward (3.3.3).
The advantage of such first positions, in the problems mentioned, is only discovered
in retrospect and from the derived positions.

Also, the underlying procedure is not stated in full generality, as it is done in “true”
simulations: it is only given through the particular case of one of the prescriptions
and using the positions already set, and it is only checked afterward that the positions
chosen then solve one of the prescriptions. The other positions are thus obtained by
analogy: the procedure is not stated in full but just signalled as being similar to the
first one given.

3.2.4 The plassô-method

The first example of use of this method is found in the first solution of problem II.8,
as seen above.94 In this example, the argument serves to posit the side of one indeter-
minate square and then the square itself, the last that must be posited. The heuristic
explanation only states that the expression for the side must be taken as whatever
number of arithmoi one wishes, wanting the side of the given square (4 in this case).
The latter choice is motivated by the following purpose: in the resulting equation, the
number 16 is eliminated, so that we obtain an equation of the kind “one species equal
to one species.” Although this purpose is not made explicit here, this is done in similar
cases, like in problem II.12 (Arithm. 100.13–14). Moreover, here as in most similar
cases, the opening word of this sentence is the word “plassô” (I form), which is a
quasi-standard formula.

In problem II.8, this procedure is used to supply an expression for one of the
requested numbers. However, this is not always the case. On the contrary, in most
cases the method is used in the first three books in order to provide expressions for
indeterminate numbers other than sought numbers. For example, the statement of
problem II.32 asks for three numbers such that the square on each of them, added to
the following one, makes a square.

? X, Y, Z : X2+Y ⇒ �(U 2) (E1), Y 2+Z ⇒ �(V 2) (E2), Z2+X ⇒ �(W 2) (E3).

P # Positions Method Heuristic explanation Ref. 
4 Z2 + X := 16x2 + 25x + 9 rw-d deêsei ara + E3 P1, P3, E3

5 W := 4x – 4  
plassô 

tauta (16x2 + 25x + 9) isa
tetragônôi6 W2 := 16x2 + 16 – 32x

The equation obtained is 16x2 + 25x + 9 = 16x2 + 16 − 32x .

In this problem, the plassô-method is used for the last two positions, in order
to supply an expression for the square W 2, expression which is imperative for the
formulation of the equation, after the expressions of the three sought numbers have

94 See 2.4.2 above, third position.
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been found by means of other methods (positions P1 to P3). No heuristic explanation
is given here; a possible explanation however could be that the number of arith-
moi (4) has been chosen so that 16x2 might be eliminated in the resulting equa-
tion.

In general, then, the “plassô-method” is used for the position of the indeterminate
number to be obtained in the prescription, this number being a square as far as the
first three books of the Arithmetica are concerned. This latter prescription is generally
the last to be determined before one obtains an equation: all the others indeterminate
numbers necessary for this equation have already been posited. As a consequence, the
indeterminate square to be posited by this method can be made equal (in the prospective
sense) to an expression already obtained. This method is introduced in most (though
not all) cases by the characteristic formula “plassô ek” (I form from) or “peplasthô”
(let it be formed).

The plassô-method is derivative, insofar as it depends fundamentally on the careful
observation of the obtained expression, to which the indeterminate square to be pos-
ited must be equalized. In this sense, it derives from the previous positions by which
this expression could be obtained. It is akin, therefore, to indirect reworking, though
different for two major reasons. First, this method is almost always introduced by the
specific formula “plassô”; secondly, it refers not only to the prescription, containing
the indeterminate square to be obtained, but also to the expression obtained. By con-
trast, it introduces a position for the side of the indeterminate square, in such a way
the resulting equation will be valid and easy to solve. So the two obvious references
for derivation in this method, are the form of the expression on the one hand, and the
kind of equation to be obtained on the other.95

3.3 Non-derivative methods

As their name indicates, non-derivative methods are methods of invention that enable
one to obtain positions, usually the first positions in the whole chain constituting the
core of the solution, which do not depend on any previous one. Six different catego-
ries of such methods can be distinguished: “simple” method (3.3.1), “two-at-once”
(3.3.2), “all-together” and “sum-against difference” (3.3.3),96 “simulation” (3.3.4) and
“backward reasoning” (3.3.5). Among these six, the first four are mainly distinguished
according to the number or nature of the first positions they provide, with little or no
heuristic explanation; the last two, by contrast, are essentially characterized either by
their special justification (for simulation) or by their dependence on a previous attempt
to solve a problem, which therefore can be seen as a partial justification (for backward
reasoning).

95 We do not really know in which way Diophantus’s found expressions like the Y ’s in II.8 or the W ’s
in II.32, in other words how the “plassô-method” is practiced in order to obtain these or other similar
expressions. Historians of mathematics have proposed since the middle of the 19th century a range of
interpretations regarding this particular point of Diophantus’s practice.
96 We associate these two in the same discussion, because they have an intrinsic relationship to quasi-sim-
ulation, as we shall see.
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3.3.1 The “simple” method and its variants

(i) Examples and definition.

We have seen, in problem I.12 discussed above (2.4.1 and 2.6.3) that the first position
was not justified but still was similar to first positions made in the first problems. This
position was simply for the sought number, the chosen species (arithmos) “directly”
corresponding to its ‘analogue’ within the various ‘kinds of numbers.’ Similarly, in
problem II.8 (ibid.), the first position sets one of the sought squares one dynamis, in
direct correspondence with the requested kind.

Problem I.5 offers a variant on the same method: it asks to find two numbers, one
of the prescriptions bearing on fractions of these sought numbers (the third and fifth
in the chosen instance).97 The first position, then, is to take 1 arithmos for the fifth of
the second number. Although this is not a direct correspondence between the sought
number and the corresponding arithmos, it comes very close to it: the basic principle
remains, to take for one of the sought numbers the ‘analogous’ species.

The example of problem I.22 (3.2.1) follows a clearly distinct way to begin the
chain of positions: while, in the previous examples, all but the first position are depen-
dent on a previous position, in problem I.22 the second position does not derive from
the first. The method used for I.12 or II.8 is thus characterized by the fact that only the
first position is independent from any previous position.

In general, then, the “simple” method is used whenever one (and only one) of the
sought numbers is posited either equal to the species corresponding to the kind of this
sought number (like in I.12 or II.8), or to an expression which is very close to it (like
in problem I.5). This method is not associated with any specific expression,98 but only
to the particular status of the position done among the whole chain of positions.

The “simple” method is amply used by Diophantus throughout the first book of
the Arithmetica. It then appears very sporadically in books II and III, in many cases
because the problems of the end of book II and book III call for auxiliary problems of
a much simpler kind than the main problems treated in those books.

In the first book, the choice for the sought number, for which the “simple” method
is used, does not seem to be entirely arbitrary in the case in which there are several
possibilities (that is, more than one sought numbers). Very often, the lesser num-
ber is chosen (when it is clear which is the lesser, of course). This most probably is
(implicitly) justified by the fact that, for the subsequent positions, more additions than
subtractions will be done on the whole. This care for ‘easy’ calculations is sometimes
made explicit in one of the variants of the “simple” method, as we shall now see.

(ii) Variants and possibility of heuristic explanations

Two main variants of the “simple” method might be distinguished: either there is
an exact correspondence between kind and species, as in problems I.12 or II.8 above,

97 In abbreviation: ? X, Y : gvn (100) ⇒ X + Y, 1/3X + 1/5Y ⇒ gvn (30).
98 The expression ‘tetachthô’ is often used to introduce the first position, but precisely for this reason it is
often associated with “simple” method, though not characteristic of it.
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or the correspondence is only close, but not exact, as in the case of problem I.5. Within
our conspectus, the use of the second variant is signalled by italics.

In the second case, “closeness” just means that the expression is built from the
species corresponding to the kind of the sought number (the arithmos, in the above
example) and from very simple operations (fractions, additions) that generally follow
one of the prescriptions.99 In certain cases, this choice might be made explicit in a
heuristic explanation.

An interesting example for this is problem I.21, in which two alternative choices are
exposed for the first position.100 Indeed, two solutions are proposed for the problem,
the difference (actually a nuance) between the two lying in the choice of the sought
number first posited. In the first variant, the translation starts as follows:

Let the lesser <sought number> be set 1 arithmos augmented by the 10 units
by which <this number> exceeds the third part of the middle; therefore, the
middle will be 3 arithmoi, the lesser thus having the third part of the middle and
10 units (Arithm. 48.13–15).

Here the first position is thus Z := 1x + 10, and the explanation makes it clear
that this choice yields a simple expression for the middle number (3x). But the text
continues:

Or, <we might start> in this way as well: let the middle be set 3 arithmoi; and
since we want the lesser to exceed the third part of the same middle by 10 units,
it will be 1 arithmos and 10 units. (Arithm. 48.16–18)

Here the choice Y := 3x insures that Z will be posited with an ‘easy’ expression.
These heuristic explanations make clear in this case what is usually left implicit else-
where, namely, that such expressions makes easier (handier) the expression chosen
for the next position, on account of the prescription that will be followed for this first
derivation.

3.3.2 The “two-at-once” method

(i) Examples and definition

We have seen with problem I.22 an example of solution, in which the two first
positions, not only the first, are non-derivative (3.3.1). Another, interesting exam-
ple of use of this procedure is found in problem II.3, for it is probably the only
one that alludes to a heuristic explanation for the use of this procedure.101 The
statement asks to find two numbers so that their product has to their sum a given

99 In the case of problem I.5, this is the fifth, which is one of the given parts in the statement and the second
prescription.
100 Abbreviated statement: ? X, Y, Z(X > Y > Z) : X −Y ⇒ 1/3 Z , Y − Z ⇒ 1/3 X, Z −10 ⇒ 1/3 Y .
The parenthesis accounts for the fact that the three numbers are named “greatest, middle and least” in the
statement itself.
101 We have already evoked this explanation when presenting Diophantus’s notion of problem and the
corresponding notion of “proposing a problem” (2.2.1).
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ratio (6:1, in this case) and the two first positions are presented in the following
way:

Let the sought numbers be set 1 arithmos and 2 arithmoi; indeed, they can also
be proposed in a given ratio (Arithm. 84.16–17).

This heuristic explanation obviously alludes to the following problem, which is
indeed evoked in problem I.34: to find two numbers in a given ratio so that the prod-
uct has a given ratio to their sum. In problem I.34, the “simple” method is used for
one number (the lesser) and the second position is found by derivation, following the
prescription that the numbers must be in given ratio (which is systematically taken to
be 2:1 in this series of problems). In problem II.3, the “two-at-once” method is used,
since the two numbers are set “at the same time” 1x and 2x, without a derivation from
one to the other. But this “double setting” is cleverly justified by a virtual problem,
already treated, in which the same choice would represent the use of simple and a
direct derivation.

In general, then, we call “two-at-once” the method in which the two first positions
are non-derivative and are set for two indeterminate numbers that are either sought
numbers or a simple combination of them. In particular, it is characteristic of this
method that the second position is not dependent on the first. From a grammatical
point of view, the “two-at-once” method is recognizable either by the ‘ho men …ho
de’ structure, or just ‘ho prôtos . . . ho deuteros,’ or ‘ho loipos de . . .’ instead of ‘ho
deuteros’ for the second number, so that the balance between the two numbers set
‘simultaneously,’ so to speak, is always expressed and recognizable. Nevertheless,
such structures are usual in the Greek language and are not used only when the “two-
at-once” method is used.

Unlike the simple method, “two-at-once” method is less elementary and appears
not infrequently in book II, as well as in some problems of book III. The reason is that
it is used in more sophisticated problems like II.8 alit., II.9 or II.10.102

(ii) Variants and special cases

The example of problem I.22 (part 3.2.1) shows that the use of “two-at-once”
method might include explanations bearing on the special choice for each of the posi-
tions, in a similar way than for the second variant of simple method. Problem I.22 asks
to find three numbers, so that each of them giving prescribed parts of itself to the fol-
lowing one, having given and received the results are equal. The first positions run thus:

Let the first <number> be a certain number of arithmoi having a third part,
since it gives its third: let it be 3 arithmoi. And <let> the second <be> a certain
number of units having a fourth part, since it gives its fourth: let it be 4 units.
(Arithm. 52.4–6)

The heuristic explanation here given for each position is the same as the one some-
times given for the simple method in its 2nd variant.

102 In problem II.9, for example, in which we are asked to divide a number, which is the sum of two squares,
into two other squares (? X, Y : 22 + 32 ⇒ X + Y,�X, �Y ), Diophantus begins with the two following
positions X := 1x + 2 and Y := 2x − 3.
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Moreover, some cases of use of the “two-at-once” method show that a simple
combination of sought numbers might be chosen instead of sought numbers. Thus,
problem I.24 asks for three numbers so that each of them, adding to itself a given
part of the two others taken as one, makes equal numbers.103 The two first positions
X := 1x, Y + Z := 3 are introduced at the same time, 3 being chosen because it has a
simple third part, on account of the first prescription. Hence, by direct reworking, the
positions X + 1/3 (Y + Z) := 1x + 1 and X + Y + Z := 1x + 3. Here the second
position is not for one sought number, but a simple combination of two of them (their
sum). This variant is used only in problems I.24 and 25.

We also count as “two-at-once” method the argument used for problem II.19, which
asks for three squares verifying one prescription.104 The two first positions are pre-
sented in the following way: “Let them be set the least number 1x2, and middle one
1x2 + 2x + 1, obviously <calculated> from 1x + 1” (Arithm. 112.18–20). Here the
choice accounts for the two first constraints by a simple correspondence between two
of the sought numbers and squares expressed in the terms of the “arithmetical the-
ory.” The second position is similar to the second variant of simple method (we take
(1x + 1)2 instead of 1x2).105

3.3.3 The “all-together” and “sum-against-difference” methods

The two methods now examined are used in the very specific context of two groups
of problems in book I (problems I.16–19 and I.27–30) and have in common that
they are intrinsically associated with one and the same derivative method, namely the
quasi-simulation method that is used in all eight problems of these two groups. We
therefore describe the two methods separately and then discuss their relationship to
quasi-simulation.

3.3.3.1 “All-together” method As we have seen (cf. 3.2.3), the solution of problem
I.16 asks to find three numbers so that any pair of them is equal to a given num-
ber, the first position taken being X + Y + Z := 1x and the following others using
quasi-simulation. While problem I.17 calls for the use of the same position (1 arith-
mos for the sum of all four sought numbers), in problem I.18 three numbers are
required, so that any two of them exceeds the third by a given number.106 Then
the first position is X + Y + Z := 2x, a choice which, like in the second vari-
ant of simple method, facilitates the subsequent calculations. The three following
positions are obtained by quasi-simulation: Z := 1x − 10, X := 1x − 15, Y :=
1x − 20, and the expression through direct reworking. Problem I.19 follows a similar
procedure.

103 In abbreviated form: ? X, Y, Z : X + 1/3 (Y + Z) ⇒ Y + 1/4 (Z + X), X + 1/3 (Y + Z) ⇒
Z + 1/5(X + Y ).
104 ? X, Y, Z : �X,�Y,�Z , (X − Y ) : (Y − Z) ⇒ 3 : 1.

105 Alternatively, but in the spirit of this method, a different choice could have been Z := 4 and Y := 1x2.
Then X is derived X := 4x2 − 12 and the plassô-method enables one to find the arithmos.
106 In the instance: ? X, Y, Z : X + Y ⇒ Z + 20 (E1), Y + Z ⇒ X + 30 (E2), Z + X ⇒ Y + 40 (E3).
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For these four problems I.16–19, then, we call the “all-together” method the pro-
cedure that consists in positing the sum of all sought numbers as one or several arith-
mos/oi.

3.3.3.2 The “sum-against-difference” method This method is used only in problems
I.27–30, in which either the sum or the difference of two sought numbers X and Y, or
the sum or difference of their squares, is given along with their product. It consists in
setting for the difference X − Y := 2x, in case the sum X + Y is given, or in setting
X + Y := 2x for the sum, in case the difference X − Y is given.

3.3.3.3 “All-together,” “sum-against-difference” methods, and quasi-simulation As
noted above, the two methods previously described are restricted to two special groups
of problems and are the only methods among all the others listed here to do so. More-
over, they have in common that the very same method of derivation is applied in
all these problems, namely quasi-simulation. As we have seen already (3.2.3), the
method of quasi-simulation serves to derive several positions at once, by reference to
a common algorithm.

Interestingly, we might observe here that each quasi-simulation could easily be
turned into a full-scale simulation,107 since the algorithm in question might serve to
justify the very first positions. Thus, in the case of problem I.16, the series of positions
could easily be turned into the following simulation108:

This could correspond to the following, slight rephrasing of the first explanations
given in problem I.16:

And since the 1st and 2nd sought numbers make 20 units, if from the three num-
bers I remove 20 units, I will have the third. Hence, let the three be set 1 arithmos
and the third be set 1 arithmos wanting 20 units. For the same <reason>, the
first will also be 1 arithmos wanting 30 units, and the second 1 arithmos wanting
40 units.

That is, instead of setting from the outset the three numbers equal to 1 arithmos by a
specific method, even this first position might be derived from the general observation
of the algorithm that would enable to derive four positions at once.

One plausible interpretation is that such a choice was not preferred at this stage,
probably because simulation had to be considered a more sophisticated method that

107 For the notion of simulation, see the next part, 3.3.4.
108 Compare the table given in 3.2.3.
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had to be introduced progressively. Hence the prudent introduction of a similar method,
but framed in a way which is more akin to the other problems found in the first book,
which usually follow the pattern “the first or two first positions should be found by
some method and the others by derivation.” The choice for the first position is guided,
in this context, by the special form of the problems, the two groups I.16–19 and
I.27–30 sharing enough similarities in their structures as to make possible and easy
the recognition of the method to be used in each case.

3.3.4 The method of simulation

3.3.4.1 Examples and definition

(i) The two first examples: problem II.20 and II.26

Let us take, as a first, simple example, problem II.20, which is to find two numbers,
so that the square on each of the two, added to the other, makes a square.109 The text
simply begins with the following words:

Let the first number be set 1x, the second 1 + 2x, so that the square on the
first <number>, adding to itself the second, might produce a square. (Arithm.
114.14–15)

The positions X := 1x and Y := 2x + 1 are here introduced on the basis of a
justification, namely the italicized procedure, which is formulated in a sufficiently
general manner so as to make possible the two following interpretations:

(a) It can be read as representing one of the two prescriptions, X2 + Y ⇒ �.
(b) But it can also be related to the algorithm x2 + (2x + 1) → (x + 1)2, which is

entirely expressible in the terms of the “arithmetical theory” and corresponds to
a tacit knowledge concerning the possible derivation of an expression (x2 added
to 2x + 1) into another, namely (x + 1)2.

Here and in similar cases, we will transcribe this ambiguity by using the sign “/”:
X2/x2 + Y/(2x + 1) → sq.

The simulation, in this case, yields the two first positions (the square obtained might
have been posited as well, but this is not done in this case) and the others are obtained
through usual methods:

P # Positions Method Heuristic explanation 
1 X := 1x

simulation 
simulator  
X2 / x2 + Y / (2x + 1) sq.2 Y := 2x + 1 

3 Y2 + X := 4x2 + 5x + 1 rw-d loipon esti + E2 

4 V := 2x – 2 
plassô 

5 V2 := 4x2 + 4 – 8x

The equation (ee) is 4x2 + 5x + 1 = 4x2 + 4 − 8x obtained from P3 and P5.

Our second example is taken from problem II.26, which asks to find two numbers,
so that their product, added to either, makes a square, and the sides on the obtained

109 ? X, Y : X2 + Y ⇒ �(U2) (E1), Y 2 + X ⇒ �(V 2) (E2).
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squares added together make a given number (6 in the instance).110 The first positions
are obtained through the following justification:

Since, as soon as there are two numbers, the greater of which is four times the
lesser minus one unit, their product adding to itself the lesser makes a square, I
posit the lesser 1x, the greater 4x − 1 and it comes, similarly, that their product
adding to itself the lesser makes a square. (Arithm. 122.9–14)

As in the previous case, there is here a procedure (formulated in the first italicized
sentence).111 In this case, the procedure is an algorithm and makes again possible the
two following interpretations:

(a) As one of the prescriptions XY + X ⇒ �, once the “lesser” and “greater” are
identified with each of the sought numbers.

(b) As the algorithm x × (4x −1)+ x → (2x)2, again expressible in the terms of the
“arithmetical theory” and to which the reformulation strongly alludes. Later on,
the text makes clear that 2x is the side of the obtained square (Arithm. 122.17).

In abbreviation, this double meaning can be written thus: X/x×Y/4x−1+X/x→sq.

P # Positions Method Heuristic explanation 
1 X := 1x

simulation 
simulator  
X / x × Y / 4x – 1 + X / x sq.

2 Y := 4x – 1 
3 U := 2x
4 V := 6 – 2x rw-i loipon esti + E2 + E3 + P3

5 XY + Y := 4x2 + 3x – 1  1, P2

6 V2 := 4x2 + 36 – 24x
rw-d P
rw-d P4

(ii) Definition

In general, then, we call “simulation” the method by which one or more pre-
scriptions might be solved through the explicit statement of a procedure that can
be interpreted in two ways, one related to the prescription, the other related to an
algorithm framed in the terms of the “arithmetical theory.” We call “simulator” such
an explicit procedure, from which several positions are set as starting points of the
treatment. The simulator might be stated directly as a heuristic explanation for the
positions, before or after taking them, or can itself be justified by an intermediary
reasoning.

The most recognizable mark of a simulation, therefore, is the explicit statement of
such a procedure. By procedure is meant a succession of several steps of calculation
yielding an outcome. In all the simulations belonging to the books examined here, the
outcome is only specified in kind, as being a square.

The second feature of simulation is the fact the simulator can be interpreted in two
ways. This is related to the characteristic way, in which the simulator is formulated.

110 ? X, Y : XY + X ⇒ �(U2) (E1), XY + Y ⇒ �(V 2) (E2), U + V ⇒ 6 (E3).
111 In abbreviation, this procedures reads l × g + l → sq., where l and g are respectively the “lesser” and
“greater” number, the greater g being equal to four times the lesser, minus one (4 × l − 1).
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Thus, in the first example, the sentence can be read selectively as “the square on the
first number, adding to itself the second, makes a square,” which makes clear the
relationship to one of the prescriptions; on the other hand, when one reads the whole
sentence beginning with the positions and ‘the first number’ is mentally replaced by ‘1
arithmos’ and ‘the second number’ by ‘2 arithmoi and 1 unit,’ then we can recognize
an algorithm framed in terms of the arithmetical theory [x2 + (2x + 1) → (x + 1)2].
In the second example, the double interpretation is made possible by the clever use of
the wording ‘the greater / the lesser,’ since each member of this pair can refer either to
numbers of the statements or numbers in the “arithmetical theory.” Also, the repetition
of the formula “their product adding to itself the lesser makes a square” conveys the
same effect.

This second feature also explains the name we have chosen for this method. This
comes from the analogy with the contemporary technique of scientific modeling, for
which computerized means are used to describe natural processes by artificial means.
By analogy, the term ‘simulation’ (or ‘simulator,’ ‘simulate’) evokes the attempt to
imitate an arithmetical prescription by finding out an artificial procedure that, in a
sense, account for it.

In general, the formulation of simulators is often bestowed on the ambiguity of a
term like ‘number,’ which might allude to numbers within the statement of the prob-
lems or equally, to terms of the “arithmetical theory” (cf. 2.3.3).

The method of simulation is applied in the books II and III of the Arithmetica in a
wide range of problems: 22 problems in book II on a total of 40 approximately, 20 in
book III on a total of about 35 problems. Beyond these mere figures,112 the conspec-
tus, which is presented in the first appendix at the end of this article, shows that they
are massively used from the middle of book II onwards. These forty simulations are
furthermore seen to obey an order of growing complexity, depending on the types of
the simulators, the number of the simulators as compared to the numbers of simulated
prescriptions, or the length and sophistication of the justifications for the simulator.
While it does not appear possible to define clear-cut categories between such and such
a kind of simulation, it is still possible to distinguish between four stages of simula-
tions arranged in the order of their growing complexity. Each stage might be seen as
a variant of simulation, although a formal and clear-cut definition of such variants is
pointless: we will rather illustrate each of them by one typical example.

3.3.4.2 Simulators derived from the prescription Only the simulations used in prob-
lems II.11 alit., 12 and 13 alit. are of this kind. For example, the statement of II.11
reads, “to add the same (required) number to two given numbers so as to make each of
them a square.”113 The simulator is here deduced at length from the first prescription,
in the following way:

I first look for some number, that adding to itself 2 units produces a square
<number>; or, alternatively, some number that, adding to itself 3 units, pro-
duces a square. <So> from whatever square I remove the units, <the result>

112 We have to remember, that the totals include variants and auxiliary problems.
113 In the instance and in abbreviation: ? X, Y : 2 + X ⇒ � and 3 + X ⇒ �.
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will be the sought <number> . Let us suppose that <we do this> with the 2
units, and let them be removed from 1 dynamis; the remainder will be 1x2 − 2,
so that it is clear that, if it adds to itself 2 units, this will produce a square.”
(Arithm. 98.4–10)

Like in problem II.20 above, the simulator, in this case, is stated in the last words and
in retrospect: X / (x2 −2)+2 → sq. This simulator might be read as expressed in the
terms of the “arithmetical theory” ((x2−2)+2 → x2, understanding by “it” the x2−2
previously set), but could also be read as directly related to the prescription 2+X ⇒ �,

understanding “it” as the sought number of which it is question before the positions.

3.3.4.3 Simulator related to a familiar formula Problem II.14 is the first in which this
variant appears. The problem here is to divide a given number into two parts, and
to find furthermore a square, which, when added to each of the two parts, makes a
square.114

Take two numbers so that the squares on them are <together> less than 20 units;
let them be the numbers 2 and 3. And if 1x is added to each of them, the squares
on them will be 1x2 + 4x + 4 for the one, and 1x2 + 6x + 9 for the other. If
then from each of them I remove the 1x2, that is, the square, I shall have the
sought <numbers> which, when adding to themselves a square, obviously make
a square. (Arithm. 104.2–8)

The simulators are, like in the previous example, expressed in fine in terms that
are very close to the last two prescriptions: these are two simulators built on the same
model [(x + a)2 − x2]+ x2 → sq. The first is X/[(x + 2)2 − x2]+ Z/x2 → sq. and
the second Y/[(x + 3)2 − x2] + Z/x2 → sq. But the basic justification essentially
relies on the recognition, from the familiarity with such expressions, that any square
like (x + a)2 can be regarded as a number (2ax + a2) added to a square (x2).

The gist of the justification for the simulator, therefore, relies on a quite straight-
forward identification of the ‘squares’ mentioned in the prescriptions, and the squares
present in the (seemingly standard) development of expressions like (x + a)2 into
x2 + 2ax + a2. Problems 15, 16 and 20–23 in the same book are very much of the
same kind, but slightly more complex than the previous one, since the simulator is
not deduced from one prescription, but rather from the straightforward reflection on
standard algorithms, that have, therefore, to be effectively familiar to the reader and/or
disciple. Such simulations require some “topical knowledge.”

3.3.4.4 Simulator related to an arithmetical algorithm Problem II.26 commented above
is a good example of this variant: the simulator, in this case, is neither derived from a
prescription (3.3.4.2) nor from some familiar algorithm intrinsic to the “arithmetical
theory” (3.3.4.3), but from another algorithm, which pertains in general to the knowl-
edge of arithmetical algorithms. In II.26 this ‘arithmetical algorithm’ is expressed in
‘generic’ terms, as we saw: the ‘numbers’ involved might be terms of the “arithmetical
theory,” or ‘simple numbers,’ it does not actually matter.

114 In the instance and in abbreviation: ? X, Y, Z : 20 ⇒ X + Y, �Z , Z + X ⇒ �, Z + Y ⇒ �.
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In many cases, though, the simulator is first stated with ‘simple’ and determinate
numbers and then completed by what we call an “in-species” argument. For exam-
ple, problem II.25 asks to find two numbers so that the square on their sum, wanting
either number, makes a square.115 The solution uses simulation and is expressed in
the following manner:

I first take some square, from which, by removing some <well-chosen> num-
bers, I leave out a square. Let <the number> be the <number> 16. The latter,
when it leaves out 12 units, becomes a square, and again when 7 units, it becomes
a square. Hence, I posit them again en-dynamei, so that the one is 12x2, the other
7x2 and the <square> on the two, 16x2, and it remains that the <square> on
the two, wanting each of them, makes a square. (Arithm. 120.14–20)

Here a kind of generic procedure, which gives the rationale for the two simula-
tors chosen, is given: “one square wanting one or the other number makes another
square.”116 16 being chosen for the first square, the two simulators deduced from this
idea are 16 − 12 → sq. and 16 − 7 → sq. and are then restated “en-dynamei,” that
is, as 16x2 − 12x2 → sq. and 16x2 − 7x2 → sq. More precisely, the last formulation
makes a kind of synthesis of the various restatements: (X + Y )2/16x2 − X or Y/12x2

or 7x2 → sq. The basic idea underlying the simulation, therefore, is found in simple
arithmetical relations, the knowledge of which (again) relies on the arithmetical culture
of the reader/disciple, and which are then restated with species in a second step.

In general, then, we call an argument “in-species” when, out of a numerical algo-
rithm, an algorithm framed in terms of species, either en-arithmois or en-dynamei, is
created. Such an argument is used, either explicitly or implicitly, when a simulator
can be first formulated without species,117 and can be afterward reformulated with the
above-mentioned species. This argument thus implies a reformulation of the first sim-
ulator in term of species, from which the positions might be deduced. This argument is
not, therefore, a method of invention per se, but must be considered as a complement to
simulation, and the two taken together might be considered as a variant of simulation.

There are 15 cases of such a variant in books II and III, six of which are explicit,
like the above example II.25. In several cases, though, the argument is used implicitly,
like in II.24, to which II.25 is actually similar118:

And since 1x2, when you add to it 3x2, or 8x2, makes a square, I posit among
the sought numbers, the one 3x2, the other 8x2 and finally the square on the two
1x2, so that there remains that the <square> on the two, adding each of them
to itself, makes a square. (Arithm. 118.22–120.1)

Here it is not stated explicitly, like in II.25, that a simple square (like 1) might be
chosen, to which other numbers like 3 or 8 might be added, so as to give squares (like

115 ? X, Y : (X + Y )2 − X ⇒ �, (X + Y )2 − Y ⇒ �.

116 sq. − nb1/nb2 → sq.

117 Like arithmos, arithmêton or dynamis.
118 The problem is the same, except that the numbers are added and not removed from the square on the
two.
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4 and 9), and then that this arithmetical algorithm might be formulated “en-dynamei”;
but it could be formulated in this way with no loss of meaning, and the formulation
of II.25 (“I posit them again en-dynamei”) clearly alludes to the procedure of II.24,
which is thus recognized to be an application of the same method.

The pair of problems II.34 and 35, which concludes book II, is another case of two
similar treatments using in-species, the one (II.34) being explicit about this use, the
other (II.35) implicit. The statement of the simulator, in this case, is spectacular and
worth quoting:

And since, whenever a number is measured by some number, and when we take
the one, according to which it is measured, and when we remove the lesser from
the greater among these two (the one that measures, the one according to which
it is measured), then the square on half of the remainder, adding to itself the num-
ber from the beginning, makes a square, I posit the sum of the three <sought
numbers> with a certain number of dynameis having three measuring numbers.
Let it be 12. 1 unit indeed measures the latter according to 12 <times>, as well
as 2, according to 6, and 3 units, according to 4. And if I remove the measurer
from the one, according to which it measures, and if I take half of the remainders,
I posit the three <in the following manner>: as for the first, 5 units and 1/2; for
the second, 2 units, for the third 1/2 unit; and it is clear that the square on each
of them, adding to itself the <number> 12, makes a square, one of them 12 and
1/4, the other 16, the last 42 1/4. I form them therefore en-arithmois: the first
<is> 51/2 x, the second 2x, the third 1/2 x . (134.16–136.1–4)

We have here a mixture of an ‘abstract’ and generic simulator (as in II.26) and
the choice of a ‘simple’ number (as in II.24). The generic algorithm holds for three
separate prescriptions and might be summarized thus: [1/2(m − t)]2 +nb → sq. when
nb = m × t, when m measures nb according to t . The three separate simulators are
then obtained (a) through three different choices of measures of the same number 12:
1, 3 and 2, and (b) through the explicit use of “en-arithmois” argument.

The simulator might be interpreted as a kind of ‘arithmetical reading’ of Euclid Ele-
ments II.5, like those that are suggested in some scholia to Euclid. This seems, then,
to presuppose again in the reader a familiarity with such an ‘arithmetical reading’ of
geometrical propositions.

3.3.4.5 Simulators related to a combination of prescription and formula There are a
few problems in book III, namely problems III.5, 6 and 6 alit., 8 and 9, which intro-
duce sophisticated simulations that subtly combine the reflection on prescriptions and
on algorithms expressed in the terms of the “arithmetical theory.” This is the case,
for example, in problem III.6, which asks to find three numbers that either taken all-
together or in pairs, make a square.119 The simulator is expressed in a very allusive way:

Let them be set the three <sought numbers> equal to a square, 1x2 + 2x + 1;
and the first with the second, 1x2. The remaining third will be, therefore, 2x +1.

119 In abbreviation: ? X, Y, Z : X + Y + Z ⇒ �(E1), X + Y ⇒ �(E2), Y + Z ⇒ �(E3), Z + X ⇒
�(E4).
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And again, since we look for the second and the third to make a square, let it
be made 1x2 + 1 − 2x, from side 1x − 1. And the three are 1x2 + 2x + 1; the
remaining first, therefore, is 4x . (Arithm. 146.17–148.1)

The simulation amounts here to the recognition that, when from three numbers
taken together two of them are removed, the remainder is the remaining third—to this
alludes the expressions “the remaining [first or third].” Hence (X + Y + Z)/x2 +
2x + 1 − (X + Y )/x2 → Z/2x + 1 simulates E1 and E2 at the same time; similarly,
a judicious choice for Y + Z simulates E3 and yields a manageable expression for X,

according to the simulator (X +Y + Z)/x2 +2x +1−(Y + Z)/x2 +1−2x → X/4x .
The basic idea, beyond the recognition of this relationship, is to take a square for the
three (as requested by E1) and remove a square that will yield a simple result: 1x2 in
the one case, 1x2 +1−2x in the other, in order to simulate E2 and E3. Both the reflec-
tion on the special form of the prescriptions, and the knowledge of the potentialities
of algorithms expressed in the terms of the “arithmetical theory,” are here used in a
subtle combination.

3.3.4.6 Other simulations introduced as a first step of more complex methods Finally,
there are some problems in book III, which are included in III.10, 11, 15 alit. and
16, in which simulations are introduced that are by themselves less sophisticated than
those examined above, but that enter a complex set of intertwined problems, for which
the method of “backward reasoning” is used (on which more below 3.3.5). In other
words, the sophistication of such treatments does not lie in the simulation by itself,
but in its reappraisal through another method.

Problem III.10 is a good example of this: we are asked to find three numbers such
that the product of any two of them, adding a given number (12) to itself, makes a
square.120 The first problem studied in this context begins with a simple simulation
completed by an in-species argument:

What characterizes this treatment is the fact that it leads to a dead end, which in
turns leads to the formulation of a new, auxiliary problem and finally to a “correction”
of this first simulation. So the sophistication of the complete treatment lies not in the

120 ? X, Y, Z : XY + 12 ⇒ �(E1), Y Z + 12 ⇒ �(E2), Z X + 12 ⇒ �(E3).
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simulation but in this “improved repetition” of a previous treatment. This is done by
“backward reasoning,” which we will expound next.

3.3.5 Backward reasoning

By “backward reasoning,” we mean the method of invention by which the first positions
of a problem essentially depend on the treatment of two previously treated problems,
one leading to a dead end and the second providing numbers. The method essentially
consists in following the schema of the solution leading to the dead end, while tak-
ing as numbers those obtained in the second problem. It amounts, in other words, to
bypassing the difficulty that leads to the initial dead end by using the outcomes of an
auxiliary problem.

In the example of problem III.10, which contains, as we have seen, three different
statements and four different solutions (cf. 2.2.1), the treatment of problem (a) leads to
a dead end and to problems (b) and (c), and problem (c) has the following conclusion
“and the one <found number> is 4, the second 1/4. Each of these numbers, together
with 12 units, makes a square” (Arithm. 160.1–3). The treatment of problem (d) can
then be summarized by the following table:

What make this last treatment remarkable are its shortness and its dependence on
problems (a) and (c). The solution or results of the latter constitute the basis and explicit
justification for the first positions taken in (d). This explicit dependence upon previ-
ous problems, which goes beyond a mere analogy, is the distinctive mark of backward
reasoning.

In book III this method is used for the four problems III.10, 11, 15 alit. and 16. The
method used for III.13 might be interpreted as some kind of backward reasoning, but
this is hard to decide it in an unambiguous manner. We shall come back in the next
section to this ambiguity (see especially part 4.4).

4 Presentation of the conspectus

We now present the conspectus of the treatments of Diophantus’s problems in the
three first books of the Arithmetica that can be deduced from the previously estab-
lished classification of the methods of invention (part 3) and the preliminary discussion
justifying the very notion of “method of invention” (part 2).121

121 The conspectus is presented in the first appendix. The original conspectus itself uses colors that can be
seen by downloading the file on the website of Centre Koyré (see project ‘mathématiques et histoire’). The
colors are not essential to the conspectus, but they make it easier to read.
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It is important to note from the outset that, by its very nature and foundation, this
conspectus does not reflect merely the order of the statements of the problems but first
and foremost the order of their treatments. In this sense our conspectus differs from
other conspectuses that were made in the past by historians like Paul Tannery122 or
T.L. Heath123 and which relied on the statements of the problems only. We have also
established our own list of the statements, transcribed in abbreviated and convenient
formalism,124 accompanied by a detailed analysis of the various positions taken each
time, as well as the method used and the heuristic explanations given. To reproduce
here this detailed analysis in a dedicated appendix would have made this (already
long) article reach an unreasonable length; we chose, therefore, to reproduce only
examples of these detailed analyses for the sake of illustrating the methods exposed
in part 3.

We claim that only tables showing the order of the treatments really enable one
to get an overview of the coherent ordering of Diophantus’s problems. By contrast,
any synopsis of the statements is certainly useful for reference, but little order and
progression emerges from it.

We first briefly expose the legend of the conspectus (4.1), then discuss what con-
clusions can be drawn from its examination: the limited number of methods used,
their progressiveness and the increasing complexity of the treatments (4.2); we next
expose the new criteria it might provide for judging whether or not such or such
a problem and its treatment might be considered as interpolated or displaced (4.3).
We finally discuss the limits of our analysis, and examine for this purpose the more
complex cases, for which the conspectus appears useful but also somewhat limited
(4.4).

4.1 How to read the table

Each line of the table corresponds to the treatment of a problem introduced by an
explicit or semi-explicit statement, that is, to a problem in the Diophantine sense, as
explained in 2.2.1. Thus, a problem in Tannery’s ordering,125 might comprise several
problems, which are recognized by sub-numbering in the table (for example, the 10th
problem of book III is divided into the four 10.1, 10.2a, 10.2b, and 10.3). In a few
cases, some of these problems might also correspond to one single prescription of the
statement of a “problem,” as we have seen in 2.2.2.126

The first columns, under the heading ‘statement,’ refer to some of the numbers
contained in the statement: sought numbers, number of constraints (2.3.4), numbers

122 See (Arithm. ii, p. 287–297): Conspectus problematum Diophanti.
123 See (Heath 1910/1964, 260–266): Conspectus of Arithmetica.
124 The formalism adopted to abbreviate the statements is partly inspired by Ver Eecke’s French translation
of the Arithmetica and presented in the second appendix.
125 This order corresponds to that of the manuscript tradition.
126 See also note 18.
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‘abbreviated’ with capital letters in our synoptic writing of the statement,127 and finally
given numbers or ratios (2.3.1).

The number of positions done in each treatment is indicated in the next column.
These figures are usually correlated to the numbers listed in the columns ‘statement.’

The number of positions done for each problem is detailed in the next group of
columns: positions are “classified” according to the method used to establish them.
Hence the columns are classified under two main heading, corresponding to derivative
(3.2) and non-derivative (3.3) methods. Each column is then named after the methods
listed in part 3.

Some conventions have been adopted for particular methods:

• For the plassô-method, the number ‘1’ indicates that only the square is set, and ‘2’
indicates that both the square and its side are posited.

• For the “simple” method, italicized ‘1’ correspond to the variant we called ‘simple
method 2’ (3.3.1).

• For the “two-at-once” method, underlined ‘2’ refer to the fact that the second
number is posited a determinate number of units.

• For simulation, the number of simulators as well as of simulated constraints is
indicated. A special column also indicates the “in-species” variant. In the “non-
derivative” group, the columns are ordered from left to right in the order of growing
complexity or sophistication.

• When we had hesitations about the interpretation of a solution, we have indicated
this either by a question mark (‘?’) or two alternative numbers (e.g., ‘1/2’).

The next column on the right indicates the kind of ending obtained in each treatment
(cf. 2.5). The “ambiguous treatments” are indicated in the penultimate column, that is,
the cases in which we have hesitated between various possible interpretations, due to
an elliptic or damaged text or to the limits of our interpretation. In the last column are
added remarks on the explicit dependence of a treatment on previous treatments.128

These two columns will prove to be useful for the discussion of the most complex
treatments (below section 4.4).

The dotted lines indicate treatments that we deem to be interpolated either for
stylistic reasons or on the basis of the criteria explained below (4.3).

Finally, we have indicated, at the end of each book and at the end of the entire
conspectus, the total number or problems and of positions obtained for each category.

4.2 The limited number of methods and their progressivity

What are the main conclusions that might be drawn from the global examination of this
conspectus? The first and most obvious conclusion comes from the recognition that
a few methods of invention are systematically used for the total number of positions

127 These numbers are all indeterminate. However, a statement contains other indeterminate numbers, those
expressed as ‘partial results,’ like rest, sum, etc. (cf. 2.3.1). Hence, only sought numbers and “squares to be
obtained” are represented by our abbreviation system and are, therefore, enumerated in this column.
128 This column has not been reproduced in the printed version of the article, for lack of space, but is
available on the electronic version of the table.
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held in the three books, which amount to approximately 560. Even when taking into
account the problems that are difficult to interpret, and the possible variants of the
methods, the whole bulk of positions fall under one of these 11 methods.129 If one
restricts oneself to the roughly 250 positions which are not derived, the proportion
between this number and the 8 methods involved remains significant. Therefore, it
seems justified to speak about only a few methods being involved and this also con-
firms, in retrospect, that our definition of a method as repetitive is well grounded in
the text: they are really repeated on a significant number of positions each time.

The second, no less obvious conclusion stems from the recognition that the meth-
ods are not only few in number, but that they are really used in a very progressive
order. Hence, Hankel’s famous judgement130 proves to be false: a reader following
the propositions in their order might really and progressively be imagined to learn the
specificity of each method, and how one might pass from one method to more sophis-
ticated treatments. This progressivity is made manifest by the fact that, grosso modo,
the table of non-derivative methods seems to exhibit a kind of diagonal beginning from
the left corner of the first problem and ending up to the right corner of the final lines.
Given the remarkable regularity of this progression, it is even sound to speculate that
the problems were most plausibly arranged not according to their statements, but, first
and foremost, in a way, that would enable one to study one method after the other. In
any case, that the problems have been arranged in such a way, as to begin with simple
treatments and going forward with more sophisticated cases, is precisely what is said
at the end of the introduction.131 What the conspectus shows, therefore, seems plainly
coherent with Diophantus’s account of the arrangement of problems. Most plausibly,
the problems were arranged not as a series of statements, but a series of statements-
and-treatments arranged in such a way as to provide the reader and learner a sense of
the variety of ways in which this treatment might be conducted.132 This characteristic
is related to the general analysis of Diophantus’s project, an issue to which we will
come back in the conclusion.

Finally, what the conspectus also shows is the growing complexification, again
announced in Diophantus’s introduction, of the treatments. For example, a problem
like II.8, most famous for the introduction of indeterminate squares in the statement,
appears through our conspectus as the stage, at which the “plassô-method” is intro-
duced for the first time.133 This treatment is certainly ‘elementary,’ as compared with
the many other problems in which plassô is freely used as a final complement to
other positions. This growing complexity is typically what the synopsis of the third

129 3 are derivative, and 8 non-derivative, counting the “simple 2” variant, “all-together” and “sum-against-
difference” as distinct, and “in-species” as a variant of simulation.
130 Cf. the introduction of this article.
131 Translated and commented in 2.6.3 (ii).
132 From the few experiences of collective reading of these problems that we have tried on modern teachers,
it very clearly appears that the “translation” process, that is, the series of positions held in each problem,
is the very last aspect of the treatment to which they paid attention. A modern reader is too much focused
on aspects of the statements that might be studied with other tools, to recognize the core of Diophantus’s
procedure. On this issue, see Bernard 2011.
133 It appears along with an alternative treatment that is more in line with the previous ones. See the
comparative analysis in 3.2.4 above.
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book shows, with its spectacular and alternate use of several methods for inter-nested
problems, like the four problems 10, 11, 15 and 16, in which backward reasoning is
used. More generally, the last column shows that this third book in the form, in which
we have it,134 seems rich in cross references relating one treatment to previous ones.
Hence the impression of ‘horizontal explosion’ that one has when reading this part of
the conspectus. We come back to this phenomenon in section 4.4, because this question
of complexity of the treatments also brings our interpretation to its natural limits.

4.3 The possible definition of new criteria for isolating interpolations
and displacements

4.3.1 Mathematical incoherency: not always a reliable criterion

An interesting consequence of the conspectus is the possibility of building new criteria
for suspecting or, on the contrary, disproving the possibility of a particular interpola-
tion within the text. Indeed, it is well known that strictly philological criteria are not
the only ones used by editors like Tannery for making a difference between what they
consider to be interpolated and what is authentic to them. More or less explicit criteria
about the mathematical coherence of the argument, as well as arguments about the
alleged “style” of Diophantus as the author of the Arithmetica, come into play. The
“style,” here, does not refer to what philologist call stylistic variations, which really
refer only to a certain regularity of the text as we have it, but really to the alleged
“constant behavior” of the author of the text, when he is taken to be a mathematician
and as if we would really see him at work—or, to recall Norbert Schappacher’s sug-
gestive words, “to read over his shoulders.”135 Such criteria most often appear to be
unreliable, because they rely too much on presuppositions about what is or not mathe-
matical, and who is or who is not a mathematician: such presuppositions are generally
open toward more or less blatant anachronisms. The risk of such misunderstanding is
always very high in the case of treatises that, like Diophantus’s, are made of series of
problems. A problem, indeed, strongly appeals for mathematical invention, whatever
the period considered. Moreover, the terms used for the description of procedures gen-
erally evoke the personal involvement of a teacher. The risk of anachronism is even
higher when this treatise bears such a prestigious name as “Diophantus,” this prestige
largely deriving from the rich traditions of mathematical reading and commentary that
this text underwent in various contexts and periods.136

It is not our purpose here to confirm or disprove other interpretations of the text on
the basis of a discussion or the eventual misreading of the text, due to special biases.
Some of these interpretative problems, which are related to the long-lasting history of

134 Indeed, the presence of cross references might be due to scholiasts. This hypothesis is not in contra-
diction with the interpretation developed here: scholiasts might have understood the spirit of the text and
contributed to the text by making some transitions more explicit.
135 See (Schappacher 1998). The article is available online in English and in a reworked form, (Schappacher
2005).
136 The kind of anachronism related to the confusion between modern and ancient teaching situations is
discussed in the introduction of (Bernard and Proust forthcoming).
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interpretation, both mathematical and historical, of Diophantus’s text, would deserve
a separate discussion. For this moment, we focus only on the positive criteria for sus-
pecting interpolations or displacements that might be derived from our conspectus
and its underlying interpretation. The strength of this interpretation, as we have seen
above, lies precisely in the fact that it might provide a firm basis for interpreting the
coherency of a significant part of the Diophantine problems (namely those of the three
first books) both with each other (that is, in their proper arrangement) and with the
contents of the introduction.

What this study shows is just that the conspectus and its basis, taken as analytical
tools, fit in reasonably well with the chosen portion of the text and with the contents
of the introduction, taken as a whole. Since, however, this conclusion is only approx-
imately true, because there are problems that seem isolated or “strange” within this
coherent whole, then this strangeness might be naturally interpreted as stemming from
changes made on a primitive state of the text in the course of its history—interpolated
or displaced problems being two such possible changes.

If, then, we take our interpretation and analytical framework as a reasonable con-
clusion, confirmed by its relatively good fit to most of the text as we have it, then what
should be the problems that might be suspected to have been interpolated or displaced
at some stage of the history of the text, and on this sole basis?

4.3.2 First criterion: fitting in (or not) within the global progressiveness of problems

Very clearly, the major and first criterion that might be derived from our interpretation
is (A) the degree, in which a given problem fits in the recognized progressivity of the
whole. Thus, it is difficult to suspect a problem like I.33, inserted into a monotone and
long series of similar problems, to be interpolated. On the contrary, the two problems
II.17 and II.18 fit in quite badly within the series treatments through simulations in
which they are inserted. The first problems of book II raise more interesting problems,
for they seem to be very close to the last problems of book I, but are obviously dif-
ferent from them in the systematic use of the “two-at-once” method. This use, in turn,
is coherent with what is found in problems II.8 alit., II.9 and 10. It all happens as if
these problems constitute a transition between the treatments of the first book and the
more sophisticated statements found at the beginning of the second book. Therefore,
the repetitive characteristic of these problems, together with the fact that they present
slight but meaningful variations on the model they repeat, strongly call for their being
“genuine.”

Another, interesting example is provided by the alternative treatment of problem
I.18. We have signaled this problem (as well as I.19 alit.) as ambiguous, because there
is one position that either appears not to be done through any of the methods otherwise
listed, or through an implicit chain of positions not stated in the text. In the first inter-
pretation, one sought number is directly calculated and posited through an algorithm on
given numbers, furthermore with no detailed explanation of this “direct position”137:

137 Moreover, if the fact of finding alternative proofs is not unusual at other places, it most often seems
to obey the pattern of providing a ‘more standard’ treatment than the first one, in which a new method is
introduced. For example, the first treatment of II.8 introduces the plassô-method for the first time, whereas
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Problem I.18: ? X, Y, Z : X + Y ⇒ Z + 20 (E1), Y + Z ⇒ X + 30 (E2), Z + X ⇒
Y + 40 (E3)

P # Positions Method Heuristic explanation Remarks 
1 Z := 1x simple 1 

epei + E1
the 3rd is chosen 

2 X + Y := 1x + 20 Pd-wr 1, E1

3 Y := ½ (20 + 30) = 25 dir. inf. palin epei E2 (and E1)  
4 X := 1x – 5  rw-d epei P2 and P3 2, P3

5 Z + X := 2x – 5  rw-d loipon dei + E3

P
P1, P4, E3

Equation (ece): 2x − 5 = 65 from P5 and conversion of P3 Y + 40 → 65

All this encourages us to suspect an interpolated treatment that does not correspond
well to the ‘spirit’ of the rest. This would be coherent with the philological argument
of Tannery, who deemed this alternative proof, missing in some manuscripts, as inter-
polated.

In the second interpretation, the position is derived from the previous one by two
implicit positions not stated in the text, but allusively mentioned by the adverb “palin”
and the analogy with the previous explanation for the second position, therefore, lead-
ing to a similar but implicit position.

P # Positions Method Heuristic 
explanation 

Remarks 

1 Z := 1x simple 1 
epei + E1

The 3rd is chosen 
2 X + Y := 1x + 20 Pd-wr 1, E1

3 Y := ½ (20 + 30) = 25 rw-d palin epei + E2 Implicit Y – X := 30 – 1x or 
X –Y := 1x – 30 with P1, E2

4 X := 1x – 5  rw-d epei P2 and P4 2, P4

5 Z + X := 2x – 5  rw-d loipon dei + E3

P
P1, P5, E3

In this second case we might similarly suspect an interpolation, but on different
grounds than in the first: here, the elliptic justification seems unlike the other treat-
ments in the same book as well as the first treatment (problem I.18). In other words,
we might consider it interpolated on the second criterion described below.

This example shows how dependent the decision to classify a treatment as interpo-
lated might be on the possible interpretation of it through our analytical framework.
We have, therefore, to remain very prudent with using such criteria, while recognising
that it really makes it possible to be more articulate about the reasons why we might
judge something to be interpolated. This example also shows that these new criteria
do not contradict the classical criteria (philological or stylistic): they just enrich our
“toolbox” for such kind of analysis.

4.3.3 Second criterion: leaving unsaid positions that would normally be stated

Another criterion for suspecting either interpolation or, at least, a damaged text is
(B) the extent, to which the treatment leaves unsaid positions that would normally be

Footnote 137 continued
the second one is more in line with the previous problems. But, on the basis of this first interpretation,
problem I.18 does the contrary: the first treatment is standard and the alternative one is not.
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stated. A typical example is provided in problems II.28 and 29, which are strangely
elliptic, when compared to the ‘standard’ treatments. The key point is that the impres-
sive regularity of treatments allows us to recognise a kind of ‘standard’ level of detail
in the exposition. When this level of detail is lacking and the exposition of positions
is elliptic, we might suspect a damaged or misplaced text. If indeed we suppose that
these two (in fact, six) problems are in their ‘right’ place in the whole order, then it is
surprising that key steps, such as the recognition, in the third step of II.28, that the first
prescription is solved through the use of the numbers found in the auxiliary problem
and an “in-species” argument, is intriguing. Book II indeed appears as the first book
in which simulations are introduced, and this is done in a very progressive manner
and with all intermediary positions described quite in detail. One finds more elliptic
formulations in book III, that might indeed be interpreted as being voluntarily elliptic;
but, in this case, it seems ‘out of place’ to skip crucial steps. Moreover, the complex
structure of these two problems, which brings them close to the problems like III.10 or
III.11, in which “backward reasoning” is used, reinforces their similarity with the kind
of problems found in III.138 These problems, therefore, might be seen as having been
displaced from an original position within book III, or having been badly damaged
from a previous state, in which all the positions were explained.

4.4 The limits of our interpretation: elliptic, ambiguous and complex treatments

Having discussed some of the main conclusions that are derived from the analytical
framework we proposed, we now discuss the main limits of this analysis.

The first limit is related to the very possibility to apply this analytical framework
to all of the problems. Identifying, indeed, what is the complete chain of positions
exhausting the indeterminate numbers and leading to an end-point, presupposes that
the positions are effectively expressed and that either ‘standard’ expressions, repetitive
patterns or heuristic explanations are used for their introduction. They indeed allow us
to recognise, at each time, to which method of invention it refers. If, however, expected
positions are lacking, either by textual accident, because they were voluntarily skipped
or when heuristic explanations are absent, we might hesitate between various possi-
ble interpretations, as the above example of I.18 alit. shows. In such cases, we speak
about ambiguous treatments, and such cases are systematically signaled, within the
conspectus, in the very last column on the right.

The first and crucial remark, concerning these “ambiguous” problems, is that there
are few of them. There are ten ‘serious’ ambiguities on the 117 treatments listed in
the conspectus. Among these ten, the ambiguity actually bears on very few positions.
Therefore also, the existence of these ambiguous cases does not put in question the
basic validity of the analytical scheme. The latter allows us to interpret the vast major-
ity of the examined problems in a non-ambiguous manner or with very few significant
ambiguities. Even in the cases where there is an ‘essential’ ambiguity, the range of

138 All the problems in book III have three requested numbers: if II.28 and 29, which have only two
requested numbers, were initially part of book III, for example before problems 17 and 18, the statement
of which are very similar, then someone might have considered it should be replaced at the very end of the
series of problems, in book II, which have only two requested numbers.
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possible interpretations is always limited to two or three at most or can be recognized
to confirm the conclusions drawn from the conspectus.139

Our second remark is that some of these ambiguous treatments raise another issue
already mentioned, namely the growing complexity of the treatments of problems. As
we have seen, the conspectus visibly reveals the phenomenon, especially for book III
in which problems or, more often than not, series of problems appear, that call for the
combined use of several methods of invention, sometimes together with ‘methods of
equalization’ (like double equation) as well as with references to other treatments (as
shown in the last column of the conspectus). This system of references is typical of
the third book, which either resorts heavily to explicit references to already solved
problems or relies on the similarities between the treatments.140 This system of cross
reference seems to culminate in the (non-derivative) method of “backward reasoning,”
which is typical in this respect, for it relies, by its own definition, on the reference
to two other auxiliary treatments. In other words, all happens as if the first problems
of the third book had been introduced, to some extent, in order to prepare for the
introduction of a new method (backward reasoning), in which the reference to other
treatments is not only suggested, but becomes the substantial core of the method.

This very feature of backward reasoning calls for an important observation on our
analytical framework. On the one hand, the latter appears to be sufficient for the anal-
ysis of these complex treatments, like those of the problems constituting the whole
of III.10. Indeed, each “sub-problem” can be identified by a separate statement and
can be analyzed from the statement to the end-point of the series of positions. All of
the positions can be reasonably interpreted in terms of the methods introduced in the
two first books, with the exception of course, of “backward reasoning” itself, which
appears in this problem (III.10) for the first time.

On the other hand, what is special with “backward reasoning” is the following.
Although it is clearly non-derivative (for it provides the first positions for a ‘fresh’
treatment of the problem at hand), it might legitimately be considered “derivative” in
a different sense than the one defined in 3.2.1 above. Namely, the positions depend on
those held in two previous treatments and not to previous positions of the same treat-
ment. Therefore, this meaning is different indeed from the definition of derivation, but
is also quite similar to it. After all, in the four problems of III.10 (or similar cases), the
statements of the first and last problems opening toward the corresponding treatment
are basically the same: the last treatment amounts to coming back to the first attempt
and to change it slightly. Therefore also, the three or four steps might legitimately be
considered as one and the same complex treatment of the very same problem.

Here, the crucial observation is that, precisely because such treatments are complex,
their understanding requires that they be decomposed in several stages. Each one is
made of a statement and a possible treatment and can, in turn, be analyzed according to
the positions it implies. The analytical framework that we propose precisely allows us
to do such decomposition successfully, precisely because the core idea of this analysis

139 For example, the ambiguity existing between “two-at-once” and “simple” + “direct reworking” for the
very last problems of the first book, only confirm that a smooth transition is established between the first
and second books.
140 This system might be partly due to the addition of scholia; see note 134 above.
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is to analyze each different position separately and to examine how it is introduced and
eventually justified. But then, in problems like III.10, we need to push this core idea
to its very limits, for we need to take into account a new method named ‘backward
reasoning’ that accounts for the fact that ‘first time positions’ might depend in some
essential sense on previous treatments.

In general, then, to account for the possible deep relationship between different
(that is, separate) treatments points out the natural limit of the analytical framework
we developed. Unlike the problem posed by a plausibly damaged or elliptic text,
the (plausibly) voluntary references to previous treatments oblige us, in principle, to
account for the system of cross references between different treatments. These cross
references, in particular, open toward the possibility to introduce ellipses, because a
given treatment has to be understood, explicitly or not, as being analogous to others
that come before it. Let us analyze, in conclusion, a few examples of this interesting
kind of growing complexity within the third book.

Problem III.2141 introduces three simulators built on the same model, that might
be summarized by the following algorithm: (X + Y + Z)2/x2/ + X or Y or Z/(a2 −
1)× x2/ → sq. Taking 3, 8 and 15 for the number written here a2 −1, we obtain three
simulators for each of the constraints and the resulting squares are 4x2, 9x2, 16x2. In
the same way, problem III.3142 uses as simulator (X +Y + Z)2/16x2/− X or Y or Z/7
or 12 or 15 × x2/ → sq., which relies on the idea that taking a square and subtracting
three gnomons to it yield squares; in the fourth problem143 the simulator X or Y or Z/2
or 5 or 10 × x2/− (X +Y + Z)2/x2/ → sq. which again follow a similar pattern. The
latter is explained for the first time in problems II.24 and 25. In the problems of book
III, the explanation tends to become elliptic, probably because these explanations were
already given, and above all because the general pattern underlying all these simulators
emerges through the comparison and repetition of particular simulators. The principle
is to keep the idea (here, to add or subtract well-chosen gnomons to one or several
squares, so as to obtain the same or different squares) while making slight changes.

An even more interesting example is found in the comparison between the treat-
ments of problems III.12 and 13. The key idea behind the simulator used for problem
III.12144 is to decompose a square like (1x + 3)2 into two numbers, the first being a
square (9) and the second a product 1x(1x + 6) : this enables him to simulate one of
the constraints by positing the three numbers as 1x, 1x + 6 and 9. Now the interest-
ing characteristic of problem III.13,145 the statement of which is analogous to that of
III.12, is that it begins right away with two positions that yield the product of two of
the sought numbers to be 1x(1x + 4), that is, a product very similar to 1x(1x + 6) in
the previous treatment:

141 ? X, Y, Z : (X + Y + Z)2 + X ⇒ �, (X + Y + Z)2 + Y ⇒ �, (X + Y + Z)2 + Z ⇒ �.

142 ? X, Y, Z : (X + Y + Z)2 − X ⇒ �, (X + Y + Z)2 − Y ⇒ �, (X + Y + Z)2 − Z ⇒ �.

143 ? X, Y, Z : X − (X + Y + Z)2 ⇒ �, Y − (X + Y + Z)2 ⇒ �, Z − (X + Y + Z)2 ⇒ �.

144 ? X, Y, Z : XY + Z ⇒ �, Y Z + X ⇒ �, Z X + Y ⇒ �.

145 ? X, Y, Z : XY − Z ⇒ �(E1), Y Z − X ⇒ �(E2), Z X − Y ⇒ �(E3).
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P# Position Method Heuristic explanation Remarks 
1 X := 1x

simulation
E1 + implicit 
ref. to III.12 

2 Y := 1x + 4 
3 XY := 1x2 + 4x deêsei ara + E1 // if I set Z := 

4x, I will have E14 Z := 4x
5 YZ – X := 4x2 +15x rw-d 

deêsei ara + E2 and E3 
E2

6 XZ – Y := 4x2 – (1x + 4) rw-d E3 

The treatment ends up with a double equation with difference 6x + 4.

What is interesting are the two correlated facts that, on the one hand, the heu-
ristic explanation of III.13 is much shorter than the one given in III.12, but on the
other hand there is a perceptible analogy between the two simulations, that partly
explains the initial choice. When, indeed, we form a square like x2 + 4x + 4 (just
as we had formed x2 + 6x + 9 previously) and we remark that 1x2 + 4x is a prod-
uct 1x(1x + 4), then we can remark that if 4 is added, the result is a square, and
when 4x is removed, we also obtain a square. In other words, the product 1x(1x + 4)

is “intermediary” between two squares, 1x2 on the one hand, (1x + 2)2 on the other.
We thus retrieve with the pair of problems III.12–13 the idea of following an implicit

pattern while changing the simulator. This idea is present among the first problems
of book III and is of course retrieved in the method backward reasoning, which is
basically about doing a variation on a chain of positions previously introduced.

This subtle system of ‘patterns,’ that become predominant in book III, is only partly
reflected in our analysis and through the conspectus. This remark is of little conse-
quence for the analysis, for we chose to limit the investigation to the three first books:
it amounts to saying that the framework is adapted for these problems and only them.
But a generalization to the remaining seven other books that are known either through
the Greek manuscript tradition or through the Arabic translation of Qustā ibn Lūqā
would require us to adapt the analytical framework, for some of these books go even
beyond the third book in terms of complexity and cross references from one treatment
to another. Such an extension or reform of the framework presented here obviously
requires a separate study.

5 Conclusion

Let us come back, in conclusion, to what this analysis adds to the understanding of
Diophantus’s project as a whole, and what kind of further research this understanding
calls for. Diophantus’s general project, as announced in the very first lines of the intro-
duction, is very slowly to get Dionysius, the reader of the problems, to a progressive
grasp of the way or ways, in which a problem might be solved and unraveled and,
by the same token, to develop his ability of invention in arithmetical problems. Our
new problem, then, is to bridge the gap between the classification of treatments in
progressive order proposed in this article, and the interpretation of this progressivity
in terms of mathêsis, that is, in the terms of a project which is conceived as a way for
others to learn. For this, we need in principle to define historically what it means, in
the ancient context, to develop one’s capacity for invention and through which specific

123



64 A. Bernard, J. Christianidis

learning techniques.146 One of us had already suggested in a previous paper147 that
developing the capacity for invention (or “learning invention”) should be understood
on the background of ancient rhetorical practice and of the corresponding treatises.

This comparison with rhetorical practice, for the sake of completing our reading
and explaining in more detail how indeed the progressivity of problems might lead
one to invention, that is, to become capable of “inventing” positions for converting
problems to equations, is the objective of another study that we are now preparing.
What this article essentially provides, in this respect, is a reasonably firm basis for
such a complementary study. Our purpose, indeed, is to compare in some detail the
progressivity of Diophantus’s treatments of problems and the necessary progressivity
of rhetorical exercises; for this, we need to have a clear idea of how the problems are
arranged and according to which plausible transitions. Only when this comparison will
be completed shall we be in a position to re-evaluate Hankel’s judgement, which really
was about learning how to solve problems and not just about their factual arrangement.

Acknowledgments We thank Bernard Vitrac for his insightful remarks and corrections on a preliminary
version of this article, as well as Jeffrey Oaks for having kindly checked the language and many typos in
the last version.

Appendix 1: the conspectus

146 Indeed, arbitrary presuming that “learning” something has a straightforward meaning, which is immedi-
ately understandable, generally amounts to introduce an anachronism. The latter goes all the more unnoticed
that it is easy to commit: we are all bent to presume that the way we learn, either by listening, writing, or
reading, is universal, as if the ways by which we were taught were timeless.
147 (Christianidis 2007, 293).

123



Diophantus’s Arithmetica I–III 65

123



66 A. Bernard, J. Christianidis

123



Diophantus’s Arithmetica I–III 67

Appendix 2: abbreviations used

The abbreviations used in this article are partly inspired by the ones used by Paul
Ver Eecke in the comments accompanying his French translation of the Arithmetica
(Diophante 1959). However, they are completed here by some specific signs for several
crucial notions or procedures that are discussed for the first time in this article. Note,
however, that this system of ‘transcription’ has intrinsic limits that become obvious in
the case of operations (see below).
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• Indeterminate numbers, which are either sought numbers or squares-to-be-obtained
appearing in the statements of problems, are symbolized by capital letters. Thus,
X, Y, X2, Y 3 are used for sought numbers. The squares to be obtained are some-
times abbreviated by a special symbol � and in parentheses U 2, V 2 in order to have
a special letter U, V for the sides. For example: �(U 2). Finally, when a sought
number X is required to be a square, this is written �X and represents a constraint
in kind.

• The terms of the “arithmetical theory” are symbolized by lower case letters like
x, x2, x3, etc. Thus, the unknown “arithmos” is symbolized by x . Accordingly,
lower case letters symbolize throughout this article species of numbers. An expres-
sion is symbolized by a combination of lower case letters. Examples: 2x, 1x2, 5x +
1, 1x2 − 2x, etc.

• The signs for operations, like +, −, etc. do not have the same meaning when used
to connect the above symbols:
• When they connect, capital letters, like X + Y, they denote the result of a

prescribed addition between terms within the statement.
• When they connect lower case letters, like 1x2 + 5x − 3, they denote a col-

lection of species that are of different types. For a thorough discussion of this
interpretation of such “expressions,” that are unlike modern ‘polynomials,’ see
(Oaks 2009).

Paradoxically, then, these signs never denote the operations that are expressed
in the Greek text, which are kept distinct from their outcomes. In particular, the
sign −, when used for terms of the “arithmetical theory,” denotes a wanting term
(cf. leipsis). In such cases, it does not designate the operation of subtraction (cf.
aphairesis).

• The sign := is used to introduce a position as a result.
Examples: X := 1x, Y 2 := 2x2, X + Y := 2x, etc.

• The sign = is used to denote finally obtained equations (cf. 2.5).
Examples: 5x + 2 = 3 − 1x, 1x + 1 = 4, 1x2 − 1 = 2x + 3, 1x = 2, etc.

• The sign ⇒ is used to denote the prescriptive aspect of the prescription of a prob-
lem: it might be read “has to be” or “has to make.”
Examples: X2 + Y 2 ⇒ 16, Y + 12 ⇒ K(V 2), XY + Gvn ⇒ K(U 2).

• The sign → is used to denote the outcome of a procedure. Accordingly, this sign
is used only in the simulators. Example: X2/x2 + Y/(2x + 1) → sq. The sign “/”
indicates the double meaning of the algorithm, that is, as corresponding to a pre-
scription of a problem (in which case the capital letters are taken into account), or
as expressed within the “arithmetical theory” (in which case the lower case letters
are taken into account).
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