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Abstract This is the last in a series of three papers on the history of the Lenz–
Ising model from 1920 to the early 1970s. In the first paper, I studied the invention
of the model in the 1920s, while in the second paper, I documented a quite sudden
change in the perception of the model in the early 1960s when it was realized that the
Lenz–Ising model is actually relevant for the understanding of phase transitions. In this
article, which is self-contained, I study how this realization affected attempts to under-
stand critical phenomena, which can be understood as limiting cases of (first-order)
phase transitions, in the epoch from circa 1965 to 1970, where these phenomena were
recognized as a research field in its own right. I focus on two questions: What kinds of
insight into critical phenomena was the employment of the Lenz–Ising model thought
to give? And how could a crude model, which the Lenz–Ising model was thought to
be, provide this understanding? I document that the model played several roles: At
first, it played a role analogous to experimental data: hypotheses about real systems, in
particular relations between critical exponents and what is now called the hypothesis
of scaling, which was advanced by Benjamin Widom and others, were confronted with
numerical results for the model, in particular the model’s so-called critical exponents.
A positive result of a confrontation was seen as positive evidence for this hypothesis.
The model was also used to gain insight into specific aspects of critical phenomena, for
example that diverse physical systems exhibit similar behavior close to a critical point.
Later, a more systematic program of understanding critical phenomena emerged that
involved an explicit formulation of what it means to understand critical phenomena,
namely, the elucidation of what features of the Hamiltonian of models lead to what
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626 M. Niss

kinds of behavior close to critical points. Attempts to accomplish this program cul-
minated with the so-called hypothesis of universality, put forward independently by
Robert B. Griffiths and Leo P. Kadanoff in 1970. They divided critical phenomena into
classes with similar critical behavior. I also study the crucial role of the Lenz–Ising
model in the development and justification of these ideas.

1 Introduction

In a paper of 1980 titled “Model-Making in Physics,” the prominent and versatile
theoretical physicist Rudolf E. Peierls expressed a generally accepted view of the cru-
cial role of models in modern physics,1 when he wrote: “Physicists tend to use models
of various kinds to aid their understanding of complicated physical situations.”2 Mod-
els “serve as aids in thinking more clearly about physical problems, by creating simpler
situations, more accessible to our intuition.”3 Peierls also noted that models “serve
different purposes, and they vary in their nature accordingly.”4 However, he aimed
neither at describing what it means to understand a physical system, nor at analyzing
systematically how different models can contribute to this understanding.

I present below a thorough study of how a model, the Lenz–Ising model, was used
in the 1960s to understand a physical field, the behavior of critical phenomena, which
can be understood as limiting cases of (first-order) phase transitions. This model was
(and is) regarded as a crude representation of the various physical systems exhibiting
critical behavior, and prior to the 1960s it was rarely used to gain insight into real
systems.5 Yet, since the early 1960s, it has been incontestably the most influential
model of critical phenomena.6 I focus on two questions: What kind of insight was the
employment of this model thought to provide? And how could such a crude model
lead to such understanding?

This article, which is self-contained, is the third and last in a series of three papers
aimed at shedding light on modeling as an activity in physics by examining the history
of the Lenz–Ising model. In the previous two papers, I studied the development that
led to the view in the early 1960s that the model is relevant for understanding critical
phenomena. I now examine in detail the roles played by the model in the theoretical
investigations of these phenomena after it was realized that the model is physically
relevant. I document the road followed by physicists in the 1960s: At first, it was
used to gain insight into specific aspects of critical phenomena (such as that diverse
physical systems exhibit similar behavior close to a critical point) as well as a sort of
reference data for testing hypotheses about physical systems. Later, a more systematic
program of understanding critical phenomena emerged that involved an explicit for-
mulation of what it means to understand critical phenomena. Attempts to accomplish

1 For similar views, see, for example, Ziman (1965); Fisher (1983); and Schweber and Wächter (2000).
2 Peierls (1980, p. 3).
3 Ibid., p. 17.
4 Ibid., p. 3.
5 Niss (2009).
6 Binney et al. (1999).
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History of the Lenz–Ising model 1965–1971 627

this program culminated with the so-called hypothesis of universality, which classifies
critical phenomena according to specific aspects of the asymptotic critical behavior;
the Lenz–Ising model played a critical role in the development and justification of this
hypothesis.

A complete description of the theorizing about critical phenomena in the 1960s as
well as the role of the Lenz–Ising model in those years is beyond the scope of my paper.
Rather, my aim is to give a general picture of the uses of the Lenz–Ising model by
focusing on issues and materials representative of the field. Geographically, I restrict
my study to Western physicists, thus leaving out their colleagues in the USSR, mainly
to limit the scope, but also because the Cold War prevented much interaction between
Soviet physicists and those in the West.7

2 Model and theory

The physicists I study here agreed that to explain a macroscopic phenomenon means
to derive its macroscopic features from the behavior of its microscopic constituents
and that nonrelativistic quantum mechanics is the underlying foundational theory for
this enterprise. Since the late 1920s, however, it also had been clear that many physi-
cal systems cannot be reconstructed in terms of this foundational theory because the
resulting equations are too complicated.8 For a system to be mathematically tractable
it has to be simplified and therefore models enter. In reconstructing phase-transition
problems, the consensus view is that we proceed “from an assumed form of inter-
molecular interaction to predictions of the thermodynamic properties of an assembly
by a mathematically rigorous argument.”9 The physical systems of interest consist of
a huge number of atomic or molecular particles and are cooperative, i.e., their behavior
can be understood only as the consequence of the cooperation between units of the
system. In this article, I thus will take a model to be a microscopic representation of
a physical system, including the interaction energy between the microscopic building
blocks. These models are often called statistical–mechanical models since the proce-
dure to obtain thermodynamic properties, such as the specific heat, from the molecular
constituents and their interactions, is the formalism of statistical mechanics.10 A the-
ory, in contrast, is a more systematic account of the phenomenon in question, and
they come in two varieties: foundational theories,11 such as quantum mechanics, and
more phenomenological theories, such as the theory of critical phenomena. In this

7 The Russian physicist Anisimov (1998), now at University of Maryland, has recalled that novel ideas
and concepts in the physics of critical phenomena were formulated by Soviet scientists originally and
independently of Western scientists.
8 Schweber and Wächter (2000).
9 Temperley (1956, p. 2).
10 Such models take much for granted: the masses of the constituents, the charge of the electrons, the ori-
gin of their spins, and the values of their spins, etc. Furthermore, the conditions within the atomic nucleus
are deemed insignificant for the modeling. Since these assumptions were consensual for the physicists
discussed here, they are irrelevant for the present purposes.
11 Some would say “effective field theory,” see Schweber and Wächter (2000, p. 593).

123



628 M. Niss

article, I use theory in the latter sense, and when the former is used, I add the qualifier
“foundational.”

3 Critical phenomena as a research field in the 1960s

Physicists and historians demark an epoch in the history of phase transitions from the
mid-1960s to about 1970,12 during which a particular region of the phase diagrams
of substances caught the attention of physicists when the so-called critical region and
the critical phenomena associated with it were recognized as a research field in itself.
The end of the epoch is marked by the advent of a radical new approach, Kenneth G.
Wilson’s renormalization group of 1971.

The critical point of water is the prototypical example of critical phenomena: The
boiling temperature of water depends on the ambient pressure (the smaller the pressure,
the lower the temperature). For pressures below 218 atmospheres and temperatures
lower than 374◦C, it is possible to differentiate the liquid phase from the vapor phase.
Above these values of pressure and temperature only a single phase of high density
exists. So this pressure–temperature pair, called the critical point, marks a limiting type
of phase transition with qualitatively new properties. Since the last quarter of the 19th
century, it was known that some condensing gases and binary-liquid mixtures exhibit
a strong increase of light scattering, particularly in the forward direction, immediately
above the critical temperature of condensation. This phenomenon, now called critical
opalescence, gives the near-critical liquids their characteristically milky appearance.
Other examples of critical phenomena of relatively long standing are the Curie point
of ferromagnets, the Neél point of antiferromagnets, and the order–disorder transition
in binary alloys.

Despite its briefness, the epoch was rich with theoretical ideas and experimental
results, and many of the crucial ideas for understanding the phase-transition problem
were formulated, in particular, the notions of universality and scaling, which together
with the renormalization group form the three pillars of our modern understanding of
critical phenomena.13 I focus on the role of the Lenz–Ising model in the formulation
and justification of the hypotheses of scaling and universality, while the renormaliza-
tion group is left out because, despite its great importance, because in terms of the role
of the Lenz–Ising model, it is fair to say that the major developments occurred prior
to the formulation of the renormalization group.

The Lenz–Ising model was (and is today) seen as a mathematical structure that
can be interpreted as representing a number of physical systems exhibiting critical
phenomena, including ferromagnetism, antiferromagnetism, localized adsorption or
absorption, gas–liquid phenomena, the order–disorder transition in alloys, and binary
solutions.14 The mathematical structure of the Lenz–Ising model consists of a lattice
in which each site can be in either of two states; the state is represented by a variable
σ that can attain two values. The meaning of the two kinds of states depends on the

12 See, for example, Kadanoff (1976); Domb (1996); and Ashrafi et al. (unpublished).
13 Stanley (1999).
14 Niss (2005, 2009).
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History of the Lenz–Ising model 1965–1971 629

particular interpretation of the model; if the model is supposed to represent a ferro-
magnet or antiferromagnet, for instance, a state is a direction of the spin of an electron.
In the simplest versions of the model, only nearest neighbors on the lattice interact
directly and the energy contribution of a nearest-neighbor pair depends on the states
of the two sites.15 For a ferromagnet, if two neighboring spins are parallel, i.e., if the
variable σ has the same value for the two sites, they contribute the energy—J to the
total potential energy, and if they are antiparallel they contribute J . The Hamiltonian
H (for zero external field) is thus given by

H = −
∑

n,m

Jσ(n)σ (m), (1)

where the sum is over all pairs of nearest neighbors n and m. The sign of J distin-
guishes a ferromagnet (J > 0) from an antiferromagnet (J < 0). In the so-called
lattice–gas model of a gas, the state describes the occupancy or vacancy of the site by
a gas atom (or molecule), while the energy of nearest neighbors is a representation
of the interaction between the constituent atoms or molecules. The model is found
to represent most of these systems fairly crudely; thus, for instance, the spin in the
magnetic version of the model is confined to point in one of two directions disagrees
with a full quantum-mechanical treatment. Likewise, the confinement of the atoms of
a fluid to a lattice is also a major simplification. Consequently, the Lenz–Ising model
may be said to be a simple model.

A good point of departure for characterizing critical phenomena as a research
field in the 1960s is the conference on “Phenomena in the neighborhood of criti-
cal points” held in 1965 at the National Bureau of Standards in Washington, D.C.
In the introduction to its proceedings, the prime organizer and chairman, Melville
S. Green, recapitulated some recent scientific developments that “contributed to the
feeling on the part of a number of scientists, and in particular, on the part of those
who formed themselves into an ad hoc committee to organize it that April 1965 was
an appropriate moment for a conference on critical phenomena.”16 Green mentioned
several aspects of the recent development. First, a theoretical result showing that the
three-dimensional Lenz–Ising model is at odds with fundamental assumptions of two
classical approaches, the so-called mean-field model and a theory of phase transi-
tions advanced by the Russian physicist Lev Landau in 1937.17 Green’s second point
was that experiments had revealed that physically disparate systems actually share
important features: The singularities of the specific heat of argon and oxygen are very
much like the one found for the λ transition of helium-4 (at which helium goes from
a normal liquid to a superfluid) and that of the curve of magnetization as a function

15 Nearest neighbors are defined as two sites connected by a bond on the lattice, for instance, for a square
lattice each site has four nearest neighbors.
16 Green (1966, p. xi).
17 The mean-field approach replaces the field acting on a particle situated at a given lattice site by a mean
value rather than the correct fluctuating field arising from the particle’s interaction with its neighbors. A
description of Landau’s theory would lead us to too far astray (some information can be found in Niss
(2009), pp. 252–253), so I will only say that the Lenz–Ising model showed that a crucial assumption, which
the free energy can be expanded in the so-called order parameter, is wrong.
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630 M. Niss

of temperature for ferromagnets and antiferromagnets, which has a shape similar to
the coexistence curve of the liquid–gas. Third, Green mentioned the realization that
quantities estimated numerically for the three-dimensional Lenz–Ising model in its
various guises closely follow these curves. His final point was that both theoretical
and experimental objections to the classical theory of light scattering near the critical
point proposed by Leonard Ornstein and Frits Zernike in 1914 had been made. He
concluded that the time was ripe for a general understanding of critical phenomena,18

and that the pertinent questions at the conference could be summarized in two: are the
phenomena really analogous, and what are their shared features that can account for
the singular behavior of their analogous properties?19

A problem of central interest in this enterprise, both experimentally and theoreti-
cally, was the determination of the asymptotic laws governing the approach to a critical
point. Much of the discussion concerned the way in which various physical quanti-
ties (specific heats, susceptibilities, etc.) diverge to infinity or converge to zero as
the temperature or other variable approaches its critical-point value. This behavior is
captured by critical exponents (sometimes called indices) that had become the central
variable characterizing critical phenomena. For instance, the zero-field magnetization,
also called the spontaneous magnetization M, disappears when the temperature tends
to the critical temperature Tc as

M(T ) ∝ (Tc − T )β as T → Tc. (2)

Here β is the critical exponent characterizing the critical behavior of the zero-field
magnetization close to the critical point.

The exponents are a convenient way of describing the singularities of the system,
but they contain considerably less information than the complete form of the func-
tion because a range of parameters that are specific to each system are deemed of
lesser significance. For instance, the critical temperature can vary from one system
to the next by up to six orders of magnitude,20 but this is irrelevant for the value of
the critical exponent; what matters are the overall features of the behavior, and this
is epitomized in the critical exponents. The justification for focusing on the critical
exponent rather than the entire function was that it was often found experimentally
that the corresponding term dominates near the critical point.21

It was generally accepted in the 1960s that fluids and ferromagnets show analogous
behavior if we let magnetization of a ferromagnet correspond to the density of a fluid
and the magnetic field to chemical potential. Consequently, the same critical expo-
nents are used for the two types of systems (see Table 1), which shows the definition
of the exponents in two notations, one by Michael E. Fisher,22 which is the one in use
today, and one by Benjamin Widom.23 The table also shows what was known, and,

18 Green (1966).
19 Ibid., p. xi.
20 Stanley (1999, p. S364).
21 Stanley (1971, p. 40).
22 Given in Essam and Fisher (1963).
23 Widom (1962, 1964, 1965a, b).
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History of the Lenz–Ising model 1965–1971 633

perhaps more important, not known about critical exponents for liquid, magnets, and
the three-dimensional Lenz–Ising model.

4 Use of model results as “experimental” results

One of the first functions of the Lenz–Ising model in the 1960s was to provide a series
of reference data for testing theoretical ideas; model results thus played a role analo-
gous to the role of experimental data in other areas of physics. Since the late 1940s, the
Lenz–Ising model had played an important negative role with respect to the classical
theories of phase transitions. In particular, observed discrepancies between the behav-
ior of the model and the predictions of these theories were seen as major problems
for the latter,24 as reflected in Melville Green’s introduction above. In the 1960s, the
model also played a positive role: when a theoretical idea agreed with model results,
this was seen as positive evidence for the validity of the latter. The model played this
role in two contexts: (1) critical scattering, i.e., the scattering of light in the critical
region, and (2) proposed relations between the various critical exponents.

4.1 Critical scattering

The spectacular phenomenon of critical opalescence was discovered by the British
scientist Thomas Andrews in 1869 and was quickly confirmed in a host of other experi-
ments. In 1908, the Polish physicist Marian Smoluchowski traced critical
opalescence to abnormally large density fluctuations arising when the critical point is
approached. Two years later, Albert Einstein showed that a quantitative theory based
on this idea does indeed result in an enormous increase of light scattering near the
critical point.25 The approach of Smoluchowski and Einstein assumes that density
fluctuations in different volume elements are statistically independent of each other,
but as pointed out by the Dutch physicists Leonard S. Ornstein and Frits Zernike in
1914, this assumption is not valid close to the critical point. Ornstein and Zernike
were able to show that critical opalescence can be explained by a rapid increase of
the correlation range of local density fluctuations, a range that tends to infinity at the
critical point. To treat the correlation between different volume elements, Ornstein and
Zernike introduced a new function, now called the pair distribution function, g(2)(r),

which is a measure of the probability that if an atom is placed at the origin, another
will be found at a distance r .26 The net correlation function is defined as

G(r) = g(2)(r) − 1.

In a fluid,G(r) falls quite rapidly to zero as r increases.

24 Niss (2009).
25 Pais (1982, pp. 100–104), Münster (1965, p. 205).
26 An analogous function can be defined for magnetic systems describing the correlations between spins
at lattice sites.
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Ornstein and Zernike expressed the fluctuation in the number of particles in a mac-
roscopic volume of a fluid as an integral over the correlation function. This enabled
them to relate the large forward scattering of light near the critical point to the cor-
relation function. In a subsequent paper, Zernike went further and showed that the
correlation function G(r) of a fluid decays exponentially at large distances with a
characteristic correlation length 1/κ—that is,

G(r) ∼ e−κr

r
for r → ∞.

Here κ is a function of temperature, and κ vanishes at the critical point, i.e., the correla-
tion length becomes infinite at the critical point. This means that the critical point cor-
relation function is no longer exponentially damped but is predicted to follow the law

G(r) ∼ 1

r
for T = Tc and r → ∞.

The validity of the Ornstein–Zernike theory was a major issue at the turn of the
1950s. Several alternative approaches had appeared, which are essentially equivalent
as regards their consequences but are based on somewhat different basic assump-
tions.27 However, the experimental tests of the theories were inconclusive.28 In 1960,
Melville S. Green criticized the Ornstein–Zernike theory based on a density expansion
developed by Joseph Mayer. Green conjectured, deliberately neglecting terms in the
expansion that the correlation function at the critical point behaves like r−2 rather than
r−1 as predicted by the Ornstein–Zernike theory. The next year, Stillinger and Frisch
(1961) tested Green’s method by applying it to the two-dimensional lattice-gas with
the result that G(r) ∼ r−4/3. This result could be compared to an exact result implicit
in the work of Kaufman and Onsager (1949) (which Fisher (1959) made explicit) that

G(r) ∼ r−1/4 (T = Tc, d = 2).

From this comparison, Stillinger and Frisch concluded that Green’s method gives a
result that, while not unreasonable, is too great for the lattice-gas model, and thus
the neglected terms in Green’s method should be considered ”in obtaining a proper
description of at least the critical point.”29 Stillinger and Frisch’s use of the Lenz–Ising
model to test the validity of the method is analogous to the use of the model in testing
the validity of mean-field theories in the 1940s.

What should replace the “suspect” Ornstein–Zernike theory?30 Theorists turned to
the Lenz–Ising model. Stillinger and Frisch conjectured that in three dimensions the
true result at the critical point is

27 Fisher (1966b) mentions theories by Rocard, Klein and Tisza, Debye, Fixman and Hart, Yvon, and
Brout.
28 In 1966, Green could write that “an obvious experimental problem” (Green 1966, p. xi) is to confirm
experimental deviations from the Ornstein–Zernike theory.
29 Stillinger and Frisch (1961, p. 752).
30 Fisher (1964, p. 958).
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G(r) ∼ r−α,

with an exponent α that satisfies 1 < α < 2.31 To “provide support for this conjec-
ture,”32 Fisher (1962) discussed the possible behavior of the correlation functions at
and above the critical point and showed that for the three-dimensional lattice-gas there
are strong indications that α = 7/4.33 Despite that a lattice-gas with nearest-neighbor
interaction is “only a very crude approximation to a real (continuum) gas,” the proper-
ties of this model “should provide a reasonably accurate guide to those of more realistic
models,”34 because experience suggests that refinements of the lattice-gas model that
will make it approach a real continuum gas do not lead to significant changes in the
asymptotic behavior of the correlation function. So the Lenz–Ising model not only
helped to discredit the Ornstein–Zernike theory, it also provided a rough estimate of
the behavior of the correlation function of real systems. For the correlation function at
the critical point, for instance, Fisher could conclude in 1964, based on analyses of the
Lenz–Ising model that for a three-dimensional system “one should evidently expect
that G(r) behaves asymptotically as 1/r1+η with 0 < η < 1.”35 That the value of the
exponent η, which measures the deviation from the Ornstein–Zernike theory (which
corresponds to η = 0), is larger than zero for the three-dimensional Lenz–Ising model
was gradually established throughout the 1960s. This was particularly significant as
this exponent proved to be a consistent challenge to experimentalists, in particular, to
establish that η > 0.36

The story is similar for the temperature behavior of the correlation length κ, but
with a twist. The three-dimensional Lenz–Ising model was used to establish that the
correlation length behaves as

κ ∼ (T − Tc)
ν.

Moreover, Fisher and Burford (1967) found a value of ν = 0.643 ± 0.003 for the
model. When they compared this to the value of ν = 0.647±0.0022 obtained by Jens
Als-Nielsen and Ove W. Dietrich for experiments on neutron scattering in beta-brass,37

they noted the remarkable agreement and concluded that:

The very close agreement of these results with our analyses of the Ising model is
most satisfying. While it may be premature to draw physical conclusions (e.g.,
about effective higher-neighbor interactions, etc.) from observed deviations in
amplitudes, it is clear that the Ising model provides an excellent detailed account

31 This α is not the same exponent as the α in Table 1.
32 Fisher (1962, p. 172).
33 As we shall see below, the value of this exponent turned out to be significantly above unity. Fisher (1962)
implicitly supposed that the correlation length exponent assumed the value 1.
34 Ibid., p. 173.
35 Fisher (1964, p. 958).
36 I am grateful to Jan Sengers for pointing this out to me. As late as 1975, Tracy and McCoy could state
that “no experiments to date clearly and unambiguously establish that η > 0” (Tracy and McCoy 1975,
p. 369). Sengers and Shanks (2009) describe the history of various critical exponents.
37 Als-Nielsen and Dietrich (1967a, b); Dietrich and Als-Nielsen (1967).
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of the order-disorder process in beta-brass. One may in the future hope to see it
tested as precisely in other real physical systems thereby increasing and deep-
ening our insight into critical phenomena.38

Thus, there was feedback on the perception of the Lenz–Ising model.

4.2 Exponent relations

The relations between exponents were the results of two largely independent research
agendas. The major actor in the first agenda was Benjamin Widom (b. 1927), who
trained as a physical chemist at Columbia and Cornell, with a theoretical disserta-
tion at the latter institution on energy transfer in molecular collisions supervised by
Simon Bauer.39 Most of Widom’s doctoral coursework was in physics and mathemat-
ics, which was a “little unusual” in physical chemistry at Cornell, “but not unprece-
dented.” Upon finishing his doctoral studies in 1952,40 he became a research associate
in the Department of Chemistry of the University of North Carolina before joining
the Cornell chemistry faculty two years later. At North Carolina he worked with the
physical chemist Oscar K. Rice, who was preoccupied with the discrepancy between
experiments and the predictions of van der Waals theory. Rice helped spark Widom’s
research interests in the critical behavior of liquids, and from 1955 he published a
series of papers focused on the construction of an equation of state that could incor-
porate nonclassical critical-point exponents. The shape of the so-called coexistence
curve that divides the ρ − T plane into two regions was particularly in focus. Below
the coexistence curve is the inhomogeneous or two-phase region where both liquid
and vapor phases are present in equilibrium, and ρ denotes the average density of
fluid in the container. In 1945, the English chemist Edward A. Guggenheim plotted
the existing experimental data for a number of gases and argued that the data could be
well fitted by the formula41

ρL − ρG

ρc
= 7

2

(
1 − T

Tc

) 1
3

. (3)

Here ρL and ρG are the densities in the liquid and gas phases, respectively, and
ρc is the density at the critical point. Guggenheim’s plot gave an exponent of 1

3 in
contradistinction to the 1

2 result of classical theories of the van der Waals type.
The Lenz–Ising model played a major role in Widom’s thinking. Rice asked him to

review for an informal seminar the two Yang and Lee papers on the Lenz–Ising model

38 Fisher and Burford (1967, p. 619).
39 The following is based mainly on Widom’s recollections in Widom (2011) as well as in an interview
with the Physics of Scales group in Widom et al. (2003).
40 Widom’s degree was awarded in 1953.
41 In his 1945 paper, Guggenheim only claimed that the data for argon could be fitted to this curve, but in
Guggenheim (1950) he gave the wider claim.
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shortly after they were published in 1952,42 and “this was an important part of [his]
education.”43 Moreover, as he related in an interview:

I never myself analyzed a microscopic model to determine its critical-point expo-
nents other than models that I was able to transcribe into the Ising model and
make use of what had already been known about the Ising model. I worked a
lot with lattice-gas models, and with lattice liquid mixtures, and so on, so I’ve
done a lot with those, but always making the transcription to the Ising model and
making use of what others had found for the values of critical-point exponents.44

Widom proposed various hypotheses to take the nonclassical results into account from
which he derived relations between critical exponents like the ones above. I will mainly
deal with his justification of the relations and only describe briefly the hypotheses (later
I will discuss one of them, his famous homogeneity (now scaling) hypothesis)

Widom followed Rice, who had published a relation between critical exponents
for liquids in 1955, when he published his first critical-exponent equation in 1962,
namely,

f = 2

(
1 − 1

d

)
[γ ′ = 2(1 − β) in Fisher′s notation]. (4)

He derived this relation from thermodynamical considerations and a conjecture that
two features of classical systems approaching the critical point are true for fluids
in general. This led to several other relations: Two years later, Widom derived the
following relation from another conjecture about critical behavior of fluids45:

g = 1 + f d

[
i.e., δ = 1 + γ ′

β

]
. (5)

He put forward another two relations in a 1965 paper on the surface tension of
liquids,46 where he studied the so-called square-gradient theory of 1958 for the inter-
facial tension of a fluid in the neighborhood of the critical point.47 The two equations
related critical exponents characterizing the temperature dependence of the thickness
of the interface between the liquid and gas phases ν and the surface tension μ, respec-
tively, to the other exponents:

ν = f

2
and μ = f

2
+ 2

d
. (6)

42 Yang and Lee (1952), Lee and Yang (1952).
43 Widom (2011, p. 3).
44 Widom (2003).
45 This was a generalization of a result by Widom’s mentor, Rice (1955), who had implicitly assumed that
f = 1.

46 Widom (1965b).
47 The theory was originally proposed by van der Waals and elaborated by Cahn and Hilliard (1958).
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How were all these conjectures tested? A major problem throughout most of the 1960s
was that experimental results for a sufficient number of critical exponents for a single
physical system to test the relations were lacking.48 Widom’s answer to this chal-
lenge in his papers of 1962 and 1964 was to examine the validity of the relations for
exponent data for the Lenz–Ising model as well as the mean-field model. Information
about the values of the exponents for the classical model and the two-dimensional
Lenz–Ising model had been available since the late 1950s, but values for all of the
exponents for the three-dimensional Lenz–Ising model gradually appeared only in the
first half of the 1960s. After noting that Eq. 4 is satisfied for classical systems, Widom
(1962) wrote that, “It is significant that, however, the relation is also satisfied by
f = 7/4, d = 8, which are the values that characterize two-dimensional systems [the
Lenz–Ising model], because here the validity of the hypotheses might be in doubt.”49

In other words, the lattice-gas model is discussed on a par with experimental results.
This role was even more pronounced for the square-gradient theory, where con-

clusive results for the three-dimensional Lenz–Ising model were available. In 1965
Widom tested the relations predicted by this theory against three sets of data: (1) real
experimental results for inert gases; (2) numerical values of the three-dimensional
lattice-gas model; and (3) exact values for the two-dimensional lattice-gas model.
The confrontation led him to conclude that had the results “for the three-dimensional
cases [sets 1 and 2] been previously known they would have been counted outstanding
successes of the square-gradient theory.”50 So not only experimental results for real
three-dimensional fluids, but also results for the three-dimensional lattice-gas model
would have counted in favor of the square-gradient theory. Widom also used the lattice-
gas model to argue that the square-gradient theory cannot be true, despite its apparent
success, because the values of ν = 1 and μ = 1 for the two-dimensional lattice-
gas model contradicts the predictions ν = 7/8 and μ = 9/8 of the square-gradient
theory, and the latter therefore must “be judged fundamentally incorrect.”51 In this
case, he relied only on the lattice-gas model without invoking experimental results,
even though he expressed uncertainty about the agreement between the lattice-gas
model and real fluids.52 Moreover, he used the discrepancy to justify a rejection of
the square-gradient theory and to propose a new theory. As a proof of the value he
ascribed to the lattice-gas model, he once again placed the model on a par with experi-
ments: “The resulting theory is in accord with all the facts which are rigorously known
analytically, numerically, or experimentally about interfacial tensions and correlation
lengths in fluid systems of two or three dimensions.”53 In short, the lattice-gas model
was used to falsify some theories and verify others. In an e-mail answer to my question
whether his use of the lattice-gas model as experimental results was controversial, he
responded that the milder word “questioned” is more accurate. Moreover:

48 Fisher (1967a).
49 Widom (1962, p. 2704).
50 Widom (1965a, p. 3895).
51 Widom (1965a, p. 3896).
52 Nothing in the square-gradient theory restricted its (proposed) validity to three dimensions. Thus, the
theory should be valid for two dimensions. I am grateful to Michael E. Fisher for pointing this out to me.
53 Widom (1965a, p. 3893).
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At the time it was not as obvious as it is now that the critical-point behavior
of the lattice gas would be the same as experiment, and that the differences
between them is due mostly to inaccuracies in the experimental results. That
was sometimes questioned but was gradually accepted.54

The motivation behind the second agenda was somewhat different as it aimed at
determining the number of independent exponents for various physical systems by
examining whether any simple relationships between the different exponents are gen-
erally valid. This effort “can perhaps best be described as enlightened empiricism,”55

according to Levelt Sengers et al. (1977), who emphasized its phenomenological,
rather than its theoretical basis.

The first relation in this agenda was proposed in 1963 by John W. Essam and Michael
E. Fisher. Fisher (b. 1931) will play a major role in what follows.56 He received his
undergraduate and graduate education in the Physics Department at King’s College,
London, enrolling there in 1948 and graduating in 1951. After two years of national
service he returned to the department and began doctoral studies under the super-
vision of Donald MacKay,57 a pioneer in information theory. His Ph.D. degree was
awarded in 1957 for a thesis entitled “The Solution of Problems in Theoretical Phys-
ics by Electronic Analogue Methods.”58 In parallel with his preoccupation with the
mathematical aspects of theoretical physics, Fisher became interested in statistical
mechanics. According to Cyril Domb, Domb’s inaugural lecture at King’s College in
1955 on problems of statistical mechanics combined with Fisher’s somewhat pessi-
mistic view on the prospects of analogue computing helped persuade Fisher to shift
from this subject to statistical mechanics.59 Domb and Fisher collaborated on several
subjects, in particular on the Lenz–Ising model but also on polyelectrolyte molecules
in solutions and on random walks. Domb suspects “that it was the challenge of exact
methods which Michael found particularly attractive,”60 and it is fair to say that Fisher
was more interested in the mathematical aspects of the modeling than was the average
theoretical physicist.

The main purpose of Essam and Fisher’s paper was the determination of critical
exponents of the Lenz–Ising model by following G. A. Baker’s pioneering use of
the so-called Padé Approximant procedure.61 For our purposes, the significant part

54 E-mail to the author by B. Widom, August 19, 2009.
55 Levelt Sengers et al. (1977, p. 44).
56 The following is based on Cyril Domb’s recollections of Fisher’s early career in Domb (1991).
57 Domb (1991).
58 Fisher published several papers on the solutions of various differential and integral equations arising in
mathematical physics by such methods in the 1950s.
59 Domb (1991).
60 Domb (2003, p. 491). After getting his degree, Fisher continued to work at King’s College, where he
became full professor in 1964. Two years later he left for the United States to take up a position at Cornell
where he was first Professor of Chemistry and Mathematics and then Professor of Chemistry, Physics and
Mathematics. In 1987, he transferred to the University of Maryland.
61 For details of this method, see Domb (1996).
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of the paper is the final section where they raised the question of possible relations
that might exist between critical exponents. Consideration of a heuristic model, the
so-called droplet model, led them to suggest, “with due caution,”62 the validity of the
following identity for both liquids and magnets

α + 2β + γ = 2. (7)

Here the exponents characterize the following quantities: α is the specific heat (for
both liquids and magnets); β is the spontaneous magnetization (magnets) or the shape
of the coexistence curve (liquids); and γ is the susceptibility (magnets) or the com-
pressibility (liquids). A priori, these quantities need not all be related, but this was
exactly what Essam and Fisher conjectured nonrigorously. Their relation resembles
Widom’s relation in Eq. 3, except that the latter assumes that α is zero, corresponding
to a finite or logarithmic specific heat Cv, while the former allows for the possibility
that Cv becomes infinite at the critical point.63

Essam and Fisher’s conjecture stimulated the British physicist G. Stanley Rush-
brooke (1915–1996) to investigate whether anything could be said rigorously based
purely on thermodynamics, which would then apply to all models,64 He showed rig-
orously that there was indeed a thermodynamic relation for magnets65 and that the
equality (6) holds as an inequality (= is replaced by ≥). Rushbrooke’s inequality was
soon followed by several other inequalities.66

The next year, Fisher (1964) put forth other, nonrigorous relations, namely

γ = (2 − η)ν (8)

and

δ = (4 − η)ν. (9)

Fisher faced the same challenge of lack of experimental results as Widom, and he
responded in the same way. He tested the relations against results for the two-dimen-
sional Lenz–Ising model as well as results obtained by the classical approaches,67

while a test with the three-dimensional results had to wait until 1967 when such
results became available.68

62 Essam and Fisher (1963, p. 809).
63 Widom noted this point already in his paper.
64 Rushbrooke (1963).
65 Shortly thereafter, Fisher (1964) proved that the inequality also holds for liquids.
66 ?.
67 They also tested the relation for results obtained for a special construct, the so-called Bethe lattice.
68 Fisher (1967b). His is based on a lecture given in March 1965, but it was not published until 1967.
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4.3 The scaling hypothesis for thermodynamics

The work on relations among critical exponents culminated with Widom’s famous
hypothesis of homogeneity, or what is now called the scaling hypothesis.69 The hypoth-
esis of homogeneity assumes that the singular part of the free energy is a homogeneous
function of its variables.70 From this hypothesis, he could derive many of the impor-
tant nonclassical properties of a fluid. In particular, he obtained the relation in Eq. 5
as well as Essam and Fisher’s relation in Eq. 7.

In an interview, Widom has related how his ideas were shaped and how he took
the Lenz–Ising model into account on a par with experimental results: “So I took that
classical equation of state, and that form of it near the critical point, and I asked myself,
what are the least changes that one would make in this in order that these exponents
come out with what we know to be from experiment and Ising model calculations,
what we know to be their non-classical values.”71 His attempt to make the least radi-
cal change led him to a modified classical equation of state and thermodynamics that
enabled him to calculate the heat capacity, which he found to diverge logarithmically.
He related once again the role of the Lenz–Ising model: “That was pretty astonishing,
because I already knew from Onsager that the heat capacity of the two-dimensional
Ising model diverged logarithmically,”72 referring to a crucial theoretical result by
the Norwegian chemist Lars Onsager in 1944.73 Widom continued that he then asked
himself,

what was it about this particular equation of state, what were the features of this
particular equation of state that allowed me to do that calculation and that led to
that answer? And I saw that the particular features of that equation of state, the
very special one that I was working with, a highly specific one, those of its fea-
tures that allowed me to incorporate the non-classical critical-point exponents,
and allowed me to do that calculation for specific heat were a certain homo-
geneity of form that is now called scaling. And so I said that if one imagines
that instead of the highly specific one that I was working with, which I had no
reason to think was correct, if I said that I’ll just abstract that crucial feature of
it, homogeneity, and imagine that that’s what does it, then I again calculated the
heat capacity and again found a logarithmic divergence.74

69 Widom (1965b). Two other papers are usually seen as independent origins of the scaling hypothesis:
Domb and Hunter (1965) and Patashinskii and Pokrovskii (1966). However, Widom (1965b) is the most
explicit, and I have chosen his paper as the exemplar of these three papers. Patashinskii and Pokrovskii
(1966) should be credited with having added substantially to the subject that culminated in the development
of the renormalization group theory of Kenneth Wilson. I am grateful to Leo Kadanoff for pointing this out
to me. Their non-Western paper, however, is beyond the scope of my paper.
70 For further discussion of the hypotheses of homogeneity and scaling, see Stanley (1999).
71 Widom et al. (2003).
72 Ibid.
73 Onsager (1944).
74 Widom et al. (2003). But (to a high degree of conviction) we now know that in three dimensions, the
divergence is stronger than logarithmic. Both for the three-dimensional Lenz–Ising model and for real fluids
α ∼= 0.1.
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The Lenz–Ising model played a role not only in Widom’s development of the hypothe-
sis of homogeneity, but also in the discussions of others of the validity of the hypothe-
sis. As remarked by Kadanoff et al. (1967), the homogeneity assumption “is not given
very strong justification beyond that it appears to work” in Widom’s paper,75 since
Widom was mainly preoccupied with deriving consequences from the assumption.
Kadanoff and his group at the University of Illinois were thus led to confront the
scaling hypothesis with results for the two-dimensional and three-dimensional vari-
ants of the Lenz–Ising model. Their conclusion was a testimony to the model’s status
as being equivalent to experimental results for real systems (which Kadanoff et al.
found wanting): “The close equality among these in both the two-dimensional case
and three-dimensional one serves to support the scaling law hypothesis.”76

5 Uses of the Lenz–Ising model to obtain understanding

The Lenz–Ising model also was used in constructive ways for understanding the work-
ings of real systems. Cyril Domb, a pioneer in the study of the Lenz–Ising model in the
1950s, started this application. While mainly preoccupied with analyzing the model
mathematically, he also used the model a few times to understand the most general
features of phase transitions. He argued that, for instance, it is possible to account
for experimental results assuming only short-range interatomic forces based on model
results.77 In the 1960s, however, the model was used to gain deeper and deeper under-
standing of critical phenomena, at first for the solution of specific tasks, but gradually
in a more systematically way, culminating with the formulation and fulfillment of a
research program in the later half of the decade.

The first examples of its constructive use for specific tasks appear in a paper by the
Chinese–American physicists (and brothers) Yang and Yang (1964) and lecture notes
by Fisher (1965) given at University of Colorado. Both present a similar constructive
use of the model, but since Fisher’s, at more than 150 pages, is the more elaborate,
I will concentrate on his work.78

75 Kadanoff et al. (1967, p. 263).
76 Others, including Fisher (1967b) and Domb and Hunter (1965), however, did not look as favorably on the
discrepancies between the three-dimensional model and the relation as Kadanoff et al., and they expressed
reservations about the correctness of the relations. This is, however, again a testimony to the model’s status
as on par with experimental results.
77 Niss (2009, pp. 270–272).
78 The Yang brothers compared the lattice-gas model with the results of Voronel and co-workers (Niss
2009). They connected the behavior of real physical systems to that of the model:

Now the critical phenomenon of a lattice gas originates from a rapidly changing balance in the
competition between the occupied and unoccupied sites. One is thus led to the suggestion that in
real gases, the critical phenomenon originates from a rapidly changing balance in the competition
between holes and occupied volume. (Yang and Yang 1964, p. 304).

In other words, they thought that the lattice-gas model might explain the origin of critical behavior qualita-
tively, i.e., a feature found in the model might be transferable to the real gas. Only if the model is believed to
capture the essential feature of the physical phenomenon are conclusions about it transferable to conclusions
about the real system. Then, such a transfer requires fundamental confidence in the validity of the model.
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Fisher used the Lenz–Ising model to say something about the analogies between
disparate physical systems such as ferromagnets and liquids, in particular the conclu-
sion that these systems have the same values of critical exponents to a high degree
of experimental precision. For instance, in a number of systems an exponent β of
roughly 1/3 appears: Guggenheim’s plot for liquids gave an exponent of 1/3, and his
equation is analogous to Eq. 2 for magnetic systems. The same exponent is found for
the coexistence curve for a binary-fluid system,79 and for the magnetization of a fer-
romagnet (EuS).80 Such agreements are not only a numerological coincidence, Fisher
argued, because the Lenz–Ising model in its various guises can “show theoretically
that this analogy, between what are at first sight very different physical systems, is
not merely superficial, but can be made quite precise.”81 Based on the mathematical
analogy between the Lenz–Ising model as a representation of a gas and of a ferromag-
net, Fisher was able to explain the coincidence of the values for these two physical
systems. He continued:

Of course, these relations are only exact for an Ising ferromagnet and a lattice
gas. However, in as far as we believe that these models are at all “realistic,”
we may now draw the theoretical conclusion that we should expect the critical
behavior for gases and ferromagnets to be very similar.82

In this way, the Lenz–Ising model could help explain why we find the same critical
behavior in real systems.

Next, Fisher used a comparison of the Lenz–Ising model with experiments to draw
some equally important conclusions regarding the nature of critical points. He again
discussed the critical exponent β. Based on numerical studies of the three-dimensional
Lenz–Ising model,83 he concluded that β is about 5/16 = 0.3125. It is surprising, he
wrote, “that such a simplified model of a magnet or a gas could lead to a result for
the exponent β so close to the experimentally observed one third laws.”84 From this
“the conclusion is forced on us that the detailed properties of the Hamiltonian become
relatively unimportant in the critical region, whereas the dimensionality becomes a
prime factor.”85 He argued for this statement by appealing to a graph by Burley (1960)
depicting the magnetization of the two and three-dimensional Lenz–Ising model as a
function of temperature for various types of lattices (simple quadratic, honeycomb,
simple cubic, face-centered cubic, etc.), in both two and three spatial dimensions.
Burley’s figure clearly shows that the dimensionality is the decisive feature for the

Footnote 79 continued
Yang and Yang, presumably, had this confidence in the lattice-gas model to the degree that they advanced
this suggestion.
79 For example, in the mixture with the impressive name Perfluoromethylcyclohexane in carbon
tetrachloride.
80 Fisher (1965, pp. 16–18).
81 Ibid., p. 18.
82 Ibid., p. 34, emphasis in the original.
83 These numerical studies are so-called series expansions. For a description, see Niss (2009), pp. 267–269.
84 Fisher (1965, p. 106).
85 Ibid.
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shape of the magnetization curves: these curves fall into two groups, one for each
dimension, and the differences between the members in each group are much smaller
than the differences between the two groups.

The agreement between the theoretical and experimental values of β was good,
but it was not perfect. “The artificial nature of the Ising model does therefore make
itself felt,” Fisher found, “but . . . to a much smaller extent than might have been
guessed.”86 This led him to write that “[an] outstanding theoretical task is to charac-
terize just which relevant features of real systems are oversimplified by the model.”87

One way to examine this question for the Lenz–Ising model, he continued, would be to
compare it with the more reliable Heisenberg model for magnetism.88 However, since
several of the relevant critical exponents could not be obtained for the Heisenberg
model, such an examination was not feasible.89

6 The role of the model in explaining scaling

Benjamin Widom described the most important scaling properties, but he did not dis-
cuss how they might arise. In 1966, Leo Kadanoff at the University of Illinois derived
Widom’s scaling law by applying certain transformations to the Lenz–Ising model.
Kadanoff (b. 1937) got both his undergraduate degree and doctorate in physics at
Harvard. His Ph.D. thesis of 1960 was entitled “Theory of many-particle systems:
superconductivity; and the acceleration of a charged particle by a quantized electric
field.” In his own words:

My thesis advisers, Paul Martin and Roy Glauber, continually directed my atten-
tion to the relation between a microscopic description of reality and a macro-
scopic description. Thus, a gas is composed of molecules, but it also obeys the
laws of fluid mechanics. A microwave cavity contains not only photons but also
an electric field. Or again, a fluid near its critical point is a bunch of molecules,
but they [can] also be described as a scale-invariant field theory.90

Kadanoff’s interest in second-order phase transitions was aroused by Kurt Gottfried
and Paul Martin at Harvard, who pointed out that this problem was interesting and not
at all understood.

86 Ibid.
87 Ibid., emphasis in the original.
88 See Niss (2009, footnote 69) for a description of this model.
89 In fact, Fisher was pessimistic about the prospects of determining the value of β for the Heisenberg
model:

Unfortunately, there seems no way at present in which one might seek to estimate β for the Heisenberg
model. The low-temperature behavior in that case is given by the spin wave expansion and its correc-
tion terms which have proved exceedingly difficult to calculate. There are, however, good reasons for
believing that the spin wave approach yields only an asymptotic series (terms like e−J/kT are neglected)
so that even the complete series might not describe the critical-point behavior. (Fisher 1965, p. 106).

90 Kadanoff (1999, p. 7).
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I entered the problem by studying Lars Onsager’s solution of the two-dimensional
Ising model. The exact solution of this model of two-dimensional magnetism
had been announced in the 1940s, but it had never been fully analyzed. Onsager
and C. N. Yang had calculated some of the thermodynamic properties, but there
was really no explanation of what physics might be demonstrated by Onsager’s
solution. Here was a tiny little world, just waiting to be explored and perhaps
even captured.91

Moreover, having previously studied the correlations in a number of contexts, includ-
ing the connection between hydrodynamics and space-time correlations, he was
“pushed” toward looking at the spatial correlations. His main tool for studying such
correlations was the two-dimensional Lenz–Ising model; at first he calculated the
spin-spin correlations of this model,92 and he then used the model to derive Widom’s
scaling law.93 The basic idea of his derivation was that the singularity in the free-
energy is caused by the presence of large-scale fluctuations, so that the correlation
length ξ is much greater than the lattice spacing a. This means that it is possible to
find a number L satisfying 1 << L << ξ/a. We imagine dividing the lattice into
cells of side length aL. Kadanoff then formed a new Lenz–Ising model by perceiving
each cell of area (aL)2 as a single spin site with a spin variable with a value equal to
the average of the local magnetization in the block. This seems reasonable because of
the strong correlation over short distances. The new spin variable should behave in an
essentially identical fashion to the original variable, i.e., interactions among the cells
should produce correlations identical in structure to the correlations in the original
Lenz–Ising model. As the correlation length gets larger and larger as we approach the
critical point, this means that the new system is further away from its critical point than
the original system. We assume the state of the cell system to be described in terms of
the effective magnetic field and temperature, which measure the distance of the system
from critical. They depend on L as well as on the original magnetic field and temper-
ature. Based on these ideas, Kadanoff obtained a relation between the free energies of
what is effectively the same system at different distances from its critical point. This
relationship turns out to be identical with Widom’s homogeneity assumption.

Thus, by operating on the Lenz–Ising model in this way, Kadanoff was able to
obtain the scaling relations. The procedure involves postulates that, in the words of
Widom (1974), were “figuratively, but not literally, correct.”94 However, no one seems
to question Kadanoff’s use of the Lenz–Ising model to justify the scaling result.

6.1 Critical fluctuations

The Lenz–Ising model also played a crucial role in establishing what the Dutch-
American experimentalist Johanna Levelt Sengers, who started to work on fluids in

91 Ibid., p. 157.
92 Kadanoff (1966b).
93 Kadanoff (1966a).
94 Widom (1974, p. 118).
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the 1950s, called “the most important achievement of the 20th century with respect
to the understanding of the fluid critical region,” namely, “the insight that Van der
Waals’ equation, although it gives a qualitatively correct description of the liquid-
vapor transition, is subtly but fundamentally wrong near a critical point.” The reason
is that critical behavior is governed by fluctuations and these fluctuations are ignored
in descriptions of the mean-field type such as Van der Waals’ equation. She dated these
important insights to the second half of the 20th century.95

As we saw above, critical fluctuations had been well known since the turn of the
century, and in its first two decades it also became clear that at the critical point the
length that characterizes the decay of the density correlations at different points in
the system, the correlation length, becomes very large compared with all microscopic
length scales. However, the crucial significance of the divergence of the correlation
length and fluctuations for understanding critical phenomena does not seem to have
been appreciated before the 1960s. Indeed, many earlier authors seem rather to have
been preoccupied with solving the problem of why the fluctuations are infinite in finite
systems. Moreover, the realization that the solid state exhibits phenomena analogous
to critical fluctuations had to wait to the 1950s.96 In 1953, Palevsky and Hughes found
that the intensity of scattering of neutrons on magnetic materials, such as iron, exhibits
a strong maximum at the Curie point with an abrupt change of slope. Drawing an anal-
ogy to the Ornstein–Zernike theory, the Belgian theorist Léon Van Hove showed that
this can be understood by assuming that the correlation range for the fluctuations of
local magnetization increases strongly as the Curie point is approached; consequently,
this effect is just a new kind of critical opalescence. Subsequently, other systems
exhibiting critical opalescence (with scattering of neutrons, light, and X-rays) were
discovered.

I have documented that the Lenz–Ising model played a role in discrediting the
Van der Waals’ equation in particular and the mean-field theories in general in Niss
(2009). Here I will focus on the crucial role played by the model in establishing the
importance of fluctuations for phase transitions.

Several authors played a role in realizing the role of fluctuations for critical
phenomena. Benjamin Widom pointed out the importance of the correlation length
for critical phenomena.97 Following E. W. Hart, he identified the correlation length
ξ with the thickness of the interface between the liquid phase and the vapor phase.
Moreover, he made the understanding of the role of fluctuations more quantitative. It
had long been known that when a fluid (say, vapor) is in equilibrium with its conjugate
phase (liquid) fluctuations give rise to small domains of the conjugate phase within
the bulk of the first phase. Widom conjectured that the volume of the conjugate region
is equal to ξd , with d the dimensionality. Moreover, by associating a free energy of
CkT with this fluctuation (C is a constant and k is Boltzmann’s constant), he derived
an exponent relation.

95 Levelt Sengers (1979, p. 395).
96 Münster (1965).
97 Widom (1965a) and Widom (1965a, b).
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Kadanoff used the Lenz–Ising model extensively to gain insight into how fluctu-
ations govern critical phenomena.98 In 1967, he and his co-workers argued that the
infinities in thermodynamic derivatives are caused by a correlation length that diverges.
First, they described the connection between correlation functions and thermodynam-
ics in Landau’s theory of fluctuations, in particular that the “large-scale fluctuations
in the order parameter are the source of the singularities in thermodynamic deriva-
tives near the critical point.”99 This statement, however, is perhaps only “qualitatively
correct,”100 so to investigate the correctness of Landau’s theory, they quoted results
from theoretical investigations of the Lenz–Ising model. From an examination of the
spin-spin, energy density-energy density, and energy–density–spin correlation func-
tions for the two-dimensional Lenz–Ising model, they concluded that “we see again
how the divergences in thermodynamic derivatives are connected with the very long
range of the correlation functions,”101 and they derived the logarithmic divergence
of the specific heat, i.e., Onsager’s important result. They apparently judged that an
appeal to the Lenz–Ising model would be sufficient to persuade the reader. Moreover,
they related the long range of the correlations to the universal properties:

We expect that the long-ranged correlations are relatively insensitive to the details
of the interactions between spins. If a correlation extends over a hundred or a
million lattice constants, this correlation should be sensitive only to the grossest
features of the interaction and should not be affected by a change from a bcc to
a fcc lattice or to the introduction of some next-nearest-neighbor interaction.102

Once again, the Lenz–Ising model played a critical role in endeavoring to understand
the importance of fluctuations and correlation functions for critical phenomena:

The Ising model solutions do, in fact, bear this out. The correlations in the two-
dimensional case are basically the same for square and triangular lattices. In the
three-dimensional case, so far as we can tell, γ = 1.25 equally well for bcc, fcc,
and simple cubic lattices.103

7 The Lenz–Ising model and a theory of critical phenomena

In the second half of the 1960s, the Lenz–Ising model, along with similar simplified
models, was put to more systematic use to gain insight into critical phenomena in

98 Valery Pokrovsky, a student of Lev Landau, has recalled that Landau was entertaining similar ideas:
“Around 1960 Landau formulated the general problem of fluctuation-driven phase transitions via a calcu-
lation of the path integral over all configurations of the order parameter (unpublished).” (Pokrovsky and
Valery 1998, p. 15).
99 Kadanoff et al. (1967, p. 400).
100 Ibid.
101 Ibid., p. 402.
102 Ibid.
103 Ibid.
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general. Borrowing a term from the title of a review paper by Michael E. Fisher,104 a
theory of critical phenomena appeared in the 1960s.

7.1 The aim of a theory of critical phenomena

In his review paper, Fisher found it necessary to give an explicit exposition of the
main aim of theory,105 which he contrasted to the traditional approach “sometimes
held (implicitly or explicitly) to be the calculation of the observable properties of a sys-
tem from first principles using the full microscopic quantum-mechanical description
of the constituent electrons, protons and neutrons.”106 This approach, which is often
the one taken in quantum chemistry, is rarely feasible for the complicated systems of
condensed-matter physics. More importantly, Fisher claimed, “it is not even a very
sensible one!”107 He elaborated in lectures given in South Africa in 1983: “If one had a
large enough computer to solve Schrödinger’s equation and the answers came out that
way, one would still have no understanding of why this was the case!”108 Numerical
answers do not necessarily provide understanding. Instead, as he had written in this
review:

[The] aim of the theory of a complex phenomenon should be to elucidate which
features of the Hamiltonian of the system would lead to the most characteristic
and typical observed properties. Initially one should aim at a broad qualita-
tive understanding, successively refining one’s quantitative grasp of the problem
when it becomes clear that the main features have been found.109

The physicists I have studied in the present paper subscribed to this “modern atti-
tude”110 toward the task of the theorist.111

104 Fisher (1967a).
105 In fact, Fisher did so in his three reviews papers: Fisher (1965, 1967a, 1983). They all express roughly
the same view; consequently, I will not treat them individually.
106 Fisher (1967a, p. 619). He wrote in 1983: “The traditional approach of theoreticians, going back to
the foundation of quantum mechanics, is to run Schrödinger’s equation when confronted by a problem in
atomic, molecular or solid state physics! One establishes the Hamiltonian, makes some (hopefully) sensible
approximations and then proceeds to attempt to solve for the energy levels, eigenstates and so on.” (Fisher,
1983, p. 46).
107 Fisher (1983, p. 46).
108 Ibid., emphasis in the original.
109 Fisher (1967a, p. 619).
110 Fisher (1983, p. 46).
111 Widom stated in a letter to me that he subscribed to Fisher’s view at the time and that he knows of no one
who would have disagreed. Leo P. Kadanoff and his group at the University of Illinois stated in a review paper
of 1967 what they considered to be the central question of critical phenomena: “This simplicity and similarity
among phase transitions is not fully elucidated theoretically. Some of the qualitative features of this behavior
are reasonably well understood; others remain a complete mystery.” (Kadanoff et al. (1967), p. 395). The
particular subject of their paper was “what can be learned by comparing different phase transitions with
each other and with the existing theories. How are different phase transitions alike? In what ways do they
differ? Why should we expect these similarities and differences?” (Kadanoff et al. (1967), p. 395). Stan-
ley, Hankey, and Lee wrote: “In recent years considerable experimental and theoretical attention has been
directed toward the study of critical-point exponents. Very recently increasing attention has been focused on
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This perception of understanding has consequences for the methodology of inves-
tigation since the fulfillment of this aim requires extensive use of simplified models
like the Lenz–Ising model, which “has been increasingly rewarding,”112 but to distin-
guish relevant features from irrelevant ones, the theorist should employ several simple
models and not concentrate on a single one.113 Fisher, ascribing this philosophy to
the Soviet physicist Yakov I. Frenkel and his 1946 argument for the use of caricature
models,114 described the role of such models:

We may well try to simplify the nature of a model to the point where it repre-
sents a “mere caricature” of reality. But notice that when one looks at a good
political cartoon one can recognize the various characters even though the artist
has portrayed them with but a few strokes. Those well chosen strokes tell one
all one really needs to known about the individual, his expression, his intentions
and his character. So, accepting Frenkel’s guidance … a good theoretical model
of a complex system should be like a good caricature: It should emphasize those
features which are most important and should downplay the inessential details.

For instance, if the system in question involves spins, physicists should focus only
on the features of the spins needed for reproducing the essential features of the real
system. Moreover, whether a full quantum-mechanical description is necessary or a
classical one will do, is decided only by a test of the latter’s ability to reproduce the
essential traits. If a model is to give more insight than can be obtained directly from
experiments, Fisher wrote in 1967, the model better be tractable mathematically. As a
reality check, “one should always attempt to refine a model in order to test how far its
defects as a true microscopic description affect the conclusion drawn.”115 The analysis
of the models of critical phenomena had reached a stage where “[one] can be confident
that the deviations now observed between theory and experiment are consequences of
oversimplifications of the models (rather than deficiencies of calculation).”116

Footnote 111 continued
the question of precisely which features of a physical system are relevant for determining the critical-point
exponents and which are not relevant.” Stanley et al. (1971, p. 246).
112 Fisher (1967a, p. 619).
113 Fisher (1983, p. 47).
114 The term “minimal model” is sometimes used instead, for instance in Goldenfeld (1992) and Batterman
(2002). The latter subscribed to the use of the former, which defined minimal model as the “model which
most economically caricatures the essential physics.” (Goldenfeld 1992, p. 22). Strictly speaking, a carica-
ture model need not be the most economical model, but I think the notions of caricature model and minimal
model essentially try to capture the same aspect of models, namely, a focus on a few features.
115 Fisher (1967a, p. 619). Fisher argued that the preceding development in critical phenomena, in fact, had
followed this route: “The recent history of the study of critical phenomena has, in the main, followed the
course of simplifying the physical models while improving and strengthening the mathematical techniques
to the stage where, at last, fairly accurate theoretical treatments can be given for models which, while gross
oversimplifications of reality in many respects, do certainly embody a number of the vital features of the
particles and interactions leading to phase transitions and critical points.” (Fisher 1967a, pp. 619–620).
116 Ibid., p. 718.
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7.2 The hypothesis of universality

In 1970, this program for a theory of critical phenomena was fulfilled by the hypothesis
for which Leo P. Kadanoff in 1971 coined the term “universality.”117 The hypothe-
sis, although implicit in much earlier work, was formulated independently by Kada-
noff, then at Brown University, and by Robert B. Griffiths at Carnegie-Mellon Uni-
versity. Both had introduced the idea (but not the term “universality”) at the 1970
Midwinter Solid-State Research Conference at Newport Beach, California, January
18–23, 1970.118 In his paper,119 Griffiths stressed that theoretical estimates of critical
exponents (indices) “coming largely from analyses of various lattice systems (Ising,
Heisenberg, etc.),”120 indicate that the indices are independent of the details of the
Hamiltonian. He continued:

The indices do, however, depend on (a) the lattice dimensionality d, (b) the
“symmetry of the order parameter” in the sense that, for example, Heisenberg
and Ising model indices are unequal, and (c) the range of interaction, provided
it decreases sufficiently slowly.121

In short, the hypothesis of universality is analogous to the Mendeleev periodic table122

and fulfills the program advanced by Fisher: the aspects of the system that matters
for the type of phase transition are items (a–c). The order parameter is used for quan-
tifying the amount and kind of ordering that is built up in the neighborhood of the
critical point and is (normally) chosen to be zero above the critical point and non-
zero below the critical point. For example, in a ferromagnetic crystal the zero-field
magnetization M is typically used as the order parameter because M is a measure of
the degree of alignment of the magnetic moments throughout the crystal. This param-
eter is non-zero below the Curie point and vanishes as this point is approached (in zero
external magnetic field).123 The symmetry of the order parameter varies for different
systems. For example, at T = 0 the magnetization of the isotropic Heisenberg ferro-
magnet is free to point in any direction, while the magnetization of the Ising model
has only an up–down degree of freedom.

The idea that apparently dissimilar liquid systems present considerable similari-
ties near the critical point was already inherent in van der Waals’s work and fairly
well known thereafter. We have seen that Guggenheim presented a plot of a host of

117 Kadanoff (1971). I have made no attempt to give a complete account of the complex development that
led to this hypothesis.
118 Laramore (1970). They published their ideas in Griffiths (1970) and Kadanoff (1971). Their papers
form the basis of my present description.
119 Kadanoff’s version of the hypothesis of universality reads: “All phase transition problems can be
divided into a small number of different classes depending upon the dimensionality of the system and the
symmetries of the order [sic] state.” See Kadanoff (1971), p. 103.
120 Griffiths (1970, p. 1479).
121 Ibid.
122 Stanley (1999).
123 For the liquid-gas transition the difference between the densities of the liquid and gas is a suitable order
parameter, since this quantity vanishes as the critical point is approached from below.
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different liquids falling on roughly the same curve. The relation between different
areas of physics was noted in 1895 by the French physicist Pierre Curie who, when
measuring the magnetic equation of state of nickel, was struck by the great resem-
blance between his plot of the magnetization versus temperature and the plot of others
of the density–temperature isobars of carbon dioxide near the critical point. In 1907
another French scientist, Pierre Weiss, fashioned his mean-field theory describing the
equation of state of nickel after van der Waals’s equations of fluids. A more systematic
point of view was provided by Lev Landau in 1937, who pointed to the universality
among different phase-transition problems by providing a single formulation that in
principle should contain all phase transitions.

In his history of critical phenomena, Domb (1996) noted that the papers of Griffiths
(1970) and of Kadanoff (1971) were

two key publications . . . which converted the background assumptions into a
coherent formal hypothesis. The individual ideas in these publications were not
new, but their synthesis provided stimulus to further theoretical and experimen-
tal investigation to check whether the hypothesis was indeed widely satisfied.
More importantly they summarized clearly and precisely results which had been
derived empirically, and which any theory of critical phenomena must explain.124

The experimental background to their publications was the realization, mentioned
earlier that details of the system undergoing the phase transition might be irrelevant
and that many different phase problems might be essentially identical, “are very old
ones in the theory of phase transitions.”125 How to classify such phase transitions,
however, was new in Griffiths’s and Kadanoff’s work. The theoretical background
was formed by a host of results for various models that gradually emerged, not least
in the 1960s. Cyril Domb, one of the protagonists in this endeavor, mentioned three
steps toward the hypothesis of universality in his book on the history of the subject,
probably identifying the essential, if not all of the steps:

1. The realization that the critical exponents for a given model depend on dimension
and not on lattice structure appeared first for the Lenz–Ising model when Domb
and Sykes (1957) conjectured that for this model the exponent for susceptibility,
γ, is equal to 5/4 for all three-dimensional lattices.

2. Domb and Sykes (1962) suggested that for the Lenz–Ising model with general spin
γ is independent of spin.

3. The paper by Jasnow and Wortis (1968) discussed below.

One might add another step, as Fisher (1998) does, namely, the realization that expo-
nents of the Heisenberg model seem to differ from those for the Lenz–Ising model
(Rushbrooke and Wood 1958). These results, however, were much less conclusive as
it was much more difficult to analyze the Heisenberg model mathematically.

In their paper, Jasnow and Wortis (1968) of the University of Illinois studied two
questions echoing Fisher’s aim of a theory: “How many different types of critical

124 Domb (1996, p. 244); emphasis in the original.
125 Kadanoff (1971, p. 103).
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behavior are there, as classified by the critical exponents?”126 And: “Which features
of the dynamics and kinematics of a given system serve to determine its critical expo-
nents and which are irrelevant?”127 The Lenz–Ising model played an important role
in their exploration of these questions as they based their exploration on the exami-
nation of a general Hamiltonian H, the so-called spin-infinity (classical) anisotropic
Heisenberg model that had the Lenz–Ising model as a special instance. In the notation
of my paper:

H = −
∑

n,m,α

ηα Jσα(n)σα(m). (10)

Here the Latin index stands for lattice sites that are summed over all nearest-neighbor
pairs, while the Greek index stands for the Cartesian components x, y, z. The classical
spin vector of site n, namely, σ(n) = (σx (n), σy(n), σz(n)) has unit magnitude. The
exchange interaction J measures the coupling strength between sites 1 and 2. The
pure numbers ηα are called anisotropy parameters as they describe the anisotropy of
the interaction.

Equation 10 encompasses several different models of those important for critical
phenomena, in particular:

(a) ηx = ηy = ηz = 1 : Classical isotropic Heisenberg model.
(b) ηx = ηy = 0, ηz = 1 : Lenz–Ising model given by Eq. 1.
(c) ηx = ηy = 1, ηz = 0 : The so-called classical x–y model.

However, several other models are not covered by Eq. 10, in particular quantum-
mechanical magnetic models as well as continuum models of gases.

Jasnow and Wortis studied numerically how the values of the exponents γ (for the
susceptibility) and ν1 (for the correlation range, i.e., a measure of the characteristic
decay of disturbances in the system) change on varying the anisotropy parameters.128

First, they changed the Lenz–Ising model (b) to the classical isotropic Heisenberg
model (a) by varying λ = ηx = ηy from 0 to 1 in increments of 0.2 (keeping ηz

constant at 1) and determining γ and ν1 for each step. Second, they applied a similar
procedure to study the change in interpolating between the classical isotropic Heisen-
berg model (a) and the classical x − y model (c). They proposed that three sets of
critical exponents are sufficient to characterize the singularities in their study:

Ising like: γ = 1.23, 2ν1 = 1.25
x − y-like: γ = 1.32, 2ν1 = 1.34
Heisenberg-like: γ = 1.38, 2ν1 = 1.40
Concerning the questions posed, they concluded:

We find three sets of critical indices. The anisotropy parameters can be varied,
altering the dynamical situation, without changing the critical indices, as long as

126 Jasnow and Wortis (1968, p. 740).
127 Ibid.
128 Both the susceptibility and the correlation length were studied at temperatures above the critical tem-
perature. Jasnow and Wortis also studied the specific heat, but were much less confident about these results.
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the ground-state manifold does not change. That is to say, the cases which could
be treated indicated that the interactions matter only insofar as they determine
the symmetry of the order parameter in the ground state.129

Both Griffiths and Kadanoff had published several papers on the Lenz–Ising model
in the 1960s,130 and it is clear from the above that while the Lenz–Ising model was
not the only model among the models that formed the background to the universality
hypothesis, it was a crucial element in the few pieces of the puzzle that led to one
classification of systems exhibiting critical behavior.

What role did the Lenz–Ising model play in Griffiths’s and Kadanoff’s justification
of hypothesis of universality? Kadanoff cited critical data for testing universality as
well as theoretical arguments. Data concerning the equation of state for CO2, xenon,
and helium by Vicentini-Missoni, Levelt-Sengers, Green, Schofield, Lister and Ho
show that for even these diverse materials the parameters are approximately constant.
The theoretical argument was mainly the one from Jasnow and Wortis’s paper, from
which Kadanoff drew the following conclusion:

The symmetries of the ordered state fall into three classes depending upon the
value of λ. Apparently, as the symmetry changes so does the value of the critical
indices, but within each symmetry group, the indices seem to remain constant,
as required by universality.131

Griffiths, in his discussion of the hypothesis, appealed only to theoretical analyses of
lattice models. He mentioned several models and papers, including that of Jasnow and
Wortis. The Lenz–Ising model (and variations of it) took center stage in Griffiths’s
paper: He considered results (mainly of other authors) for the Lenz–Ising model with
interaction energy J that differs in different directions, for the Lenz–Ising model with
next-nearest-neighbor interactions, for the Lenz–Ising model with S > 1/2, that is,
S = 1, 3/2, 2, and for the Lenz–Ising model with interactions not only restricted to
nearest neighbors, but of long range.132

In short, the Lenz–Ising model played a major role in both Kadanoff’s and Grif-
fiths’s justification of the hypothesis of universality as well as in the establishment
of this hypothesis. Its role was constructive in that it helped to establish a common
point of view that could classify phase transitions. However, the explanation of why
such a classification exists had to wait for the renormalization group technique. The
acceptance of the notion of universality provided feedback on the perception of the
Lenz–Ising model. Kadanoff (2009) answer to his own question, “why study a simpli-
fied model like the Ising model?” is typical: The strategy of studying physical questions
by using highly simplified models

129 Jasnow and Wortis (1968, p. 749).
130 These include Griffiths (1964, 1966, 1967a, b) and Kadanoff (1966a, b).
131 Kadanoff (1971, p. 107).
132 In the later case, Griffiths generalized arguments put forward by Nagle and Bonner (1970), who had
studied an one-dimensional Lenz–Ising model with long-range ferromagnetic forces decreasing as r−1−ε,

with r the distance between spins and ε a positive parameter.
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is made rewarding by a characteristic of physical systems called “universality”,
in that many systems may show the very same qualitative features, and some-
times even the same quantitative ones. To study a given qualitative feature, it
often pays to look for the simplest possible example.133

8 Conclusion

A remarkable feature of the development I have described is that the Lenz–Ising model
was put to many disparate uses during less than a decade: the model went from being
applied mainly in a destructive way, i.e., to discredit theories of a function as positive
as well as negative evidence, to more constructive, but hesitant uses to solve specific
tasks, to the culmination in is crucial role in the theory of critical phenomena. The
theory was based on the idea that to understand critical phenomena meant to be able
to elucidate what features of the Hamiltonian led to what kinds of critical behavior.

More remarkably, the theory meant a change in the epistemology of the phenomena,
i.e., in the perception of what a physical theory of phenomena is and should be based
upon. I have noted that Fisher explicitly contrasted the aim of the modern theory of
critical phenomena to the aims of more traditional earlier approaches, and the former
imply a much more systematic approach to critical phenomena. However, the modern
approach also marked a shift of focus away from a discussion of the physical aspects
of the model. Prior to the modern approach, i.e., until the mid-1960s, researchers
focused on the model’s ability to capture the features of empirical data, for instance
by comparing the value of the exponents with real materials, and the extent to which
the models lack of realism was able to explain possible discrepancies. While such
discussions were not completely abandoned in the second half of the decade, they no
longer took center stage. Instead, the focus was on obtaining a more abstract under-
standing of how the overall features of models, for example, its dimensionality, are
responsible for critical behavior.

Furthermore, the modern approach diverged from previous approaches with respect
to what phenomenological features we try to understand. This becomes clear if we com-
pare the view expressed by Michael Fisher with the attitude of Cyril Domb, Fisher’s
mentor and a pioneer in the use of the Lenz–Ising model, in his inaugural lecture about
ten years prior to Fisher’s statement of the modern approach. Domb had given an idea
of what we should attempt to obtain by describing the goal of his endeavors noting
how we can use the knowledge that the theoretical chemist can give us about a water
molecule and how two such molecules interact:

If we could therefore apply the statistical technique to an assembly consisting
of a vast number of water molecules we should be able to account for all the
physical properties of water; we should be able to show that at sufficiently low
temperatures water consists of a crystalline solid at 0˚C. it melts into a liquid,
and that at 100˚C. it vaporises; we should be able to understand all the peculiar-
ities of water, why the solid is lighter than the liquid, and why the liquid has its

133 Kadanoff (2009, p. 784).
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maximum density at a temperature of about 4˚C., and what specific characteristic
of the water molecule gives rise to these almost unique properties. We should
be able to predict the properties of water or ice in regions of pressure and tem-
perature so far inaccessible in the laboratory, but which may be of considerable
astrophysical or geophysical interest and importance.134

This view – that we should aim at detailed predictions – is in marked contrast to the
approaches by Fisher noted above. While Fisher tried to extract the general features of a
range of physical phenomena, Domb had advocated an attitude toward the phenomena
where we should look for much more particular aspects of phenomena. We should, for
instance, predict the values of the phase-transition temperatures. The modern program
is indifferent toward these values; rather, it focuses on the overall features described
by the critical exponents. This, of course, is because the model is somewhat removed
from real systems: a more systematic use of the model necessarily must be somewhat
abstract, because the merits of the model cannot be in close relation to real systems.
The history of the Lenz–Ising model from 1920 to 1970 is thus the story of a model
that went from relative obscurity to a prominent position in understanding critical
phenomena, and how this became possible by a profound change in its epistemology.

Acknowledgment I thank Michael E. Fisher, Leo P. Kadanoff, and Jan V. Stengers for their valuable
comments on a draft of my paper, and Roger H. Stuewer for his careful editorial work on it.
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