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Abstract Historiography has pointed out that the time between the mid 1910s and
the early 1930s can be considered a pivotal period in the history of stellar astrophys-
ics. In those years, scholars like Saha and Eddington first applied atomic physics to
astrophysics. Theoretical astrophysics was born. This led to the development of the
first physically sound models for stellar interiors and atmospheres. These landmark
achievements spurred scholars to elaborate theories for stellar evolutions, and in the
following decades several astrophysicists focused on this problem. The evolutionary
role of red giants turned out to be the main issue. Those stars were initially assumed
to be young ones going through the formation stage, but astrophysicists gradually
realized that they were rather to be considered old, evolved stars. The solution of the
giant stars issue required a couple of decades: it was not until the mid 1950s that a
satisfactory explanation was obtained. This provides a detailed picture of the theories
of stellar evolution from the 1930s to the 1950s and of the solution to the red giants
problem, with special emphasis on how such a solution was made possible by a series
of subsequent steps: the identification of changing chemical composition as a main
evolutionary feature of a star, the inclusion of nuclear physics within the theoretical
framework of stellar astrophysics, the recognition of the importance of inhomogene-
ities that settle within stars as nuclear processes go on.
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204 D. Cenadelli

1 Introduction

The history of stellar astrophysics in the twentieth century is widely dealt with in
historiography. Many works on earlier periods up to the 1920s and the 1930s exist
in the literature, but it appears that the subsequent decades have been less frequently
accounted for. A reason for this is the well-established fact that the time between
the mid 1910s and the early 1930s is a pivotal period in the development of stellar
astrophysics.1 In those years, scholars like Saha, Russell, Fowler, Milne, Jeans and
Eddington first applied atomic physics to the description of both the inner and the
outer regions of the stars. The so-called Quantitative Era of astrophysics2 began, with
the description of the stars’ internal structure, the theoretical explanation of stellar
spectra via the quantum theory, and the determination of the chemical composition
of the stars as its first outcome. In other words, scholars developed the first sound
models for stellar structure. Although these achievements were later subject to further
discussion, revision and improvement, they are still the pillars current astrophysics is
built upon.

These landmark achievements spurred scholars to elaborate theories for stellar evo-
lution: the description of the different features of dwarf and giant stars demanded an
evolutionary interpretation. Several astrophysicists focused on this problem. In par-
ticular, the evolutionary role of red giants turned out to be a thorny issue. Whereas
in the twenties these stars were generally thought to be young bodies in the stage of
formation, in the following decades such a picture was put into question and it became
increasingly clear that giants are rather old, evolved stars. Consequently, the giants
issue appears to be a well-defined problem emerging from the meaningful disconti-
nuity astrophysics experienced in the twenties and the thirties.

1 Historiography has stressed this issue quite extensively. It is commonly recognized that at the time astro-
physics experienced a discontinuity that would lead to a new definition of the discipline itself—with the
onset of theoretical astrophysics—and to the identification of new perspectives and problems. Whether the
term “discontinuity” should be replaced with “revolution” is questionable. I lean towards the former, as I
think that period cannot be labelled as a scientific revolution in the Kuhnian sense (i.e. a whole redefini-
tion of a disciplinary field that gives rise to a completely different perspective). Actually, the main change
astrophysics underwent was the attainment of a sound theoretical basis through its newly created link with
quantum physics. Of course, this was conducive to the rise of new important issues, like the investigation of
both the inner and the outer regions of the stars. By the way, it should be noticed that perspective changes
if the onset of observational astrophysics in the mid-nineteenth century is also taken into account. In fact,
astrophysics as a whole has a revolutionary character indeed. Meadows (Meadows 1984) suggests that
astrophysics can be considered a “revolution” in the sense that it shifted astronomers’ attention elsewhere.
That this field of research opened up new horizons and dramatically changed modern astronomy is hardly
questionable. Among the most interesting works on this subject, see DeVorkin and Kenat (1983a), DeVorkin
and Kenat (1983b), Dingle (1963), Goldberg (1988), Hearnshaw (1986, pp. 208–254), Herrmann (1984,
pp. 115–120), Hoskin (1999, pp. 252–267), Meadows (1984), Menzel (1972), Sitterly (1970), Strömgren
(1972), Tassoul and Tassoul (2004, pp. 96–100).
2 A division of the history of stellar astrophysics into an earlier “Qualitative” and a later “Quantitative Era”
is suggested by DeVorkin and Kenat (1983a). The authors claim they took this suggestion from a previous
paper by Menzel (Menzel 1972). Saha’s first application of atomic physics to stellar spectroscopy in 1920
acts as a watershed between the two eras.
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Solving the Giant Stars Problem 205

This article carries out an in-depth investigation of the giants affair from the post-
Eddington period to the mid-1950s, when scholars devised the first sound model for
giants.

Although such a description might be a bit too schematic, the main steps that drove
scholars from the Eddington era to the first reliable giant stars models can be sum-
marized as follows.3 The first step was the identification of chemical composition as
a major issue in evolution. This followed directly from Eddington’s and Strömgren’s
work about hydrogen abundance in the early thirties. Strömgren himself played a
key role in this task by identifying the ever-changing composition throughout stellar
life as a feature to be accounted for. However, Strömgren only focused on general
changes that affected the whole stellar mass, i.e. he thought that stars could change
their composition while remaining homogeneous at each stage.

Later on, scholars realized they had to describe these changes quantitatively and, to
do that, they needed to turn to nuclear physics, which was growing impressively at the
time.4 This is a major reason why stellar evolution theories from the 1920s and 1930s
were to be totally discarded soon afterwards. They did incorporate modern features
such as the perfect-degenerate gas duality, but they had no links to nuclear processes
theories that were still in their infancy at the time. As we shall see, an understanding of
the evolutionary patterns of stars required a detailed description of nuclear processes,
which would then have to be connected to the laws of stellar structure. During the
twenties, scholars relied solely on atomic physics to penetrate the mysteries of stellar
matter. When nuclear physicists like Bethe and Gamow began to turn their attention to
astrophysics, new perspectives opened and, as a major outcome, the haze that wrapped
up the theories of stellar evolution began to fade.5 It is no surprise that, then, scholars
were still a long way from regarding giants as evolved stars at the time.

A further step forward was made when Chandrasekhar and other scholars argued
that chemical inhomogeneities, rather than a mere changing composition, could occur
within a star as hydrogen burning went on. This led them to investigate ‘composite’
models in which the stellar core and envelope were differently described and suitably
fitted to one another. This turned out to be a good assumption giants could be built
upon.

Finally, between the late 1940s and the mid 1950s, Hoyle, Sandage, Schwarzschild
and collaborators developed models that included a detailed description of chemical
inhomogeneities, as well as other key features like gas degeneracy and core collapse,
and they succeeded in developing the first sound theories of giants.

3 Reference texts that clearly highlight these points are Arny (1990), Tassoul and Tassoul (2004, pp.
133–56), Hufbauer (2006). More generally, this paper was inspired by these works.
4 Although there exists a tight relation between the giants problem and the details of nuclear processes, I
will not probe the latter topic. I will just mention the main results that must be exploited when developing
giant stars models.
5 This consideration by Hufbauer (Hufbauer 2006, p. 203) emphasizes the “breakthrough” role played by
nuclear physics in astrophysics. Such a term is justified by the circumstance that the introduction of nuclear
physics into astrophysics has similarities with the previous, ground-breaking exploitation of the atomic
models. However, such an analogy should not be pushed too far. This issue will be further discusses in this
paper.
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The main contents of this paper will be preceded by two introductory sections:
Sect. 2 lays down a theoretical background of stellar models, whereas Sect. 3 provides
an overview of the theories devised by scholars in a former period. Sections 4–9 are
devoted to the historical issues associated to the giants problem. Finally Sect. 10 draws
some conclusions about the main features of the scientific development process in the
period considered.

2 Theoretical background: basic stellar models

2.1 The basic equations

This section lays down some basic concepts about stellar structure that will be useful
later on in this paper. Those concepts were developed by a number of scholars between
the mid-nineteenth century and the first decades of the twentieth century.

A basic assumption when building a stellar model is that spherical symmetry holds,
i.e. that the star’s features are solely dependent upon the distance r from the centre. This
makes it possible to introduce r as an independent variable such as 0 ≤ r ≤ R, where
R is the stellar radius. Pulsations, rotation and magnetic fields are not considered. A
stellar model aims at describing the internal structure of a star via the calculation of
the values of the state parameters T (r) (temperature), P(r) (pressure), ρ(r ) (density)
and of the quantities M(r) (mass within radius r ) and L(r) (luminosity generated
within radius r ), for any value of r . In the following, L and M will indicate the total
luminosity and mass of the star.

If the star is supposed to be mechanically stable, then the hydrostatic equilibrium
equation holds:

dP(r)

dr
= −G

M(r)

r2 ρ(r) (1)

It should be noticed that Eq. 1 is valid as far as an equilibrium between gravity and
pressure exists. If this is not strictly the case, Eq. 1 can still be assumed valid if a
star passes through subsequent states of quasi-equilibrium, i.e. provided it does not
undergo quick and abrupt stages of contraction or expansion. During stellar evolution
Eq. 1 is usually satisfied.6

Moreover, general considerations allow to introduce a continuity equation for the
mass:

dM(r)

dr
= 4πr2ρ(r) (2)

Consequently, an equation of state for the gas is required. If gas is in perfect-gas
conditions, we have:

P(r) = Pgas(r) + Prad(r) = K N (r)T (r) + 1

3
aT (r)4 (3)

6 Prialnik (2000, p. 72).
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Solving the Giant Stars Problem 207

where Pgas is the pressure due to the gas, Prad is the radiation pressure, N (r) is the
number of particles per unit volume, K is the Boltzmann’s constant (here and hence-
forth, the uppercase “K” will indicate Boltzmann’s constant, the lowercase “k” any
generic constant—see for example Eqs. 3′ and 3′′, and the Greek “κ” the absorption
coefficient —see below in this section).

If the gas is degenerate, then the equation of state is:

P(r) = k1ρ(r)5/3 (3′)

in the non-relativistic case, or:

P(r) = k2ρ(r)4/3 (3′′)

in the relativistic case.
So far, we have three equations in the four quantities P, ρ, T, M , so another one is

required. Hence the need to introduce an energy-generation equation:

dL(r)

dr
= 4πr2ρ(r)ε(r) (4)

where ε(r) is the energy generated per unit time and mass. Equation 4 features two
more unknowns: L(r) and ε(r) itself. The latter ceases to be such if nuclear physics
supplies relations capable to estimate it as a function of temperature, density and chem-
ical composition.7 Once ε(r) is known, a further relation is needed to close the system
of equations. This can be an equation tying T (r) with L(r), i.e. an equation for energy
transport, which is caused by convection or radiation depending on the conditions.
Alternatively, the system of equations can be closed even avoiding the introduction
of Eq. 4, by simply making the useful assumption that there exists a further relation
among the variables P, ρ, T, M . A power-law relation between P and ρ like the one
shown in Eq. 5 is, in some cases, a tenable choice

P(r) = kρ(r)γ . (5)

Equation 5 is called polytropic relation, n = (γ − 1)−1 is called polytropic index
and a stellar model built following this method is called a polytrope.8

7 It is important to point out that the term ε was introduced many years before any actual knowledge about
nuclear processes could provide information about it. This is the case for Eddington’s standard model.
Models like Eddington’s are perfectly reliable notwithstanding this lack of knowledge, provided some
assumptions are made about the probable nature and distribution of the energy-generating processes within
the stars. Eddington and other scholars made such assumptions and worked out stellar models. This issue
will be further discussed later in this section. As we shall see, it is precisely through the term ε(r) that
nuclear physics enters the equations of stellar structure.
8 For a full description of polytropes, see for example Collins (1989, pp. 42–53), Kippenhahn and Weigert
(1990, pp. 174–190) or Prialnik (2000, pp. 74–79).
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It should be noticed that the constant k in (5) is usually a free constant. However, k
may also be fixed, as in the case of a degenerate gas (Eqs. 3′ and 3′′).9 A polytrope is
usually integrated by eliminating P(r) and M(r) from the set of equations to obtain
a differential, second-order equation featuring two dimensionless variables tied to r
and ρ (this is the well-known Lane-Emden equation.)10

The theory of polytropes was first put forth by the American engineer Jonathan H.
Lane and by the German structural engineer August Ritter in the years around 1870–
1880, well ahead of the well-known work carried out by the Swiss physicist Robert
Emden at the beginning of the twentieth century. Lane developed the first model of
a gaseous, self-gravitating sphere in convective equilibrium. As long as convection
is supposed to take place in such a way that the gas cells undergo quasi-adiabatical
changes, Lane’s sphere is well described by a polytrope (see Eq. 20 in Sect. 5). Ritter
in his turn solved the soon-to-be-called Lane–Emden equation for different values of
n (Lane, in turn, had solved it numerically for the values n = 3/2 and n = 5/2). After
expanding and streamlining the work of his predecessors, in 1907 Emden published
the milestone book Gaskugeln, where he numerically integrated the equation named
after him for various values of the index n. This book would grow to become the
reference work about polytropes for many years.11

It should be noticed that no issues associated to energy production and transport are
found in the polytropic case. This has sometimes led to allegations that it might not be
a likely description of any actual star, but this is not the case. For example, the afore-
mentioned perfect-gas sphere, where convection is dominant and a quasi-adiabatic
equilibrium sets up, happens to be a polytrope. Another important case is the one for
which n = ∞. This turns out to be an isothermal sphere—a likely occurrence, as we
shall see, in certain stages of stellar evolution.

2.2 Eddington’s “standard model”

The famous British astrophysicist Arthur S. Eddington developed his “standard model”
of stellar structure based on a star for which the perfect-gas law held and energy trans-
port via radiation was dominant.12 By resorting to the usual expression of gas and radi-
ation pressure, and by introducing the quantity β (defined as the gas-to-total-pressure
ratio), we can write:13

9 The degenerate gas state equation 3′ or 3′′ are in fact polytropic relations, with indexes n = 3/2 and
n = 3, respectively.
10 Collins (1989, p. 45).
11 About these pioneering contributions, see Tassoul and Tassoul (2004, pp. 73–79 and 250–251). As the
authors suggest, the Lane–Emden equation could also be called the Lane–Ritter–Emden equation: “It is
unfortunate that the value of Ritter’s astronomical papers has never been adequately recognized.” (p. 79)
12 Eddington worked out his “standard model” in a number of papers published in the years 1916–1932,
the most important of them being Eddington (1916, 1917, 1924a,b, 1932).
13 Masani (1984, p. 67).
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Solving the Giant Stars Problem 209

P(r) =
[(

K

µH

)4 3

a

1 − β

β4

]1/3

ρ(r)4/3 (6)

where H is the hydrogen mass and µ the mean molecular weight (i.e. the mean mass
per particle in units of H). It is clear that, generally speaking, both µ and β depend
upon r . For the moment, we can neglect any r -dependence for µ.14 If we further
suppose β to be constant, based on the previous equation the star turns out to be a
n = 3 polytrope. In order to assume β as constant, Eddington was forced to make a
questionable assumption. He first introduced a parameter η defined as follows:

L(r)

M(r)
= η · L

M
(7)

In Eddington’s words “[. . .]η varies as the energy liberated per unit mass, averaged
through the part of the star interior to the point considered”.15 It can be demonstrated
that β = const ⇔ ηκ = const,16 where κ is the absorption coefficient. This was defined
by Eddington as “the absorption by a cylinder of unit mass and unit cross-section”.17

Therefore, Eddington supposed that η times κ must be constant anywhere in the
star. Although this assumption was criticized, Eddington felt confident that it would
always be approximately true. In fact, he reckoned that the absorption coefficient was
likely to decrease towards the innermost regions, whereas η was likely to increase as
the energy sources were supposed to be more powerful around the hotter centre of the
star.18

Strictly speaking, the luminosity of a star does not appear in a polytropic model.
However, it is a natural component of any radiative model. Eddington succeeded in
introducing it and showed that it is tied to the absorption coefficient κ through the
expression:19

L = 4πcG(1 − β)M

κη
(8)

14 In other words, we consider a star to be a homogeneous body and we suppose that high (complete)
ionization occurs almost everywhere inside it. The fact that an actual star may be not homogeneous is a
focal point of this paper and will be discussed at length in the following sections.
15 Eddington (1917, p. 599).
16 Prialnik (2000, p. 83).
17 Eddington (1916, p. 18). An equivalent definition for κ by (Smith 1995, p. 247) is “the absorption
cross-section per unit mass”. In other words, κ is given by 1/ρl where l is the mean free path of a photon.
The dimensions of κ are cm2 g−1.

18 This is an example of the problems that the lack of knowledge about the energy-supplying processes
could raise, and of the tentative ways that were sometimes used to bypass them. Moreover, Eddington had
to decide which values to adopt for the product ηκ . After long speculations, he finally went for ηκ = ακc,

where κc is the value of the absorption coefficient at the centre of star and α is a coefficient whose value
depends upon the distribution of the energy sources. Eddington often supposed α = 2.5. For further infor-
mation about the assumptions Eddington made and their acceptability, see Mestel (2004).
19 Eddington (1924a, p. 109).
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210 D. Cenadelli

From Eq. 8 Eddington derived its famous “quartic” equation:20

1 − β = const. × M2µ4β4 (9)

and from (8) and (9) he worked out the mass–luminosity relation.21 To attain this
famous relation, Eddington had to estimate the value of κ and he used Kramers’
photoionization law:22

κ(r) = κ0ρ(r)T (r)−7/2 (10)

where κ0 is a constant that depends upon the constitution of stellar matter.
Eddington actually worked out its value from observational data and this gave rise
to the well-known “opacity discrepancy”.23

As we shall see, the relation expressing the ρ and T -dependence of the absorption
coefficient would become a major concern for scholars in the following years.

2.3 Cowling’s “point-source” model

Polytropes are a tentative, relatively simple technique to deal with stellar structure,
and in some cases they are reliable models. However, simple stellar models can also
be constructed by incorporating luminosity, Eq. 4, without going through Eqs. 7 and 8,
but rather by making other likely assumptions about the distribution of energy sources
within the star, i.e. about the function L(r). In general, from the definition of radiation
pressure and absorption coefficient it is possible to write:

dPrad(r)

dr
= −κ(r)ρ(r)L(r)

4πr2c
(11)

No solution can be derived from Eqs. 1, 2, 3 and 11, as another relation is needed.
This is found in the assumption about energy generation. In 1930 Thomas G. Cowl-
ing developed the so-called point-source model,24 in which the whole of the stellar
energy is generated in the central point: L(r) = L for any value of r from 0 to R. It
follows that L(r) is constant and the system can be closed by choosing an opacity law.
Cowling assumed that κ and µ were constant anywhere in the star25 and introduced a
dimensionless variable u given by u = const.×r−1. He then worked out a conclusive

20 Eddington (1924a, p. 109).
21 Eddington (1924b, p. 310); the mass–luminosity relation is a major topic in literature; see for example
Mestel (2004) and Hufbauer (2006).
22 Eddington (1924b, p. 310).
23 On the opacity discrepancy see DeVorkin and Kenat (1983b) and Cenadelli (2008).
24 Cowling (1930); for further information about this model see also Prialnik (2000, pp. 86–89).
25 Of course, these are very questionable assumptions, and Cowling was perfectly aware of this. He
remarked: “It is not suggested that the model represents physical conditions accurately: but a full dis-
cussion of this model should give insight into the nature of stellar structure.” ( Cowling 1930, p. 92).
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equation that plays the same role as the Lane–Emden equation in the polytropic case
and contains only a function T (u):26

1

T 3

d

dT

{
1

T 3

d

dT

(
T 4 dT

du

)}
= − 1

u4 (12)

Finally, he then integrated this equation numerically.

2.4 Composite models

In the early thirties, Eddington’s work on stellar models fostered further investigation
by other scholars (besides Cowling), notably Edward A. Milne and Bengt Strömgren.
Milne worked out models27 with a constant value for κ. Such models turned out to be
centrally condensed, i.e. with Tc and ρc → ∞ (subscript ‘c’ standing for central). This
led Milne to realize that the perfect-gas law could not hold, and he suggested that such
stars be studied as constituted by two different regions: an outer n = 3 polytrope—as
suggested by the standard model—and an inner n = 3/2 polytrope corresponding to a
state equation like (3′). The idea of the existence of a “stellar nucleus” was rising. Mil-
ne’s paper inspired Strömgren. The Danish astrophysicist postulated that there exists
a stellar nucleus where energy is supplied, surrounded by an inert outer region.28 This
model had some similarities with Cowling’s, but Strömgren removed a very question-
able point. i.e. that κ is constant, and rather assumed Eq. 10 to hold. For the outer
region, he made use of Eqs. 1, 2 and 3, and Eq. 11 that he wrote in the equivalent form:

d

dr

(
1

3
aT 4(r)

)
= − 1

c

κ(r)ρ(r)L(r)

4πr2 ⇒ dT (r)

dr
= − 3

4ac

κ(r) ρ (r)L(r)

4πr2T 3(r)
(13)

that I report here, as it is often written thus. This is the equation of energy transport
for radiation.

Strömgren took reasonable values for κ0 and µ, the latter being equal to 2.229

throughout the whole star: no chemical inhomogeneities were considered. It is a com-
mon feature of all the early models that possible chemical composition variations
within a star are not accounted for. Then he started the numerical integration from the
surface, moving inward with the condition L(r) = L as long as he was in the inert
region. He accounted for the fact that in the innermost region ρT −3/2 could become so
large as to switch to the degenerate-gas case, and thus he had to replace Eq. 3 with 3′.
Then the main issue was to fit two polytropes together, i.e. to use the values of radius,
mass and density at the deepest point of the n = 3 model as boundary conditions

26 Cowling (1930, p. 94).
27 Milne (1930).
28 Strömgren (1931b).
29 At the time scientists had not yet come to the conclusion that hydrogen is very abundant in stars. See
also note 49. On the other hand, Strömgren carefully analysed possible variations of κ0 within the star.
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for the n = 3/2 model.30 The main result Strömgren arrived at was that, if Eq. 10
holds, similar conclusions (as in the κ = const. case) can be drawn about the possible
existence of centrally condensed configurations.

Apart from further details about the method used, it is interesting to notice that
Milne’s and Strömgren’s models highlight some noteworthy issues: the importance
of a full understanding of the nature of the energy-supplying sources as a key point
to construct a physically realistic stellar model, the possible existence of centrally
condensed models, and the idea that a star could be described via different models in
the different zones, to be fitted together at the interface between them.

The fitting of a n = 3 to an n = 3/2 polytrope came back in the limelight a
few years later, when Cowling built up a model with a convective core and a radi-
ative envelope.31 He was investigating the convective and vibrational stability of a
point-source model where energy generation has a strong dependence upon ρ and T .
Cowling found that, with Kramer’s opacity law, convection was supposed to appear
in the central region of a star if the dependence on temperature was higher that the
eighth power. On the other hand, the envelope kept fully radiative. In fact, Cowling’s
point-source model does not—strictly speaking—describe an actual physical situation
due to the infinities it implies. Nevertheless, as we shall see, it is a likely model for
nuclear reactions that possess a strong dependence upon temperature, like the CNO
cycle.32 As Cowling recalls: “Since the pioneer work of Atkinson had already sug-
gested a very rapid increase of energy-generation with temperature, this model was
useful in indicating the properties of real stars”.33

2.5 The problem of fitting polytropes together

As we have seen, even in those early days the idea was emerging that the inner and
the outer regions of a star could be described by different models to be fitted to one
another. It is useful for the fitting process to define the two following quantities U and
V , that are homology-invariant, i.e. two homologous spheres have the same values for
U and V :34

U = dlogM(r)

dlogr
= r

M(r)

dM(r)

dr
= 4πr3ρ(r)

M(r)

V = −dlogP(r)

dlogr
= − r

P(r)

dP(r)

dr
= Gρ(r)M(r)

r P(r)

(14)

30 For completeness, it should be pointed out that, when using this method, Strömgren also relied on
previous works by himself (Strömgren 1931a) and Cowling (Cowling 1931).
31 Cowling (1934, 1935a); see also Cowling (1935b, 1966, pp. 131–132).
32 In the following, I will always speak of “CNO cycle”, whereas in the original papers this nuclear process
is also labelled as “CN cycle”, “carbon cycle” etc.
33 Cowling (1966, p. 131).
34 Kippenhahn and Weigert (1990, p. 200); it should be pointed out that “the derivatives of the logarithm
of any one of the variables with respect to any other logarithm can also be used.” (Cowling 1966, p. 130).
It was Milne who first introduced these homology-independent variables.
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Solving the Giant Stars Problem 213

Such quantities can be used any time homologous models are constructed. This is
the case for polytropes: two polytropes having the same index n are homologous. This
is also the case for the point-source model if κ depends upon ρ and T via a power-law,
and provided radiation pressure is negligible.35

As r varies from 0 to R, U and V vary accordingly and draw a curve in the U–V
plane. It may be useful to discuss a stellar structure in that plane as all homologous
models (e.g. all polytropes of a same index) are described by the same curve. Most
interesting for us are the aforementioned cases in which we have polytropes with
indexes 3/2, 3 and ∞.36 All the corresponding curves have the stellar centre in U = 3
and V = 0, but the n = 3/2 and n = 3 polytropes move towards U → 0 and V → ∞
as long as the star’s surface is approached, whereas the curve spirals around the point
U = 1 and V = 2 in the isothermal sphere case (n = ∞).

As long as polytropes of different indexes are used to describe the inner and the
outer regions of a star, it is convenient to investigate the possibility to fit different
structures on the U–V plane. This, as we shall see, is a key point that scholars will
develop to work out the structure of giant stars. In particular, the polytropic approx-
imation was widely used before the computer age, when the hand-made numerical
integration of the full stellar structure equations was excessively long.

Consider then a star whose core and envelope are described by different models.
At the interface between core and envelope the two solutions must be fitted together.
Here T and P change continuously but this may not be the case for ρ. If subscripts
“c” and “e” stand for “relative to the core solution” or “to the envelope solution”,
respectively, for the perfect-gas law (if radiation pressure is negligible) we have that
at the interface:

ρe

ρc
= µe

µc
(15)

If there is no discontinuity in chemical composition, then we can suppose that,
besides T and P , ρ is continuous at the interface, too. The fit between the two curves
will then occur continuously in the U–V plane. But if a chemical discontinuity is
assumed, then for Eq. 15 ρ passes through a discontinuity, too, and the U–V plane
will display a sudden jump of the kind (Uc, Vc) → (Ue, Ve), where the U - and
V -values are calculated at the core-envelope interface. In other words, the values of
U and V “just inside” and “just outside of” the interface will be different. As both U
and V are directly proportional to ρ, this jump will occur along a straight line through
the origin. Consequently two polytropes can be fitted together by starting at the point
U = 3 and V = 0 and moving along the curve that represents the index n of the
nucleus until the nucleus’ mass is reached, and by subsequently moving (or possibly
jumping) to a curve that has the index n of the envelope and by following it until the
whole stellar mass is reached.37

35 Chandrasekhar (1939, pp. 234–239).
36 The curves corresponding to these cases can be found in Collins (1989, p. 49) and Kippenhahn and
Weigert (1990, p. 201).
37 See for example Fig. 2.3 in Collins (1989, p. 52). Such a process clearly requires fixed boundary con-
ditions, such as the stellar and the core’s mass, or other quantities that determine these ones.
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3 Historical background: a brief synopsis of stellar evolution theories
up to the early 1930s

3.1 Early theories

Stellar evolution theories are as old as the first spectral classifications schemes.38 As
astrophysicists began to identify differences in stellar spectra and to work out relations
between spectra and temperatures, they started to wonder whether, and in what ways,
stars could evolve from one kind to another, possibly by heating up or cooling down in
the process. Towards the end of the nineteenth century, tentative theories interpreted
the temperature sequence as an evolutionary path. Basically, stars were thought to gain
energy in some unknown way and then to cool down, thereby changing colour. The
idea was substantiated by the observation that hot blue stars were typically located in
the neighbourhood of nebular regions, which in turn were suspected to be involved in
stellar formation.

Alternative theories speculated about a possible stage of contraction that heated
up the star’s gas, followed by a cooling phase when contraction stopped. Scholars
consequently assumed that stars might overstep the spectral sequence twice—first in
one direction, then in the opposite one. They guessed that the failure of the perfect
gas law was the phenomenon responsible for the arrested contraction. Such a picture
was quite useful, in that it explained where the star’s thermal energy came from: a
gravitational contraction along the Helmholtz–Kelvin timescale.

3.2 Russell and Eddington on stellar evolution

Further advances were not possible until accurate, quantitative measures of stellar tem-
peratures and luminosities became available, i.e. until the H–R diagram was worked
out and scholars realized the existence of giant and dwarf stars. That the heating-
and-cooling theory turned out to be a very suitable interpretation key for the diagram
itself is indeed noteworthy. Henry N. Russell suggested that the giant branch could
correspond to the perfect-gas contraction stage, and the main sequence to the cooling
one.39 His theory also accounted for such facts as the different masses of different stars.
Russell reckoned that stars of different mass must follow different paths—correspond-
ing to different luminosities— in the giant region:

A large mass of gas will therefore arrive at a higher maximum temperature, upon
reaching its critical density, than a small one. The highest temperatures will be
attained only by the most massive bodies, and all through their career these will
reach any given temperature at a lower density, on the ascent, and return to it at
a higher density, on the descending scale, than a less massive body. They will

38 In this section I will just briefly sketch the evolutionary theories to the 1920s, without dwelling too much
on the details. For further elaboration see for example Sitterly (1970, pp. 357–362), Tassoul and Tassoul
(2004, pp. 84–88), Leverington (1995, pp. 128–129), Celnikier (2006, pp. 69–73).
39 Russell presented this theory in the very same paper in which he published his first diagram in graphical
form (Russell 1914).
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therefore be of much greater luminosity, for the same temperature, than bodies
of small mass if both are rising towards their maximum temperature. On the
descending side the difference will be less conspicuous. Bodies of very small
mass will reach only a low temperature at maximum, which may not be sufficient
to enable them to shine at all.40

Russell’s theory was a pretty natural step to take at the time. Nevertheless, it would
be totally discarded within a few years. Reasons for this lie in Russell’s lack of
knowledge—not so much about the observational features of the stars (masses, lumi-
nosities, temperatures), but rather about their internal structure, chemical composition
and the phenomena involved in their energy supply. Generally speaking, what Russell
really lacked was a theory of matter at the atomic and nuclear level. As time went by
and progress was made in these fields, it became increasingly clear that new theories
were needed.

When Eddington developed the mass–luminosity law, Russell’s theory could not
but be abandoned. In fact, Eddington realized that both the giant and the dwarf stars
are in a perfect gas condition, so no failure of this law actually occurred. Moreover,
the only way to explain the huge difference in luminosity between a giant and a low
main sequence star was to suppose that a star burned out almost its whole mass during
evolution. Unfortunately, no known process was able to account for this. Eddington
mulled over the problem and devised a new possible evolutionary path for a star:41 he
guessed that the main sequence could be identified as a sequence of quasi-equilibrium
structures of different masses, and that any evolutionary path would move almost hor-
izontally through the diagram to account for the little (at most) changes in the star’s
mass. Whatever the yet unknown source of energy capable to fuel a star may be, such
source must be activated when the star reaches the main sequence, be kept active for
as long as the star remains there (allegedly for most of stellar life), to finally become
exhausted and boost the star’s departure from the main sequence. In this respect, the
giant stage could be passed through both before and after the main sequence period.

In 1925, Russell came back to the stellar evolution topic.42 He could avail himself of
the major breakthroughs in atomic physics and stellar structure theory achieved in the
meantime. However, no clear evidence about the nature of the energy-supplying pro-
cesses had emerged yet. Russell was reluctant to abandon the idea of evolution along
the main sequence, so he—driven by Einstein’s mass-energy equivalence principle—
guessed that some kind of matter annihilation must be at work. Although he was not
able to specify anything more about this, he kept thinking that mass loss caused a star
to descend the main sequence during its life. Moreover, the increasing density and
consequently increasing opacity of the stellar gases lowered the surface temperature,
thus enhancing the process.

Russell realized that this did not explain why the main sequence was where it
actually is in the diagram, i.e. why certain luminosities—and not others—correspond
to the different temperatures. Thus, relying on Eddington’s stellar structure model,

40 Russell (1914, p. 285).
41 Eddington (1924b, pp. 325–328).
42 Russell (1925). See also Hufbauer (2006, pp. 207–208).
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he calculated that an inclined line could be obtained in the position of the main sequence
on the diagram by assuming that all stars of different masses had a same central tem-
perature of about 30 million degrees. If—Russell argued—energy supply is enhanced
at these temperatures for some unknown reason, this should explain the existence of
the main sequence. In turn, giant stars corresponded to lower central temperatures.

This theory was, to some extent, a mix between Russell’s former one and Edding-
ton’s: it built on the major achievements of the British astronomer in describing stellar
structure, but it still retained the idea that giant stars are younger (cooler inside) and
that stars descend the main sequence as they burn out their mass.

To explain the relative stability of giants, Russell guessed that they could go through
a stage where a different energy-supplying process settled in. He spoke of “dwarf stuff”
and “giant stuff”, by which he meant the two kinds of matter undergoing energy-
generating processes in the two cases. As we shall see, this idea of two different kinds
of fuels would become very popular again in the following decades.

Russell’s 1925 theory displays a number of modern features. It explains the main
sequence as a sequence of different masses and similar central temperature, and it
argues that the energy output is due to a cause other than gravitational processes.
However, it was to be abandoned when scholars realized that the timescale of evolu-
tion would have to be incredibly long for that to be the case—for example, it would
take the Sun some M�c2/L� ≈ 1011 years to burn out most of its mass. This became
untenable when, around 1930, the first estimates of the lifetime of the Universe yielded
a value around 1010 years.43 It followed that no actual star could have evolved much
and consequently low-mass dwarfs should not exist at all.

3.3 Further developments up to the Thirties

Meanwhile, other astronomers were getting involved in the evolution issue. In the
years around 1920, Harlow Shapley and Robert J. Trumpler carried on important
works on stellar clusters. In 1925 an analysis by Trumpler about stellar types in clus-
ters appeared.44 Trumpler analysed about 50 open clusters and outlined the differences
in their H–R diagrams, noticing how in some cases the whole main sequence (but no
giants) appeared, while in others giants could be found and the main sequence was
cut off above a well-defined brightness. To explain this variety Trumpler guessed that
differences in the initial mass of the clusters could play a role, thus implying that it
was not possible to figure out a definite evolutionary line among the different kinds.
But, more importantly for us, he pointed out how “we are led to the conclusion that
the open clusters are already of considerable age; otherwise we would not find the
dwarf branch so well formed in all cases, nor could we explain the general scarcity
or total absence of yellow and red giant stars”.45 This conclusion is essentially the
opposite of what we know today. The idea to rely on clusters as ideal laboratories was
retrieved a decade later by Gerard P. Kuiper, who speculated that clusters could be

43 Hufbauer (2006, pp. 210–211).
44 Trumpler (1925). On Trumpler’s contributions, see also Tassoul and Tassoul (2004, p. 112).
45 Trumpler (1925, pp. 317–318).
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groups of stars of different hydrogen abundance.46 Kuiper came to this conclusion as
he observed that the curves representing clusters in the H–R diagram were similar to
curves of different hydrogen contents Strömgren had worked out in 1933.47 As for
the evolutionary role of giants, Trumpler and Kuiper remained faithful to the most
popular ideas of their times. Strömgren, however, would make a real step forward and
would play a key role in the evolutionary theories of the thirties. His contribution is
described in detail in the next section.

4 The influence of chemical composition upon evolution

4.1 Strömgren on the influence of changing chemical composition upon evolution

If we consider the scenario of stellar evolution theories around 1930, we notice how,
all in all, the idea of a varying chemical composition in stars was barely taken into
account. This was natural to some extent, as only in the years 1929–1932 did scholars
become aware of the great abundance of hydrogen. In 1929, Russell reckoned that stars
must be mainly made of hydrogen,48 and in 1932 both Strömgren and Eddington fig-
ured out that stellar models matched real stars only if a great hydrogen abundance was
taken into account.49 As they focused on it, astrophysicists began to wonder whether
chemical composition had to play a role in evolution. The well-known Vogt–Russell
theorem fostered this idea. This theorem states that under proper, reasonable assump-
tions50 the structure of a star is entirely determined by its mass and composition to such
an extent that stars of different masses but with the same chemical composition must
lie along a continuous curve in the H–R diagram. This seemed to be a promising way
to explain the main sequence and, possibly, giants as stars of different composition.

It was Strömgren who tackled this issue.51 His starting points were the Vogt–Russell
theorem on one side, and the ascertained influence of the hydrogen content upon the
equilibrium structure of a star on the other. Instead of starting from a theoretical
estimate of the hydrogen content to work out observable stellar features, Strömgren
reversed the method. He began from known radii, masses and luminosities of stars
to figure out their hydrogen content. He adopted a stellar composition made up of

46 Kuiper (1937).
47 Strömgren (1933).
48 Russell (1929).
49 Strömgren (1932) and Eddington (1932). While Russell assumed that hydrogen must be much more
abundant than any other element, Strömgren’s and Eddington’s calculations pointed out that percentages
around 30 and 99 were both suitable. They opted for the lower value just because they deemed it to be less
extreme. In the following decades scholars realized that the higher values was indeed much closer to truth.
The recognition of the influence of hydrogen content upon the stellar structure is a major step in the history
of astrophysics. See for example DeVorkin and Kenat (1983b) and Cenadelli (2008).
50 Namely, that “the compressibility, the opacity and the energy generation of an arbitrary volume element
of the star depend only on its temperature, its density and its chemical constitution.” (words by Strömgren,
see Strömgren (1933), p. 239).
51 Strömgren (1933).
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hydrogen plus a “Russell mixture”52 of other elements, and attempted to work out
the abundances of these two components. Both Russell, and Strömgren after him,
considered helium absent.

The mean molecular weight, i.e. the parameter through which chemical composition
appears in stellar structure equations, strongly depends upon the hydrogen abundance
but is almost insensitive to the exact proportion of other elements in the mixture. This
means that, at least as a first estimate, specifying how much hydrogen and how much
other stuff is present is enough. Strömgren used the “standard model” as a basis, took
into consideration both photon absorption and scattering as sources of opacity, and
came to the significant conclusion that stars with the same mass but different radius
must differ in hydrogen content. He stated:

Comparing stars of equal mass but of appreciably unequal radius, we see that
generally the hydrogen contents differ appreciably. Let us consider for instance
Algol A and Capella A. The masses are about equal. Algol A is a B8-star with
comparatively small radius, while Capella is a G0-star of comparatively large
radius. Algol A according to our calculations contains 53% hydrogen, while
Capella A contains only 30%. This difference in hydrogen content implies a dif-
ference in the structure which may well influence the subatomic energy-sources
in such a way that the equilibrium configurations have quite different radii. […]
Quite generally we see that for stars of the same mass the hydrogen content
diminishes with increasing radius.53

In fact, Strömgren’s hydrogen content estimates are too low for both stars, but they
are still noteworthy for that time. Strömgren worked out the hydrogen content of stars
of different masses and radii. Secondly, he calculated their luminosities from the stellar
structure equations, and finally their surface temperature via the Stefan–Boltzmann
law. This allowed him to depict the curves corresponding to different hydrogen con-
tents on a H–R diagram, with hydrogen-depleted stars lying high up and to the right
(Fig. 1).54

Strömgren discussed the evolutionary implications of his work. Starting from the
idea that a star could evolve following changes to both its hydrogen content and mass,
he noticed that two different time scales could be devised for those changes—a shorter
one that he called “intermediate time-scale” for hydrogen content, and a longer one
that he called “long time-scale” for mass. Strömgren gave a satisfactory answer to the
problem of the very long evolutionary time of stars that had bothered Russell, when
he observed:

52 This was the name given to the mixture of elements other than hydrogen, with the abundances that
Russell had calculated in (1929).
53 Strömgren (1933, pp. 239–240).
54 As pointed out by Tassoul and Tassoul (2004, pp. 112–113), a basic reason for this can be found in
Eddington’s mass–luminosity relation, that is actually a M– L–µ–Teff relation. At fixed M , it is possible
to trace curves in a Teff –L plane for several µ-values. A decrease in hydrogen content triggers a boost in µ

and, due to the positive (and large) exponent of the term µ in the aforementioned relation, this causes—for
a fixed Teff —a strong increase in L , i.e. a moderate increase in radius.
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Fig. 1 The continuous lines in this H–R diagram correspond to equal hydrogen content (values are indi-
cated as fractions of the total mass); the dotted lines correspond to equal mass and varying hydrogen content
and are possible evolutionary trends. An evolutionary trend towards larger radii emerges, apart in the region
of B stars where superpositions between different curves occur (from Strömgren 1933, p. 244). Reprinted
with kind permission of the Springer Science and Business Media

The hydrogen content may change during times of the order of the intermediate
time-scale. Times of the order of the long time-scale must elapse before the mass
changes appreciably. One would therefore expect that the tracks of evolution in
the H.-R.-diagram are the lines of constant mass. One would further expect that
the hydrogen content decreases, so that the stars expand.
Perhaps the simplest hypothesis that can be made is that the stars start as pure-
hydrogen stars in which, in the course of time, hydrogen is transformed to
complex elements, the energy radiated away in the successive equilibrium con-
figurations being equal to the energy set free by the transformation. On this
hypothesis the rate at which hydrogen is used up is given by the luminosity, and
the course of evolution can be followed.55

4.2 The helium issue

In those same years, Strömgren had also dealt with the helium issue.56 Helium was
not a major problem at first for astrophysicists, as its spectral lines are only visible
in the hottest stars. Russell disregarded this element in (1929), when determining the
“Russell mixture” Strömgren referred to. On the other hand, its presence in stellar
interiors does not significantly affect mean molecular weight and thus it was not a

55 Strömgren (1933, p. 247).
56 Strömgren (1938). For further information about this, and more generally about Strömgren’s scientific
personality and the tight relationship between his interests in stellar structure and spectroscopy, see also
Rebsdorf (2007).
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great concern for Eddington or Strömgren himself when working on the inner com-
position of stars. Nevertheless, as we shall see in the following sections, by the end
of the 1930s knowledge about stellar energy-generating processes had improved con-
siderably, and the role of helium had been clearly pointed out. This fostered interest
in the astrophysical role of this element.

Strömgren made explicit reference to this when tackling the helium problem. He
noticed that it was necessary to account for helium in stellar interiors and to possibly
work out its abundance through independent methods, to compare it to the theoretical
predictions based on nuclear processes. Strömgren decided to carry on an analysis
based upon the laws of stellar structure, in the same way he had done for hydrogen.

Let us call the abundance of hydrogen (fraction of total mass) X , the abundance of
helium Y , and the abundance of other (heavier) elements Z . If we consider a gas solely
made of hydrogen plus other stuff, i.e. if no helium is present (Y = 0), Strömgren
observed that we have:

X + Z = 1

µ−1 = 2X + 1

2
Z

(16)

while in the actual case Y 	= 0 we have:

X + Y + Z = 1

µ−1 = 2X + 3

4
Y + 1

2
Z

(17)

Both Eqs. 16 and 17 hold if we suppose that a very high (total) degree of ionization
is present, as does the second equation in (17) if Z is supposed to be 
1. In the former
case there is but one degree of freedom, namely the parameter µ that is derived from
the mass–luminosity law applied to stars of known mass, luminosity and radius. In
the latter case one further assumption is needed to solve the system. By exploiting the
mass–luminosity relation and the hypotheses that Z 
 X and Z 
 Y ,57 Strömgren
succeeded in determining X, Y and Z for several stars suitably distributed in the H–R
diagram.

He commented that the hydrogen abundance—which turned out to be between
0.79 and 0.19 for the different stars—was not very much affected by the hypothesis of
helium presence. This is natural, as Y and Z have a similar coefficient in the second
equation of (17), i.e. helium contributes to the mean molecular weight in a way that is
similar to heavy elements and much more different from hydrogen. Helium abundance
turned out to be between 0.19 and 0.74—larger where hydrogen’s was smaller, and
vice versa. Heavy elements were always around a few percentage points. Although
the helium abundance Strömgren deduced is admittedly tentative, his attempts show

57 The hypothesis that helium is much more abundant than the heavy elements was deduced by Strömgren
from considerations about nuclear reactions (see Strömgren 1938, pp. 520–521).
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that hydrogen and helium are supposedly to be considered the main components of
stars.58

4.3 A focus shift from mass to chemical composition

Strömgren’s work is an early attempt to incorporate chemical composition changes
into evolutionary models. Even if they were to be abandoned later on, his conclusions
about hydrogen percentage had the merit to shift attention from mass to chemical
composition changes when studying the evolutionary path of a star. Moreover, this
was also the first time when the giant stage was reckoned to be a possible later stage
in star evolution. This turned out to be a seminal issue in the following years, when
scholars began to inquire into the role of changing chemical composition. On the
other hand, at that time Strömgren could not but rely on the theoretical background
constituted by Eddington’s “standard model” and coeval theories (including his own).
This means that his results were subject to some degree of speculation about the pos-
sible distribution of energy sources within a star. When faced with the need to make a
decision, Strömgren adopted the “standard model” as a basis to elaborate upon.59 To
some extent, Strömgren pushed the speculations of the pre-nuclear era to their limit,
but his achievements—remarkable as they are—cannot go beyond these limits and
rather point out how a precise, quantitative description of such terms as ε and η was
growing necessary.60

However, it is important to underline a meaningful fact: speaking of a changing
chemical composition in a star as a whole is one thing, and speaking of changes
occurring within a star (i.e. chemical inhomogeneities) is another. As we shall see
in the sections below, this turned out to be a crucial point in the following decades.
Strömgren focused only on the former case. According to him, stars evolved as long
as their overall composition changed.

5 The inclusion of nuclear reactions into stellar evolution theories

5.1 A major advance: nuclear physics and the stars

During the 1930s, focus shifted to the topic of energy generation in stars. This issue
was beginning to get sound answers, but in stellar models the new achievements about

58 It should be noticed, though, that the same conclusion was reached by Cecilia Payne in 1925, although
it was called into question and thought to be spurious at the time. About this latter issue see Hearnshaw
(1986, pp. 229–231) and DeVorkin and Kenat (1983a, pp. 124–127).
59 Following Eddington, he opted for a model in which the concentration of the sources towards the centre
corresponded to α = 2.5. See also note 18.
60 As the main flaws of the Danish astronomer, Sitterly points out (Sitterly 1970, pp. 364–365) the fact
that he relied on the standard model and did not account for other models (such as Cowling’s, that had
become available in the meantime); also, that he did not develop a real theory of evolution, although he
gave important indications. Those underlined by Sitterly are real “flaws”, as they were fully within reach in
those years. On the other hand, the limits I previously pointed out as typically found in Strömgren’s theories
are— quite literally—natural “limits” for the time, i.e. they cannot be attributed to Strömgren but rather to
the current lack of knowledge about crucial topics (e.g. nuclear reactions).
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nuclear reactions had not found any application yet. Stellar astrophysics was due to
slip into a dead-end street if no details about the energy-supplying processes could be
provided, as no further understanding of stellar structure and evolution would be pos-
sible in that case. In the same way as the impressive growth of stellar astrophysics in
the twenties was made possible by atomic physics, nuclear physics could yield major
breakthroughs as well. As for the evolutionary role of giant stars, nuclear reactions
provided the reason why—and the ways through which—stars’ composition changed
over time.

The problem was first tackled by George Gamow, who focused on the details of
nuclear processes when describing stellar structures. It is no mere coincidence that
this scientist was skilled in both nuclear physics and astrophysics. Gamow worked out
new stellar models that—although based upon simplified assumptions—gave remark-
able results and paved the way for subsequent, more reliable theories. In this sense,
Gamow’s work really throws a bridge from nuclear physics to astrophysics—in a
way somehow similar to what Saha had done a couple of decades before, when he
linked atomic physics to stellar spectroscopy. Nuclear physics was at the forefront of
theoretical physics research in the thirties, just like atomic physics had been in the
previous 20 years. This analogy cannot be pushed too far, though. Saha’s theory had
been awaited for a long time and really constituted a discontinuity, as long as it pointed
out that there exists a tight connection between atoms and stars. This achievement was
epitomized better than elsewhere by Eddington’s famous statement: “The road to a
knowledge of the stars leads through the atom, and important knowledge of the atom
has been reached through the stars”.61 Eddington’s words have a meaning that goes
beyond any distinction between atomic and nuclear physics. They rather stress the
way a new field of investigation—theoretical astrophysics—was born. On the other
hand, we can rather figure out Gamow’s contributions as major steps in a process that
was still going on.

5.2 Gamow’s simplified stellar models

Gamow retained the hypothesis that stars remain in an overall homogeneous state at
each evolutionary stage, although their composition changes in time. His assumptions
may be summarized as follows:

(1) Stars evolve as hydrogen is burnt into helium; all the hydrogen in a star will
undergo this process;

(2) As evolution goes by, any stars goes through different, slowly varying equilibrium
conditions that are homologous.

As long as details about nuclear reactions became available, scholars could decide
whether to lean towards one stellar model or the other more consciously than ever
before. For example, a “point-source” model, i.e. a model in which stellar energy is
produced in a very small region at the centre of the star (this is Cowling’s case), is
a suitable choice for any energy-generation process that is strongly dependent upon

61 Eddington (1927, p. 10).

123



Solving the Giant Stars Problem 223

temperature. On the other hand, if that dependence is not so steep, a model with energy
sources distributed throughout a wider zone is more suitable.

Gamow considered both a “point-source” and a “shell-source” model, the latter
being a model in which energy is generated in a shell surrounding an inert core. The
former case is a good description if barrier penetration is at work—an exponential
dependence is expected in this case—whereas the latter applies if there happens to be
some nuclear resonance. If this is the case, once the resonance temperature is reached
the nuclear reactions start and, as time goes by, they migrate towards the outer regions
as the fuel in the inner is exhausted. Over time, the resonance temperature is reached
at larger and larger radii. This is a suitable model to describe an isothermal, exhausted
core surrounded by a thin shell of burning hydrogen.62

In other words, Gamow pointed out how the exact location of the energy-supplying
processes within a star had a strong influence upon its evolutionary pattern.

Gamow started from the standard equations:63

dP(r)

dr
= −G M(r)ρ(r)

r2

dM(r)

dr
= 4πr2ρ(r)

P(r) = Kρ(r)T (r)

βµH
(18)

Prad(r) = P(r)(1 − β)

dL(r)

dr
= 4πr2ρ(r)ε(r)

(where all symbols have their usual meaning).
Moreover, Gamow adopted Kramer’s Law for opacity (Eq. 10). To these equations,

we must add an equation for energy transport. If radiative equilibrium settles in, it is
Eq. 13. However, if convective equilibrium arises, Eq. 13 must be replaced by:

dT (r)

dr
= −γ − 1

γ

µHG

K

M(r)

r2 (19)

where γ is the ratio of the specific heats in the gas cp/cv . Equation 19 holds as long
as the convective cells are supposed to undergo quasi-adiabatical changes. Coupling
it with the perfect gas law, it follows that:

62 This is a likely occurrence in certain stages of stellar evolution. In fact, once the core-burning processes
stop, if the core does not undergo abrupt stages of contraction and keeps an overall hydrostatic equilibrium,
we have ε ≈ 0 and, as dL/dr ≈ ε, L = const. As the central luminosity is zero, we have L ≈ 0 throughout
the core. This prevents any major energy flow outside the core—at least in first approximation—so that
hydrostatic equilibrium can be maintained without any need for a contraction. Moreover, as dT /dr ≈ L ,
we have that T = const., i.e. the core is isothermal. Obviously enough, perfect isothermality must be seen
as an idealization, because a slow gravitational contraction can settle it. But the energy production rate can
be low enough not to remove the condition ε ≈ 0 in any significant way. See Beech (1988, p. 219).
63 Gamow (1938a).
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P ∝ ργ ∝ T
γ

γ−1 (20)

Gamow first considered a point-source model, for which the last of Eq. 18 must
be replaced by L(r) = L = F(ρ0, T0) for any value of r (ρ0 and T0 are the central
values of ρ and T and F is an appropriate function of such values). In this case,
from Eq. 13 it follows that dT /dr increases indefinitely as r approaches 0, as long as
other r -dependent quantities are expected to remain finite and 	= 0. Consequently, as
r diminishes and we approach the innermost region of the star, at a certain radius R∗
a superadiabatic gradient is reached and convection settles in. Thus, energy transport
occurs by convection within this radius and by radiation outside of it, in such a way
that Eq. 19 holds for r < R∗ and Eq. 13 for r > R∗.

These equations allow a calculation of the stellar model, once the constant κ0 and
the function F(ρ0, T0) are known, and a value for M is chosen. This means that for
a given mass and chemical constitution everything is fixed, as chemical constitution
determines both κ0 and F . Of course, the way in which it determines F should be
explained: this is the main issue in Gamow’s paper, as thermonuclear reactions actu-
ally enter the model through F . Incidentally, we may notice that the idea to start
from mass and composition and to work out R and L is a direct consequence of the
possibility to describe the energy-generating processes. Before that became possible,
it was rather a matter of taking L and R from observation, hence, introducing surface
conditions in stellar models.64

Gamow threw into the fray the newly discovered properties of nuclear reactions.65

As far as it was known, at the temperatures typical of stellar interiors only reactions
between very light nuclei were expected to occur, with hydrogen fusion being the
most important of them. Therefore, Gamow considered the possible ways in which
hydrogen could undergo fusion and concluded that, in the case of a “Russell mix-
ture” composition, “the disappearance of 9 units of mass of hydrogen will lead to the
formation of 8 units of mass of helium and 1 unit of mass of heavier elements”.66

Then Gamow focused on how hydrogen could be transformed into helium and on the
resulting dependence of ε upon T , ρ and chemical composition. He accounted both
for the case in which the reaction was made possible by barrier penetration, and the
case in which there was some resonance at stellar thermal energies, and he worked
out two possible expressions for ε.

In the former case (point-source), nuclear physics suggested how a changing chem-
ical composition could affect the values of F and κ0. All luminosity is produced in a
small volume ω around the centre and it can be expressed as follows:

L ≈ ερ0ω ≈ X (1 − X)ρ2
0 T n

0 (21)

where X is as usual the hydrogen abundance and n has a suitable value, rather approx-
imately estimated to be ∼7.

64 About this, see for example Hoyle and Lyttleton (1942a, p. 177).
65 Gamow relied (see Gamow 1938a, p. 598) on Atkinson and Houtermans (1929).
66 Gamow (1938a, p. 599).
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From this starting point, Gamow engaged in the calculations of stellar models for
different values of X and M . Fixing a value of M , he calculated the expected variation
in L and Teff caused by a given variation in X , i.e. in µ. Then, the role of X and
M was reversed, and Gamow investigated the behaviour of stars of different masses
when X was fixed. What is most important, he exploited the hypothesis that homology
relation should hold, i.e he worked out the expected variations in L and Teff triggered
by changes in X (or M) through homology relations.

As for the case of variable X ,67 once the functions L(X) and Teff(X) are devised,
it is possible to work out a track on the H–R diagram corresponding to a changing X
value. Gamow found:

dLogL(X)

dLogT (X)
≈ 5 (22)

except for small values of X , where the value changes to 0.8. The value 5 is the approx-
imate value along the main sequence, so that stars turned out to evolve along the main
sequence as they burned out their hydrogen.

On the other hand, in the case of a constant X68 and a variable mass, Gamow
worked out an expression for dlogL/dlogM . The expression showed that stars of
growing masses are placed in the top-left portion of the H–R diagram, as it happens
along the main sequence.

Such results were plotted in Fig. 2
As for the evolutionary tracks at changing values of X , the conclusions are, in

Gamow’s own words, “extremely unsatisfactory”.69 They are, of course. Gamow con-
cluded that: “It seems that the real behaviour of stars cannot be interpreted in terms of
ordinary thermonuclear sources of energy”,70 and that this was possibly an indication
that resonance temperature effects, rather than barrier penetration, were at work.

A posteriori, it is clear what is wrong in Gamow’ model—not the barrier pene-
tration, but rather the homology hypothesis. Gamow did not realize that he had put
forward the idea that main sequence and giant stars are not homologous. As it was
discovered later, a red giant’s overall structure is very different from that of a main
sequence star.

On the other hand, the conclusion Gamow arrived at in the X = const. case is a
satisfactory explanation of the main sequence. More specifically, for main sequence
stars of different masses the homology conditions apply much more closely than in
the dwarfs-giants case.

In an effort to find a better explanation for evolution at decreasing values of X ,
Gamow was forced to assume that a resonance temperature did indeed exist, to make a

67 Gamow observed that, once a value for a stellar mass is chosen, any mass variations during stellar life
are to be considered negligible (as nuclear reaction theories of the time discarded any former belief about
matter annihilation within stars), and that the actual mass defect is almost null.
68 As for the value of X , Gamow kept faithful to the commonly adopted value of 0.35. See also note 49.
69 Gamow (1938a, p. 603). See also Gamow (1938b) on this.
70 Gamow (1938a, p. 603).
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Fig. 2 The heavy lines are
evolutionary tracks for stars of
masses 0.5, 1 and 2 in respect to
the Sun (adjusted so that the
curve for mass 1 matches the
position of the Sun at X = 0.35);
the full line that crosses the
diagram from bottom right to top
left (labelled by X = const.) is
the line corresponding to
different M values at the fixed
value X = 0.35: it represents the
main sequence (from Gamow
1938a, p. 603). Reprinted with
kind permission of the American
Physical Society

shell-source model tenable, as we previously hinted.71 In such a model, an isothermal
core is surrounded by a shell where hydrogen burning goes on, then by a convective
region and finally by a radiative envelope. Gamow did not tackle the full calculations
in this case, but he performed a preliminary analysis that led him to conclude that in
this case a slow increase in L and a slow decrease of R (accompanied by an increase
in Teff) were likely to take place. So the following picture of stellar evolution could
be figured out: a star begins its life as a large contracting body whose central temper-
ature is far below the resonance value. As times goes by, the star approaches the main
sequence from the right side and can be described via a point-source model. When
the resonance temperature is reached, the hydrogen-burning shell settles in. The star
remains on the main sequence and its luminosity barely changes at all. When the
hydrogen is exhausted, the star moves towards the white dwarf stage. At the end of
the day, giant stars are young ones again.

71 Gamow (1938a, pp. 603–604), see also Gamow (1938b).

123



Solving the Giant Stars Problem 227

5.3 Further progress in nuclear physics and its incorporation into stellar models

Later on, Gamow learnt about a recent discovery by Hans A. Bethe and Charles
L. Critchfield—namely that the energy in main sequence stars was very likely supplied
by p–p collisions, a process that does not actually show any resonance temperature.
Although yielding a better estimate for the exponent n(n ≈ 3.5) in formula (21),72

however, this implied only minor changes in the evolutionary path.
In the meantime, von Weizsäcker and Bethe described the CNO cycle. Gamow

immediately applied this achievement to his description of stars.73 Both Bethe and
Gamow himself74 had suggested that in stars as massive as the Sun, whose central
temperature was assessed to be ≈ 2×107◦C, the CNO cycle could be overriding, while
in low-mass stars the p–p process must be dominant. Utilizing an improved version
of Kramers’ formula for opacity (namely κ = κ0 ρ0.5 T −2.75) and leaving n undeter-
mined to account for the two possible processes going on, Gamow again worked out
evolutionary relations via homology transformations. The resulting evolutionary path
was thus depicted in a R–L plane (see Fig. 3). When X becomes very small, both µ

and κ0 become independent from it and the evolutionary relations assume the simple
form:

L ∝ X− 1.25
n+1.75

R ∝ X
1

n+1.75

}
⇒ L ∝ R−5/4 (23)

If a shell-source model is considered, a further analysis by Gamow together with
Critchfield pointed out that no striking changes from this pattern could be expected.75

Still, red giants are a problem. Main sequence stars do not evolve towards their
region. In other words, Gamow’s model does not explain why a giant star should be
brighter—if a strong temperature dependence is assumed for nuclear processes—as
the idea that a main sequence and a giant star should be homologous implies that giants
should be colder inside:

In fact, because of comparatively low temperatures and densities in the central
regions of these stars (T0 ≈ 1 × 106 ◦C, ρ0 ≈ 0.001) the rate of the carbon-
nitrogen reaction will be negligibly small, and cannot account for the observed
high luminosities.76

Hence, Gamow was forced to speculate whether other nuclear processes, possibly
due to light nuclei like Li, Be or B, could settle in before the main sequence was
reached.77

72 Gamow (1938c). Reference to Bethe’s and Critchfield’s work is at p. 907.
73 Gamow (1939b). Reference to Bethe is provided at p. 720. On this work by Bethe, see also Gingerich
and Lang (1979, pp. 321–337).
74 Gamow (1939a).
75 Critchfield and Gamow (1939).
76 Gamow (1939b, p. 724).
77 See also Gamow and Teller (1939) on this. As we can see, Russell’s old idea of a “dwarf stuff” and a
“giant stuff” is here retrieved.
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Fig. 3 Evolutionary path on the R–L plane. The dotted line matches the Sun’s position when crossing the
main sequence. In its upper part, where X becomes small enough, it follows Eq. 23 (figure rehashed from
Gamow 1939b, p. 721). Reprinted with kind permission of the American Physical Society

A few years later, Schönberg and Chandrasekhar were to point out the main flaw
of Gamow’s approach:

The assumption that the successive equilibrium configurations are homologous
cannot be expected to be rigorously valid; for the nuclear reaction reduces the
hydrogen content in the neighbourhood of the centre of the star, and therefore
the molecular weight in this region becomes increasingly larger than that of the
rest of the stellar material […]78

If we want to summarize Gamow’s contributions till the end of the thirties, we
can observe that his achievements, together with the work by other scholars like von
Weizsäcker and Bethe, led to a sound description of the H→He process, and to a
satisfactory understanding of main sequence stars. Gamow pointed out how the main
sequence could be explained like a collection of stars of different mass and equal chem-
ical composition, in turn fuelled by the CNO cycle or the p–p process.79 But when
the evolution following hydrogen depletion was investigated, a number of problems
arose: a satisfactory understanding of giants was still lacking.

This clarifies the pros and cons of Gamow’s theory. It has the merit to search the
evolutionary patterns for stars in a detailed description of nuclear processes, rather
than adding an undefined parameter ε as was the case before. At first, Gamow just
claimed a process of hydrogen fusion must take place, but did not give any details
about it. Later, as details became available, he carefully included them in a theory of

78 Schönberg and Chandrasekhar (1942, p. 161).
79 Gamow (1939c); Gamow incorrectly thought the Sun to be mainly powered by the CNO cycle, but this
is not relevant to our discussion. On the other hand, he correctly recognized that the p–p process must be
overriding in lighter stars.
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stellar evolution. After Gamow’s work, it became clear that no evolutionary theory
could disregard a full description of nuclear processes.

As for the cons, Gamow focused only on a changing chemical composition that
affected the star as a whole, rather than investigating the possible role played by chem-
ical inhomogeneities that settle in within the star. This caused his attention to shift
towards homologous states that are not correct in this case. However, Gamow’s inves-
tigations paved the way for further steps towards the first reliable pictures of giant
stars.

6 Early attempts to embed chemical inhomogeneities into stellar models

6.1 Öpik’s pioneering work

It sometimes happens that remarkable work is published in inaccessible places and
there it lies, almost unknown to coeval scholars. It is well known that this was the case
for the first announcement of the relationship between star colour and brightness, made
by Hertzsprung in 1905. The same happened with a work by Öpik on stellar evolution,
that appeared in the Publications de l’Observatoire Astronomique de l’Universite’ de
Tartu,80 in Estonia in 1939 and proved to be a crucial contribution to the solution of
the giants issue.

Öpik admitted that “our discussion is but qualitative; a more definite picture can be
obtained only with the aid of laborious calculations”.81 Nevertheless, his conclusions
proved to have striking insight, in that he observed that a star for which mixing is very
effective (i.e. a fully convective star), is expected to remain in the main sequence stage
for its whole lifetime. However, if such mixing does not occur, hydrogen burning and
exhaustion will cause the star to develop a composite structure that will drive it to a
completely different stage. The nucleus will then begin to contract in the Helmholtz–
Kelvin timescale. As for the envelope:

Outside the nucleus the material is not exhausted; with the progress of the central
condensation the temperature of the shell adjacent to the nucleus rises, and sub-
atomic energy is released in an intermediate shell; the rapid increase of energy
generation with increasing temperature and density in the intermediate shell pre-
vents it and the rest of the star from being drawn into the overdense nucleus; on
the contrary, if the outmost shell is in radiative equilibrium […] it is forced to
expand, and a giant star is formed.82

The main argument in favour of expansion was that a radiative envelope was unable
to carry all of the energy flow from the star’s interior. Consequently, structural changes
were to be expected.

In other words, Öpik explained giants by developing a model consisting of three
different zones, a decade before models of this kind became customary. In the inner-

80 Öpik (1939); On Öpik’s contribution, see also Gingerich and Lang (1979, pp. 342–348).
81 Öpik (1939, p. 70).
82 Öpik (1939, p. 64).
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most part we find a superdense, hydrogen-depleted, convective core collapsing under
gravity. Then we have an intermediate, convective shell surrounding the core, where
hydrogen is converted into helium. This nuclear process takes place at an acceler-
ated rate due to the very high temperature triggered by the core collapse. Finally, the
enclosing, radiative envelope is inert, hydrogen-rich and very extended, since it has to
radiate all the energy produced by the star.

Öpik pointed out that Russell’s idea of a “giant stuff” could be discarded: no exotic
processes were at work in the build-up of a giant star. Such a star is fuelled by grav-
itational collapse and hydrogen burning in a shell outside the nucleus. The relative
paucity of red giants can be explained by admitting that they burn up all available
energy sources very quickly, as their huge brightness testifies.

The importance of Öpik’s work has been emphasized in the literature.83 On the
one side, he made tentative speculations and proved to possess deep physical insight,
more than the ability to make detailed calculations. However, his conclusions relied
on sound, basic physical consideration. In particular, he underlined the role played by
a discontinuity of µ, as well as the fact that evolution was not expected to go across
homologous states.

6.2 Hoyle and Lyttleton: a first attempt to recover Öpik’s work

At the beginning of the 1940s, it was Fred Hoyle’s and Raymond A. Lyttleton’s turn
to give interesting contributions. First, they stressed the importance of details about
nuclear processes in a paper entitled “On the internal constitution of the stars”, pub-
lished in the Monthly Notices of the Royal Astronomical Society.84 Hoyle and Lyttleton
showed once more that if a strong temperature dependence for ε is advocated, then a
structure composed of a convective core and a radiative envelope should be expected.
Holding on to the hypothesis that µ = const. across the star, they focused on main
sequence stars. They exploited the homology hypothesis and achieved satisfactory
relations for mass, luminosity, radius and composition, thereby contributing to “put
the structure of main-sequence stars on a secure physical basis”.85

In the same issue of the Monthly Notices, a further paper by the same two authors
appeared. Its title was “On the nature of red giant stars”.86 In it, Hoyle and Lyttle-
ton introduced the idea that µ could vary within a star, and namely that it assumed
two possible values in the inner and the outer regions. They supposed the µ value
to change discontinuously; although, “a continuous change in a layer of small depth
could equally be discussed, but it can be verified that this case leads to no essential

83 According to Arny ( Arny 1990, p. 221) “E. Öpik had successfully built red giants models”; Longair
(Longair 2007, p. 61) states that “the solution to the red giant problem was discovered in 1938 by the
Estonian astrophysicist Ernst Öpik”; Tassoul and Tassoul (2004, p. 148) reckon that “the first decisive step
towards the resolution of the red-giant problem was made by Öpik”.
84 Hoyle and Lyttleton (1942a).
85 Longair (2007, p. 188).
86 Hoyle and Lyttleton (1942b).
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difference from that of a sudden change.”87 In doing this, they went back to Öpik’s
work.

The two scholars correctly identified the changes of µ occurring in a star as
Öpik’s main contribution. An approximate numerical integration gave evidence that
“a decrease in µ in the outer part of the star will lead to a considerable increase in
the actual radius”.88 It was a remarkable achievement—the first time, after Öpik, the
role of chemical inhomogeneities was highlighted. However, Hoyle and Lyttleton’s
calculations showed that, to obtain large radii, “the regions of lower µ [must] contain
only a minor part of the mass, say less than 25%.”89 This seemed to rule out an expla-
nation à la Öpik, that the discontinuity in µ could be due to the H → He transmutation
occurring in the core. It rather drove Hoyle and Lyttleton to focus on processes of
hydrogen accretion in the stellar atmospheres, possibly from interstellar matter hitting
the star’s surface. The idea of focusing on the changing µ value in the envelope was
quite original, and to some extent it can be claimed to be a precursor to current studies
about surface accretion (e.g. blue horizontal branch stars). However, this was not how
the red giants problem could be solved.90 Rather, the µ value at the core–envelope
interface would have to be investigated.

7 Inhomogeneous models and the Schönberg–Chandrasekhar limit

7.1 Henrich and Chandrasekhar on homogeneous stars

In the same period another major astrophysicist, Chandrasekhar, was focusing on that
very problem and published two important papers on stellar evolution in the early
1940s.

Chandrasekhar’s first paper was written together with Louis R. Henrich and
appeared in 1941.91 Henrich and Chandrasekhar focused on stellar models in which
the core and the envelope were supposed to have different constitutions, i.e. they had
to be described via different models to be further fitted for the values of the state
parameters to coincide at the boundary between them. Henrich and Chandrasekhar
considered two models. Both were endowed with an isothermal core that, as Gamow
had shown, could indeed be there if resonance hydrogen burning or processes involving
light nuclei occurred.92

The first case they discussed had a polytropic envelope with n = 3. The second
featured a radiative point-source envelope with opacity given by (10) holding true
anywhere in the star, although κ0 was supposed to change as a function of chem-

87 Hoyle and Lyttleton (1942b, p. 219).
88 Hoyle and Lyttleton (1942b, p. 223).
89 Hoyle and Lyttleton (1942b, pp. 223–224).
90 Arny states that “it was not at all easy to see why there should be a sharp change in the molecular weight
within the envelope” and that Hoyle and Lyttleton’s model was “a dead end for models of red giants.” (1990,
p. 223).
91 Henrich and Chandrasekhar (1941); a reference paper on Chandrasekhar’s contributions is Srinivasan
(1996).
92 Gamow (1938a,b).
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ical composition. Henrich and Chandrasekhar described the envelope via standard
theories—the aforementioned cases are just the models by Eddington and Cowling—
Strömgren. What is most important to us, µ was supposed to be the same in the core
and the envelope. In fact, this work was published before Hoyle and Lyttleton’s 1942
paper, in which the µ variation played a key role.

In the first case the authors considered, T = T0(T0 = central temperature) every-
where in the isothermal core (a n = ∞ polytrope). It follows that:

P(r) = K

µH
T0ρ(r)+1

3
aT 4

0 (24)

In the n = 3 polytropic envelope, the two scientists employed Eq. 6.93 These equa-
tions can be numerically integrated, the only constraint being that P(r), ρ(r), and
M(r) must be identical at the interface between the core and the envelope.

In short, Henrich and Chandrasekhar had to fit a n = ∞ to a n = 3 polytrope
together. They decided to exploit the homology invariant quantities (14), and to write
the fitting conditions as follows:

U∞(r i) = U3(r i)

V∞(r i) = V3(r i)
(25)

where
ri = radius of the interface;
U∞ and V∞ = U and V calculated in the core (n = ∞ polytrope);
U3 and V3 = U and V calculated in the envelope (n = 3 polytrope).

In other words, Henrich and Chandrasekhar opted for a continuous link in the U–V
plane.

The second investigated case was a point-source envelope, which the authors
assumed to be physically sounder as more akin to “the physical circumstances under
which we might expect isothermal cores”94—those circumstances being, as we saw, an
exhausted core surrounded by a very thin, hydrogen-burning shell. In this case, Eq. 24
still held for the core, whereas (6) was replaced by standard hydrostatic-equilibrium
and energy-transport equations that were supposed to hold true:

d

dr

(
K

µH
ρ(r)T (r) + 1

3
aT (r)4

)
= −G M(r)

r2 ρ

(26)
d

dr

(
1

3
aT (r)4

)
= − κ0 L

4πcr2

ρ(r)2

T (r)3.5

In the second of Eqs. 26, L is a constant as L(r) = L at any value of r in the
envelope, and κ is supposed to obey formula (10). The fitting conditions were similar

93 As is customary when solving polytropes, Henrich and Chandrasekhar replaced ρ and r with dimen-
sionless quantities and used these variables for their equations. From a conceptual viewpoint, this makes
no difference whatsoever.
94 Henrich and Chandrasekhar (1941, p. 529).
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to (25) but, since in this case the envelope wasn’t described by a polytrope having a
well-defined index, Eqs. 25 were written as follows:

U∞(r i) = 4π

(
r3ρ(r)

M(r)

)
r=ri

V∞(r i) = µH

K
G

(
M(r)

rT (r)

)
r=ri

(27)

It should be noted that such equations have a clearly defined meaning only if the
core and the envelope are described by homologous models. This is surely the case
for polytropes, but it can also be the case for point-source if κ is made to depend upon
ρ and T via a power-law, and provided radiation pressure is negligible. Consequently,
Henrich and Chandrasekhar restricted their investigation to this case.

Please notice that it is not the star as a whole to be treated as a structure undergoing
homologous transformation, but rather the two different parts it consists of. This was
a major step forward compared to the simple models Gamow developed a few years
before.

Henrich and Chandrasekhar could exploit Strömgren’s integrations for the point-
source envelope.95 These calculations had been performed only for a few possible
values of L , M, R and κ0, with µ = 1, and much more general integrations were
certainly desirable. Nevertheless, this was not a priority for the two scientists, who
were rather interested in developing a new method to describe a star as consisting of
two different parts to be treated separately and then fitted together by means of the
homology-invariants U and V . Integration was merely a calculus problem that could
be tackled separately.

Henrich and Chandrasekhar reached two important conclusions:

(1) There exists a maximum core mass expressed as a fraction of the whole stellar
mass. Its value in the two models considered is around 0.38 or 0.35, respectively;

(2) Hydrogen burning is accompanied by a core contraction and an envelope expan-
sion. Although brightness and radius only increase by a few units, it is clear that
this is “a promising way to create giants”.96

However, the two scholars stuck to the unrealistic hypothesis that µ remained con-
stant throughout the star—an approach that would be discarded a year later in a further
paper by Schönberg and Chandrasekhar.

95 Strömgren (1931b); Henrich and Chandrasekhar also relied on integrations performed by Nielsen under
Strömgren’s supervision (see Henrich and Chandrasekhar (1941, p. 531)).
96 Arny (1990, p. 222).
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7.2 Schönberg and Chandrasekhar on inhomogeneous stars: the
Schönberg–Chandrasekhar limit

Published in 1942,97 the paper by Schönberg and Chandrasekhar is widely recognized
as a milestone in the development of stellar astrophysics. The starting point for the two
scientists was the overcoming of Gamow’s homogeneous and homologous models.
Schönberg and Chandrasekhar developed a model in which an inhomogeneity settles
in between the core (where µ = µc) and the envelope (where µ = µe 	= µc). The
idea to treat the core and the envelope as two separate parts is fully applied here. The
two astrophysicists considered two cases, namely a convective (Cowling) core and an
isothermal one, both topped by a radiative point-source envelope. This decision was
consistent with the standard evolutionary picture of the time, according to which a
main sequence star has a convective, hydrogen-rich core that over time gets replaced
with an isothermal, helium-rich one as hydrogen is burnt and fusion moves outwards
in a thin shell.

Radiation pressure was neglected in both cases. Furthermore, P(r), T (r) and M(r)

were assumed to have the same interface values both in the core and in the envelope
solution but, from the new assumption µe 	= µc, it followed that ρ(r) passed through
a discontinuity:

Pc(r i) = Pe(r i)

Tc(r i) = Te(r i)

Mc(r i) = Me(r i)

ρc(r i) 	= ρe(r i)

(28)

In Eqs. 28 the subscript “c” stands for “calculated via the core equations” and “e”
for “calculated via the envelope equations”. The subsequent fitting equations take the
following form:98

U3/2(r i) = 4 π
r3

i ρe(r i)

Me(r i)

µc

µe

V3/2(r i) = 2

5

G Me(r i)ρe(r i)

ri Pe(r i)

µc

µe

⎫⎪⎪⎬
⎪⎪⎭ convective

(29)

U∞(r i) = 4 π
r3

i ρe(r i)

Me(r i)

µc

µe

V∞(r i) = µeH

K

G Me(r i)

riTe(r i)

µc

µe

⎫⎪⎪⎬
⎪⎪⎭ isothermal

In turn, the term µc/µe is a function of time, as its initial value is 1 and it increases
as nuclear processes take place. The key idea here was to get an understanding of

97 Schönberg and Chandrasekhar (1942).
98 Instead of using the authors’ notation, I labelled the core quantities with the polytropic index (3/2 for
a convective core and ∞ for an isothermal core) to preserve the previously used notation. Note that a
non-relativistic degenerate core also fits the condition n = 3/2.
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how the size and mass of the core, as well as the star’s radius and luminosity, change
as a function of µc/µe, as this ratio increases from 1 to 2 (which corresponds to a
transmutation from a hydrogen-rich to a helium-rich mixture).99

In the convective core case, the relation:

3/2 =
(

dlogP

dlogT

)
c
=

(
dlogP

dlogT

∣∣∣∣
r=ri

)
e

(30)

was assumed to hold. In other words, the effective polytropic index of the envelope
at the interface was supposed to equal the core’s.100 Schönberg and Chandrasekhar
found that both the radius and the mass of the core decreased over time, whereas the
star’s radius and luminosity increased by a factor of approximately 1.5 when central
temperature remained constant.

However, in the isothermal case the hydrogen-burning shell moves outwards and
the core’s radius grows, with its mass first increasing and then oscillating around a
maximum value. As a consequence, the radius and luminosity of the star increase by
a factor of about 2 and then start oscillating, too. Actual temperature keeps constant
for a while, then starts decreasing. Fig. 4 depicts the evolution on a L–Teff plane.

In the isothermal core case, the authors came to a crucial conclusion. They found
that for any value of µc/µe there exists a definite core mass fraction above which no
connection with the envelope is possible. The core mass uppermost value is a decreas-
ing function of µc/µe and reaches the maximum value for a homogeneous star, i.e.
µc/µe = 1. When µc/µe increases to 2, the value gets as low as 10% ca. of the stellar
mass. Today the maximum mass (expressed as the core mass/total stellar mass ratio)
that an isothermal, non-fusing, non-degenerate core can have to sustain the weight of
the overlying layers is known as the Schönberg-Chandrasekhar limit.

This limit can be expressed as:101

99 In case of pure hydrogen being converted into helium, µ should change from 1/2 to 4/3, and conse-
quently the core-to-envelope ratio should increase from 1 to 8/3. However, the presence of a certain amount
of helium in the initial mixture, as well as a slight amount of heavier elements, smoothes out this difference
and makes a transition from 1 to 2 an acceptable choice.
100 About the definition of the “effective polytropic index” see Eddington (1938), see also Hoyle and
Lyttleton (1946, p. 525). In this latter paper, Hoyle and Lyttleton questioned that such an index was contin-
uous at the interface.
101 Collins (1989, p. 131); the existence of such a limit can be intuitively understood on the basis of plau-
sibility arguments. In fact, the aforementioned core configuration is described by a n = ∞ polytrope, for
which P depends upon the first power of ρ, i.e. the minimum possible power. This means that an increase in
the gravitational pressure by the envelope yields a maximum increase in ρ, which in turn entails a maximum
increase in gravity. Consequently, one can argue that there must be a limit beyond which an increase in
gravitational pressure is no longer sustainable by the core. See Smith (1995, p. 261). In more recent times it
was recognized that stars with a mass between 1, 5 and 6 solar masses approximately develop an isothermal
core at the end of the main sequence stage. Below 1, 5 M� degeneracy settles in, whereas above 6 M� the
mass is so high that even a slight contraction turns into a large release of energy and isothermality does not
actually hold. See Beech (1988, p. 219). This means that for stars within this range, the isothermal core
mass grows while hydrogen burns in the shell, but when the Schönberg–Chandrasekhar limit is reached,
the core can no longer sustain the pressure of the upper layers and begins to contract towards the helium
ignition phase. The Schönberg— Chandrasekhar limit is a major feature of stellar evolutionary models. It
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Fig. 4 Evolution on a L–Teff
plane in the isothermal core
case. Despite some evolutionary
inconsistencies, this pattern
begins to show some similarity
with an evolution upwards and
to the right. Notice the wrong
labelling of a point on the
vertical axis (0.06 instead of 0.6)
(from Schönberg and
Chandrasekhar 1942, p. 171).
Reprinted with kind permission
of the American Astronomical
Society

qS−C = Mcore

Mstar
= M(r i)

M
= 0.37

(
µe

µc

)2

(31)

However, if gas degeneracy happens to play a major role, the Schönberg-Chandra-
sekhar limit disappears.102

Schönberg and Chandrasekhar once again found a “promising way to create giants”.
Similar arguments were put forth by Marjorie Hall Harrison a couple of years later.103

To summarize, Schönberg’s and Chandrasekhar’s key achievement was the idea that
the core and envelope must be treated differently due to chemical inhomogeneities.
This allows a dynamical uncoupling between the two. Furthermore, Schönberg and
Chandrasekhar (together with Henrich) introduced the idea of transferring the prob-
lem to the U–V plane to investigate it for different stellar configurations—something
that would become a standard choice in the following years. They also estimated the
maximum mass of the isothermal core by introducing the mass limit that bears their

Footnote 101 continued
would be beyond the historical perspective of the present paper to conduct a far-reaching analysis of this
topic. I just cross-refer to Collins (1989, pp. 130–132), Kippenhahn and Weigert (1990, pp. 285–290) and
Srinivasan (1996, pp. 64–68).
102 Kippenhahn and Weigert (1990, p. 289). If degeneracy settles is, no Schönberg–Chandrasekhar limit
exists anymore: degenerate electron pressure contributes greatly to support gravitational pressure. This
issue will be discussed later on in the present paper.
103 Hall Harrison (1944). Plots of the variation of R and L as functions of µc/µe can be found at p. 345.
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name. In so doing, the two scientists were entering uncharted territory and changing the
background of the whole issue. In Arny’s words: “From that point on, inhomogeneity
became a basic ingredient in stellar models”.104

On the other hand, their evolved configurations were still very small compared to
actual giants. This is not surprising, as they considered the possible evolution of stars
at the limit of the main sequence stage, but didn’t fully account for further evolution
along collapsing core stages. Schönberg and Chandrasekhar were perfectly aware of
this:

So far we have discussed the evolution of a star during the relatively early stages
of the exhaustion of hydrogen in its central regions. The question now arises as
to what can be said concerning the evolution during the later stages, i.e., after
the isothermal core has grown to include the maximum possible mass. When
this stage has been reached, the liberation of energy from the carbon cycle must
cease, and we should expect the star to adjust itself to a contractive model […]
and evolve according to the Helmholtz-Kelvin time scale.105

It was becoming clear that the life of a star on the main sequence is limited to the
time required to burn out about 10% of its hydrogen, after which it must evolve through
a collapsing core stage—an issue that would be retrieved and further developed by
Allan R. Sandage and Martin Schwarzschild a decade later (see Sect. 9.2).

Furthermore, Schönberg and Chandrasekhar did not fully account for other crucial
issues such as any mixing of material within a star106 or the settling in of degeneracies
within the core. Finally, the choice of an abrupt discontinuity in the value of µ could
be further refined into a steep (but continuous) change of its value.

8 Giant stars models with partially degenerate cores

8.1 Gamow’s discontent with the Schönberg–Chandrasekhar limit

As we discussed in the previous section, some of the main ingredients required to build
giants became available in the early 1940s. Others were still lacking, though. Among
these was the possible degeneracy in the stellar core. Once again, it was Gamow who
tackled this issue. Gamow felt uncomfortable with the Schönberg–Chandrasekhar
limit. He commented upon it in two papers published on the Physical Review in 1944
and 1945.107

104 Arny (1990, p. 223).
105 Schönberg and Chandrasekhar (1942, p. 172). The two authors further speculated that the gravitational
contraction and temperature rise could trigger a re-ignition of the carbon cycle at the border of the core,
which would cause the core to become isothermal once again. But since the core was now expected to
exceed the limiting mass fraction, the star was assumed to evolve through non-equilibrium configurations.
106 For further details about this issue see Tassoul and Tassoul (2004, p. 150).
107 Gamow (1944, 1945).
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Gamow remarked that:

[…] the exact mathematical treatment of the isothermal core model108 seemed
to lead to the conclusion that no such model is possible if more than ten percent
of total stellar mass is to be contained in the core.
It must be indicated here that the above paradoxical result is entirely owing to
the arbitrary assumption that the isothermal core of the star must be governed
by the ideal gas law, and disappears at once if we take into account the possibil-
ity of degeneracy near the centre of the core. Indeed the impossibility of fitting
in a massive isothermal core of ideal gas (polytrope n = ∞) rests on the fact
that above a certain density limit, the gas pressure in the centre of the core is
unable to support the weight of the core thus leading to an unlimited contraction.
Physically, however, such a contraction will be rapidly stopped because of the
decreased compressibility of gas in the degenerated region. The stable state of
a star with a core exceeding ten percent of the total mass, will thus consist of
three different regions: (1) degenerate nucleus, (2) isothermal layer of ideal gas,
and (3) radiative envelope.109

Gamow investigated this argument further with G. Keller in 1945. The two scien-
tists made an attempt to insert degeneracy into the core of an inhomogeneous star.110

The scenario they depicted starts from the assumption that main sequence stars burn
out hydrogen via the CNO cycle. This is described through a Cowling’s point source
model, where convection takes place solely in the innermost part of the stars and the
envelope is fully radiative. As time goes by, nuclear fusion increases the value of
µc/µe from 1 to 2 and the core mass fraction grows, as Schönberg and Chandrase-
khar (and Harrison after them) had shown. Gamow and Keller pointed out that stuff
mixing within the core should be efficient to let it evolve as a whole. When hydrogen
begins to be in short supply, the core starts shrinking and increasing in temperature.
This in turn ignites nuclear fusion in a thin shell outside the core, and the core tends
to become isothermal. The transition to a shell source model is complete by now. So
a star should experience both cases Schönberg and Chandrasekhar had dealt with,
in subsequent stages of evolution. When the energy-producing shell is established, it
cannot but move outwards towards the surface. However, in so doing it is bound to
exceed the Schönberg–Chandrasekhar limit that is expected to hold in the isothermal
case. Schönberg and Chandrasekhar claimed that the star must enter a non-equilibrium
state and eventually evolve towards explosion, but, as stated before, this outcome can
be avoided by bringing into the equation another feature, namely gas degeneracy in
the core.

Gamow and Keller declared their aim to be the investigation of:

[…] the fitting of partially degenerate cores of fixed temperature T∗ = 2×107◦K
(corresponding to the C–N cycle in the energy producing shell) and molecular

108 In the original text, reference is made to Henrich and Chandrasekhar (1941) and Schönberg and Chan-
drasekhar (1942).
109 Gamow (1945, p. 120).
110 Gamow and Keller (1945).
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weight µcore = 2 to radiative envelopes of molecular weight µenv = 1 and [a
proper value for κ0]. The value of the molecular weight chosen for the envelope
corresponds to a hydrogen content of 35 percent. [… ] The fitting conditions
are that the gas pressure and temperature must be continuous at the interface
between the isothermal and radiative parts.111

As for the radiative envelope, the two scholars exploited custom equations and
relied on the ever-present Strömgren’s and Cowling’s integrations, as well as on oth-
ers they developed themselves. But their real focus point was the core. By calling the
core radius and mass r* and M* (with ρ* being the core density at the boundary), in
the isothermal, perfect-gas case they found results in agreement with the findings of
Chandrasekhar and colleagues (once again, radiation pressure was neglected). Gamow
and Keller developed a logr∗ − log ρ∗ relation for a given mass value M∗ = 0.1 M�.

The resulting curve did not extend into the small radii region:

Physically this means that it is impossible to construct an isothermal core of an
ideal gas with a radius smaller than a certain value determined by its mass. This
fact underlies the above mentioned result of Chandrasekhar and his collaborators
concerning the impossibility of building a stellar model with a core containing
more than 10 percent of the mass. In fact […] the fitting curves form the enve-
lopes [… ] cease to intersect the core curves when the mass of the envelope
becomes smaller than 9 times the mass of the core.112

But when Gamow and Keller considered a partially degenerate core, the curve did
extend towards small radii and a fitting to the envelope proved to be possible.113 Here is
another way to put it. Let us consider the given value M∗ = 0.1 M� and let us assume
the core is in perfect gas state. If curves corresponding to envelopes of different stellar
(core + envelope) masses—e.g. 0.4 and 1.6 M�—are drawn in the logr*–logρ* plane,
it can be said that the core’s curve fits the second one, but not the first one. In fact, in
the latter case the core’s mass exceeds the Schönberg–Chandrasekhar limit. However,
if a partial degeneration of the core is taken into account, it turns out that the fitting
becomes possible without limitations (Fig. 5).

More generally, Gamow and Keller depicted curves corresponding to different core
and envelope masses in the logr*–logρ* plane. For a given stellar mass (core + enve-
lope) they investigated the values of logr* and log ρ∗ at which the curves met for
different relative values of the core’s and envelope’s mass (e.g. for a core containing
12.5, 25 and 50% of the whole stellar mass). This allowed them to determine how r*
and ρ* changed as the core mass increased, i.e. with advancing evolution.

As a last step in drawing the evolutionary path on the H–R diagram, the values
of r* and ρ* had to be linked to L and Teff , or L and R. The authors did this in an
approximate manner, by exploiting homology relations that, strictly speaking, did not

111 Gamow and Keller (1945, p. 126).
112 Gamow and Keller (1945, p. 128).
113 Gamow and Keller exploited actual physical formulae based upon the Fermi-Dirac functions as well
as the numerical integrations already performed by Gordon W. Wares (1944).
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Fig. 5 Core–envelope fitting in the logr∗–log ρ∗ plane. The thick line corresponds to a perfect-gas core
and it does not intersect the 0.4 M� line because of the Schönberg–Chandrasekhar limit. If degeneracy is
brought into the equations, it unwinds the core line (thin line) and the intersection is possible (from Gamow
and Keller 1945, p. 127). Reprinted with kind permission of the American Physical Society

really hold. It is interesting to notice that they justified this by claiming that integrating
the equilibrium equations into every single case would require a huge amount of work.

This is a typical feature of many coeval works. The integration problem was but
a mere calculus issue, and scholars tried to keep it as simple as possible. All in all,
scientist focused on physical issues and did not much care about integration processes.
They relied on existing calculations or, if they did new ones, they basically considered
that a boring—albeit necessary—task. They tried to keep equations as simple as pos-
sible to avoid time-consuming manual calculations. A much sharper focus was placed
on the issue of laying down physical giant stars models. Things would change later
on, when basic giant models became available and the life-changing development of
computers would remove most calculus-related barriers.

8.2 Evolution on the H–R diagram

Gamow and Keller drew the evolutionary path for stars of different masses on a R–L
diagram (that is equivalent to an H–R diagram as long as stars are considered to be
black bodies) (see Fig. 6). The two scientists figured out that, in the case of a stel-
lar mass M = 0, 1M�, fitting solutions did exist even for a core mass = 0.5 M or
more, and that as the core mass increased its radius became steadily larger, too. This
implied that the hydrogen-burning shell would actually approach the surface during
later stages of evolution. This caused an increase—rather than a decrease—in surface
temperature. If M is assumed to be 0, 4 M�, then fitting solutions exist only for a
core mass of about 1/3 and as the core mass increases, its radius first becomes larger,
then begins to shrink. Again, this seemed to be a promising way to create giants, since
both stellar radius and luminosity increased by a factor 40 and 10 ca., respectively
(see Fig. 6). In the 4 M� case calculations were performed, too, although they were
reckoned to be rather uncertain.

Finally, Gamow and Keller remarked that, based on their explanation, red giants
are evolved stars and the previous idea of young, contracting stars could be entirely
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Fig. 6 Evolution of stars of
different mass on a R–L
diagram. The percentage of the
core’s mass is indicated along
the evolutionary paths (from
Gamow and Keller 1945, p.
135). Reprinted with kind
permission of the American
Physical Society

dismissed due to the very short timescale it implies. Moreover, they discarded the
former idea by Teller and Gamow itself, that light element (Li, Be, B) fusion was a
possible energy source for giants, as it yielded different bands that ran parallel to the
main sequence in the H–R diagram.114

Although Gamow’s and Keller’s paper undoubtedly established some important
facts, Harrison found an error by a factor of eight in the degenerate gas pressure
formula soon afterwards.115 More generally, she described a model similar to those
of Gamow and Keller, but she failed to enlarge the radius enough to produce actual
giants. One noteworthy point she made was that the Gamow– Keller star enlarged its
nucleus so much as to exceed Chandrasekhar’s mass for a degenerate autogravitating
structure, and this led Gamow and Keller to wrong conclusions. White dwarfs—she
argued—have no links to giant stars. After Harrison’s contribution, the core of evolving
stars seemed to be constrained between Chandrasekhar’s mass and the Schönberg–
Chandrasekhar limit, so that its mass could not grow too much either in the perfect or
in the degenerate gas case.

To recap, up to that time scholars had often come up with crucial insights into the
problem, but no accurate, reliable giant star models were yet available. However, times
were ripe for that at least.

114 Gamow and Teller (1939).
115 Hall Harrison (1946, p. 195), see also Arny (1990, p. 223).
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9 The first reliable giant star models

The scenario finally changed in the years around 1950. A lot of ingredients to explain
giant stars were available, and that growing knowledge eventually came together to
form a satisfactory picture— “satisfactory” in the sense that scientists succeeded in
laying a sound physical basis that they used to build evolutionary models in which stars
did evolve towards the red giant stage after the main sequence age, and the calculated
features of the giants actually matched the observational features of these stars. These
models cannot be considered conclusive in the light of today’s knowledge (further
progress would be made by scholars in the following decades). However, they con-
stituted the valuable basis subsequent models would be built upon. Papers from this
period are still mentioned today as key steps towards the understanding of giant stars.

Obviously enough, those results were made possible by the significant contribu-
tions of the previous decades. As discussed above, the great names of twentieth century
astrophysics (namely Strömgren, Gamow, Chandrasekhar) played a major role. Unsur-
prisingly, the theory of red giants finally came to solid ground when other great names,
notably Hoyle, Sandage and Schwarzschild, focused on it.

9.1 Inhomogeneous models in the years around 1950

We already saw Hoyle hard at work, trying to introduce inhomogeneity into stellar
models together with Lyttleton at the beginning of the fourties. The two scholars gave
another noteworthy contribution in 1949.116

They developed a stellar model by identifying a hydrogen-poor inner region and
a hydrogen-rich outer one, as usual. However, they made a step ahead in that the
hydrogen-poor region was further divided into a convective central zone that supplied
the whole star with energy via the CNO cycle, and a surrounding radiative one (see
Fig. 7).

Hoyle’s and Littleton’s model consisted of an H-poor core, an H-poor intermediate
zone and an H-rich envelope. Degeneracy was not considered and radiation pressure
was supposed to be negligible, as “the parameter β is always near unity for the mod-
els of chief interest.”117 Discontinuity in chemical composition was described by a
sudden change:

(X i, Y i, Z i) → (X e, Y e, Z e)

µi → µe = 0, 5µi
(32)

where “i” stands for the inner zone (core + intermediate zone) and “e” stands for
the envelope. As for the absorption coefficient, Hoyle and Lyttleton assumed electron
scattering to be the dominant source of opacity in the inner region. In the envelope they
considered two possible cases, namely electron scattering and a photoelectric model.

116 Hoyle and Lyttleton (1949).
117 Hoyle and Lyttleton (1949, p. 616). Hoyle and Lyttleton restricted their investigation to stars of a few
solar masses.

123



Solving the Giant Stars Problem 243

Fig. 7 Structure of an evolved star according to Hoyle and Lyttleton

In the latter case, opacity was supposed to change discontinuously, just like chemical
composition.

Hoyle and Lyttleton integrated stellar structure equations into those basic assump-
tions. For both possible absorption coefficients, they found that an increase of the µ

value in the inner region boosted a large growth of both radius and brightness. In the
H–R diagram (see Fig. 8), homogeneous stars having a ubiquitously uniform value
of µ = 1/2 make up a sequence that lies close to the left of the main sequence. In
the photoelectric model, as inhomogeneities settle in and µ rises to 2/3 in the inner
region, stars move to a sequence that lies close to the right of the main sequence, only
to move again to the far right side as µ reaches 4/3. Meanwhile, brightness increases
significantly. A similar overall behaviour is still valid in the electron scattering model,
despite somehow different values.

These results were thus commented by the authors:

It is a satisfactory result of the theory that the main sequence is well-contained
between the points corresponding to µ = 1/2 and those for µ = 2/3. As the
time required for µ to change, owing to the conversion of hydrogen to helium
by nuclear reactions, from 1/2 to 2/3 is considerably greater than the time for an
increase from 2/3 to 4/3, it follows that the position of a star in the diagram must
be in the main sequence throughout most of its lifetime.118

The values found are in fair agreement with observational values. When plotting
them, a distinction was made between population-I and -II giant stars.119

Hoyle and Lyttleton investigated physical processes that could cause inner chem-
ical inhomogeneities. Clearly, they advocated nuclear processes as a major reason,
provided no strong mixing occurred in the star’s interior. If that was not the case and

118 Hoyle and Lyttleton (1949, p. 628).
119 As is well-known, in 1944 Baade introduced the idea of the existence of two populations of stars after
observing the Andromeda Galaxy and its two elliptical companions M32 and NGC 205 (see Baade (1994)).
This is a collateral topic to the main argument of this paper and I shall not elaborate upon it.

123



244 D. Cenadelli

Fig. 8 Hoyle and Lyttleton’s results depicted on the H–R diagram. The full lines represent the main
sequence and the giant branches for population-I and -II stars, as observed by Baade in (1994, p. 143).
The points X1/2, X ′

1/2, X ′′
1/2 and X ′′′

1/2 stand for stars of different masses with µ = 1/2 everywhere. The
masses considered range between 2 and 5 M�. The unevolved stars lie close to the main sequence, lower
and to the left. The points P stand for the evolved stars in the photoelectric model, while the points E stand
for the evolved stars in the electron scattering model. P and E have the same mass as X, P′ and E′ as X′, P′′
and E′′ as X′′, P′′′ and E′′′ as X′′′. The subscripts of the P and E points are the µ values in the inner region.
Hence, a star of a given mass evolves across the points with growing µ values. The dashed line in the figure
is an example of evolution (it is by the author of this paper and is not found in the original figure) (from
Hoyle and Lyttleton 1949, p. 627). Reprinted with kind permission of Wiley-Blackwell

mixing did occur, then an accretion of hydrogen at the surface was a possible expla-
nation. This is the same idea they advocated in their 1942 paper. However, the 1949
paper goes well beyond that, in that the role of inner changes due to nuclear processes
is much more emphasized, and the radii of the calculated giant models are much larger
than those previously obtained in 1942.

A paper by Li Hen and Schwarzschild was published in the very same issue of the
Monthly Notices of the Royal Astronomical Society.120 It was the first in a series of
papers written by Schwarzschild together with several colleagues— notably Sandage
and Hoyle himself—that greatly contributed to a satisfactory explanation of the whole
giants issue.

Hen and Schwarzschild summarized previous achievements by pointing out how
inhomogeneity was a key factor:

120 Hen and Schwarzschild (1949).

123



Solving the Giant Stars Problem 245

When these [= inhomogeneous] models were applied to stars with a given mass
and central temperature, the resulting radii were generally found to be larger
than those obtained for chemically homogeneous stars. Thus it appeared possi-
ble that these models should represent giants of intermediate spectral type. In
all the cases which had been computed through in detail, however, the increase
in radius was less than a factor four and hence insufficient to represent late-type
giants.121

In their paper, they succeeded in elaborating models with “stellar radii sufficiently
large for moderate red giants”.122

Similarly to Hoyle and Lyttleton, they adopted a tripartite model like the one
depicted in Fig. 7: a convective, hydrogen-poor core; a radiative, hydrogen-poor inter-
mediate region; and an radiative, hydrogen-rich enclosing envelope. Discontinuity in
chemical composition is expressed by a jump (X i, Yi, Z i) → (Xe, Ye, Ze). Again,
radiation pressure and degeneracy were neglected. The convective core was supposed
to be a polytrope of index n = 3/2. The discontinuity in chemical composition was
described as a sudden change µi → µe.

As for the absorption coefficient, it was assumed to be:

κ = κ0ρ
0.75T −3.5

κ0 = 1025 Z(1 + X)0.75
(33)

The variables of differential stellar structure equations were replaced by the dimen-
sionless quantities p, t, q, x, l, j :

P(r) = p(r)
G M2

4π R4

T (r) = t (r)µe
H

K

G M

R
M(r) = q(r)M

r = x(r)R

l(r) = µ(r)

µe

j (r) = Z(r)

Ze

{
[1 + X (r)] µ(r)

[1 + Xe] µe

}0.75

(34)

121 Hen and Schwarzschild (1949, p. 631); interestingly enough, the authors added a reference to Öpik
in a note, pointing out how his models, although capable of accounting for larger giants, could actually be
neglected, as they assumed too large a difference in chemical composition between the core and the enve-
lope. In other words, Hen and Schwarzschild realized the pioneering nature of Öpik’s work, but they also
pointed out that so significant a result was premature for his time. Moreover, Hen and Schwarzschild did
not appear to be aware of the aforementioned results by Hoyle and Lyttleton, whose paper is not mentioned
and does not appear in the reference list. This is hardly surprising as that paper had been submitted only a
few months earlier.
122 Hen and Schwarzschild (1949, p. 631).
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In Eqs. 34 it has been stressed that µ, Z , X , and consequently l and j , depend on r ,
although their dependence is rather simple as they only assume two different values
in the inner and the outer part of the star. In particular, in the envelope le = je = 1. As
usual, the stellar mass M and radius R are to be considered constant for integration
purposes, but from a physical viewpoint they are rather free parameters describing dif-
ferent stellar configurations. The standard equations for the radiative part (hydrostatic
equilibrium, mass continuity, radiative transfer) take the following form:

dp

dx
= −l

pq

tx2

dq

dx
= l

px2

t
(35)

dt

dx
= −l jC

p1.75

t8.25x2

where parameter C is constant throughout the star and is expressed as follows:

C = 3κ0e

4ac

(
K

µeHG

)7.5 (
1

4π

)2.75 L R1.25

M5.75
(36)

The standard quantities U, V are written as follows:

U = dlogM(r)

dlogr
= r

M(r)

dM(r)

dr
= l

px3

tq

V = −dlogP(r)

dlogr
= − r

P(r)

dP(r)

dr
= l

q

t x

(37)

It should be noticed that, due to the supposed inhomogeneity, U and V go through
a discontinuity at the interface between the intermediate zone and the envelope. As a
matter of fact, all quantities in their expressions are continuous except l. On the other
hand, no discontinuity occurs at the interface between the core and the intermediate
zone.

Moreover, the polytropic index is n = 1.5 in the convective core, whereas in the
intermediate zone and envelope the effective index was written by Hen and Schwarz-
schild as being:

n + 1 = T (r)

P(r)

dP(r)

dT (r)
= 1

j

qt8.25

Cp1.75
(38)

The introduction of the “intermediate zone”, first by Hoyle and Lyttleton and later
by Hen and Schwarzschild, was a real novelty. Then, it is not surprising that they
could rely on former integrations for the other two regions123 but had to integrate the

123 Solutions of Eqs. 35 with the condition le = je = 1 were available for the radiative envelope, as
Schwarzschild himself together with Richardson had already numerically integrated them for different
values of C (Richardson and Schwarzschild 1948).
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equations in that zone themselves. The authors had the integration start at an arbitrary
point ξ1, that is the point where the core ends and the intermediate zone begins.124 So
they found a single-parameter family of solutions.

Then those solutions were fitted to the envelope. If we call the values of U “just
inside” and “just outside” the interface Ui and Ue, respectively, and do the same for
Vi, Ve and ni, ne, fitting at the intermediate zone/envelope interface requires that:

Ui
Ue

= li
le

= li
Vi
Ve

= li
le

= li

⎫⎬
⎭ ⇒ Ui

Vi
= Ue

Ve

ne + 1

ni + 1
= ji

je
= ji

(39)

Then, as a consequence of the discontinuity of U and V at the interface, it follows
that the point representing stellar status at the interface must “jump” between (Ui, Vi)

and (Ue, Ve) along a straight line passing through the origin.
Figure 9 shows the results of the fitting process.
Based on Fig. 9, a stellar model can be constructed as follows. Start from the centre

(U = 3, V = 0), then follow the curve corresponding to the core. At an arbitrary
point continuously switch to the intermediate zone curve, and follow it all the way
to another arbitrary point, where you will need to jump to the corresponding point
of an envelope curve where C = arbitrary. Finally follow this curve to the surface.
Therefore three arbitrary choices must be pursued. From a physical viewpoint, this
means that the amount of change in composition, the point at which such change
occurs and the amount of change in the absorption coefficient can be set at will. Once
a model is chosen, the dimensionless quantities defined in (34) and consequently the
state parameters can be computed for any value of r . If the stellar mass M , central
temperature T0 and chemical composition of the core and envelope are fixed, then a
clearly defined model can be calculated. Hen and Schwarzschild chose M = 10M�
and set T0 = 3 × 107 K in order for the CNO cycle to be sustainable. They then
calculated the stellar models and especially the resulting radii for 15 different values
of (X i, Yi, Z i) and (Xe, Ye, Ze), and consequently of µi and µe. The resulting radii
turned out to be approximately between 10 and 70 solar radii, which led the authors
to conclude that “for the majority of the 15 cases, the computed radii are smaller than
the radii of heavy red giants”, although in the best-case scenarios “the radii approach
the right size”.125 If we take a close look at Hen’s and Schwarzschild’s results126 we
can see that the largest radii (43.2 and 66.0R�) correspond to low hydrogen and high
helium abundance in the innermost part, and vice versa in the outer.

124 ξ is the adimensional variable tied to r that is usually exploited when integrating polytropes (it appears
as an independent variable in the Lane–Emden equation). Its use is justified by the fact that the core is a
n = 3/2 polytrope.
125 Hen and Schwarzschild (1949, p. 643).
126 Hen and Schwarzschild (1949, pp. 644–645).
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Fig. 9 Fitting in the U–V
plane. Different values of log C
are shown for the envelope.
Similarly, several values of ξ1
are shown for the intermediate
zone. Only one curve represents
the core, namely the one
corresponding to a polytrope of
index 1.5. The straight lines
indicate some possible “jumps”
connecting the intermediate
zone to the envelope (from Hen
and Schwarzschild 1949, p.
639). Reprinted with kind
permission of Wiley-Blackwell

Table 1 Physical structure of giant stars of different masses (from Hen and Schwarzschild 1949, p. 645)

Total mass 10M� 5M� 3M�
Mass of convective core 0.3M� 0.2M� 0.1M�
Mass inside chemical discontinuity 2.0M� 1.0M� 0.6M�
Total radius 66R� 33R� 20R�
Radius of convective core 0.3R� 0.2R� 0.1R�
Radius of chemical discontinuity 1.0R� 0.5R� 0.3R�
Bolometric magnitude −5.1 −1.8 +0.8

Effective temperature 6500 4300 3100

Spectral type F5 gK0 gM2

Reprinted with kind permission of Wiley-Blackwell

The two scientists further tried to vary the stellar mass for a fixed composition con-
sisting of 0% hydrogen–90% helium inside and 90% hydrogen–0% helium outside.
Their results are summarized in Table 1.

It is obvious that all three models in Table 1 have a rather small and dense core and
an extended, thin envelope. Nevertheless, the resulting radii are still not large enough.
In conclusion, the method developed by Hen and Schwarzschild was promising in that
it showed it was indeed possible to regard red giants as evolved stars. Inhomogeneity
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with a strong hydrogen difference was proved to be a key factor, and radius enlarge-
ment was proved to follow hydrogen depletion in the core. However, the method had
to be perfected. Schwarzschild and his associates engaged in this task in the following
years. They dealt with changes in central temperature, degree of inhomogeneity and
absorption coefficient, and also tried to account for possible degeneracy effects and a
gravitational collapse of the core.

In 1952, the absorption coefficient issue got perfected in a paper by John B. Oke
and Schwarzschild.127 The two scholars constructed models much in the same way
as Hen and Schwarzschild had done, but they introduced a more precise description
of the absorption coefficient. They investigated two different cases for the stellar inte-
rior: a dependence κ ∝ ρ1−α with α = 0.25 and α = 0. As for the envelope, they
only considered α = 0. The α = 0.25 case had already been developed by Hen and
Schwarzschild, while the α = 0 case went back to the Kramers’ Law and still needed
to be integrated. Thus, in the α = 0 case Oke and Schwarzschild had to focus on
integration both for the envelope—where further values of C were considered—and
for the core. The authors finally obtained two series of solutions corresponding to the
two possible values of α that they depicted in the U–V plane (Fig. 10, left).

Oke and Schwarzschild found that, following changes in ξ1, the mass fraction lying
in the core varied within a large range of values (from 14% to 70% approximately).
On the other hand, the core radius hardly exceeded a few percents, and this implied
that the constructed models were much denser in the centre, just like the one shown
in Table 1.

By choosing stellar mass, chemical composition and central temperature, it is pos-
sible to derive the value of R from the second of Eq. 34 if applied to the centre of the
star, and the value of L from (36).128 Consequently, any stellar model can be depicted
in the H–R diagram (Fig. 10, right).

In the diagram, possible variations of ξ1 and M are both accounted for. The heavy
lines represent models of equal mass, while the dashed ones represent models of equal
ξ1 values (for the α = 0.25 case). More specifically, these values decrease mono-
tonically as the roman numerals increase, and such a decrease is faster at first and
slows down afterwards. As the mass value of the hydrogen-poor region depends on
ξ1, and increases as ξ1 decreases, following the heavy lines from left to right means
following the evolution of a star as its core burns out hydrogen and shrinks, quickly
at first and more slowly afterwards. After making comparisons with the position of
actual giants, the authors concluded that “the models here considered amply cover
the territory in the Hertzsprung-Russell diagram occupied by the red giants. Indeed,
the most extreme models […] give effective temperatures probably lower than that

127 Oke and Schwarzschild (1952).
128 It should be pointed out that the equations exploited by Oke and Schwarzschild in (1952) differ slightly
from (34) and (36), which Hen and Schwarzschild used in 1949. This is due to the differences assumed for
the absorption coefficient. However, from a conceptual viewpoint they can be regarded as equivalent. More
generally, the same consideration also applies to the subsequent papers by Schwarzschild and associates
that are discussed later in this section. The method used is always based upon equations similar to (34), (35),
(36) and (37). However such equations take different forms according to the underlying physical models.
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Fig. 10 Left—fitting in the U–V plane, similar to the one shown in Fig. 9, for the α = 0.25 case (a similar
figure is supplied in the original paper for the α = 0 case). As for the envelope, different values for log
C are shown. Similarly, several values of ξ1 are shown for the intermediate zone. The curve representing
the core is outside the right bottom corner. The straight lines indicate some possible “jumps” connecting
the intermediate zone to the envelope (from Oke and Schwarzschild 1952, p. 320). Right—corresponding
evolution in the H–R diagram. The full lines stand for fixed stellar mass values (1 M�, 2M� and 4M�
from bottom to top, respectively) and a variable percentage of the total mass in the hydrogen-poor zone.
The shaded areas indicate the actual position of main sequence, subgiant and giant stars in the diagram
(from Oke and Schwarzschild 1952, p. 327). Reprinted with kind permission of the American Astronomical
Society

of any observed star ”.129 This final remark is hardly surprising, as convection in the
envelope was not taken into consideration at that time.

The line corresponding to 2M�, which turns back once temperature drops to
approximately 3,500 K, represents the evolution of a star in the α = 0 case. This
highlights the great influence the inner absorption coefficients has on the structure of
an evolved star. Furthermore, the diagram indicates the possible evolution of homo-
geneous models. It appears evident how the evolution of a star where strong mixing
occurs is expected to be very different from the evolution of a star where mixing is
not so effective and inhomogeneities settle in.

However, Oke and Schwarzschild felt that their models were still work in progress.
They stated so at the end of their paper:

Stellar models like the present ones must still be considered as exploratory, owing
to the arbitrariness with which the character of the chemical inhomogeneity is
assumed. If, indeed, a chemical inhomogeneity is an essential feature in the
internal structure of the red giants, as now appears likely, it will be possible to

129 Oke and Schwarzschild (1952, p. 326).
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derive definite models for red giants only after the physical mechanisms which
govern the degree and character of the internal mixing have been determined.130

9.2 Sandage and Schwarzschild: inhomogeneous stars with a collapsing core

A work by Sandage and Schwarzschild131 appeared in the same Astrophysical Journal
issue that contained the paper by Oke and Schwarzschild. Sandage and Schwarzs-
child’s work turned out to be a milestone on the way to solving the giants issue. It was
the first paper ever to lay down a sound model in which an inhomogeneous structure
was investigated after reaching the Schönberg-Chandrasekhar limit and consequently
experiencing a core collapse.132

Sandage’s interest in this kind of theoretical speculations was fostered by his own
work under Baade on the observational features of globular clusters. In particular, he
studied the H–R diagram for the two globular clusters M3 and M92133 and observed
that the giant branch was tied to the mid main sequence through a continuous distri-
bution of stars. This pointed towards the need to explain the evolutionary stages of a
star that moves from the main sequence to the giant branch.

The paper by Oke and Schwarzschild had described a point-source, convective core,
under the assumption that a certain reservoir of hydrogen, big enough as to sustain
nuclear reactions, was still present. Sandage and Schwarzschild described the core as
exhausted, isothermal, in a radiative quasi-equilibrium state. In other words, the core
was considered to be exhausted and to have reached the Schönberg–Chandrasekhar
limit (hence the gravitational collapse), with an extremely (infinitely) thin shell at the
temperature of 3 × 107 K where the CNO cycle occurs, and a radiative envelope:

This paper considers a model whose inhomogeneity arises from the follow-
ing evolutionary process. An initially homogeneous star with a convective core
and radiative envelope (Cowling model) which experiences no mixing between
the core and envelope starts exhausting its hydrogen supply in the core. The
subsequent early stages of the evolution follow those computed by Schön-
berg and Chandrasekhar134 (reference is given to Schönberg and Chandrasekhar
1942), with the core finally exhausted of hydrogen and therefore isothermal.
The nuclear-energy production is then confined to a shell between the exhausted
core and the radiative envelope. The assumption of no mixing creates a chem-
ical discontinuity between the core and the shell. When the shell has burned
outward until it reaches the Schönberg – Chandrasekhar limit for an isothermal
core, a new evolutionary process must take place, which is most likely a gravita-

130 Oke and Schwarzschild (1952, p. 330).
131 Sandage and Schwarzschild (1952).
132 The importance of the 1952 paper by Sandage and Schwarzschild is emphasized in literature. See Arny
(1990, p. 224); Longair (2007, p. 188); Tassoul and Tassoul (2004, p. 150). Moreover, Gingerich and Lang,
in their selected bibliography of astronomy in the years 1900–1975, chose this paper as representative of
the solution of the giants problem (1979, pp. 353–363).
133 Arp et al. (1952). A further work on the same subject is on 1953.
134 In the original paper reference is here given to Schönberg and Chandrasekhar (1942).
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tional contraction of the core. This paper is concerned with the quasi-equilibrium
states through which an unmixed model passes after reaching the Schönberg –
Chandrasekhar limit.135

Sandage and Schwarzschild assumed that the energy ε supplied by gravitational
contraction was equally distributed throughout the core (an admittedly unrealistic
assumption) and that degeneracy and radiation pressure were negligible. They further
made a reasonable assumption we will not discuss about the shift from Kramer’s to
the electron-scattering regime for the absorption coefficient. Finally, they relied on the
hypothesis that the inhomogeneities could be described by a sudden jump from the
core to the envelope, such as:

(X i, Y i, Z i) = (0, 0.98, 0.02) → (X e, Y e, Z e) = (0.596, 0.384, 0.02)

µi → µe = 0.5µi
(40)

The two scientists followed the U–V fitting method and plotted a graph similar
to the one in Fig. 10—left. In particular, the luminosity Lg due to gravitational con-
traction was estimated and included in the integration process. This term obviously
depends on time. Consequently, the evolution of a star of a given mass had a further
time-dependence, beyond the one implicitly contained in the variation of the µ value.

Once the fitting process was done, the physical features of three model stars of
1M�, 2M� and 4M� could be determined in a way similar to the one used in the
paper by Oke and Schwarzschild (via the second of Eqs. 34 and Eq. 36). As a result,
the core contracts and the envelope expands dramatically:

The star must pump energy into the expansion of the outer layers so as to over-
come the gravitational potential. This energy is supplied by the outgoing flux
produced by the nuclear and gravitational sources closer in.136

The authors also observed that central temperature rose up from 30 to 170 million
degrees, and they correctly pointed out that this was due to the fact that only a portion of
the gravitational energy was radiated away—a noteworthy feature, since in the point-
source model Oke and Schwarzschild had previously developed, central temperature
was assumed to be constantly equal to 3 × 107 K as hydrogen was supposed to be
continuously burning in the star’s interior. Sandage and Schwarzschild’s paper gives
a more reliable description of a giant star, in that it describes a further evolutionary
stage in which the core begins to shrink and to heat up. The associated evolutionary
tracks are depicted in the H–R diagram (see Fig. 11).

The first part of the evolutionary track shows a moderate brightness increase at an
almost constant surface temperature, as Schönberg and Chandrasekhar had already
pointed out. This corresponds to a transition from the Cowling configuration on the
main sequence to the isothermal core, that is still close by in the diagram. When it sets
in, the core collapse boosts the envelope expansion and a quick shift to the red giant
zone.

135 Sandage and Schwarzschild (1952, p. 463).
136 Sandage and Schwarzschild (1952, p. 471).
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Fig. 11 Evolutionary tracks in
the H–R diagram. The main
sequence (based on Cowling’s
model) is shown on the left. The
full and dashed lines have the
same meaning as in
Fig. 10—right. No comparison
with observational data is
present (from Sandage and
Schwarzschild 1952, p. 473).
Reprinted with kind permission
of the American Astronomical
Society

This conclusion proves to be a powerful tool for interpreting the H–R diagram
of globular clusters. The fainter stars have not reached the Schönberg-Chandrasekhar
limit yet, but the brighter ones have, moving to the right in the process. Some stars
caught in their expansion stage link the main sequence to the giant branch.

The work by Sandage and Schwarzschild is a major achievement. However, it is not
flawless. The evolutionary tracks move towards large radii but they fail to account for
the increase in luminosity that is observed in actual giants. Sandage and Schwarzschild
commented:

A […] difficulty arises when the extent of the envelope expansion is considered.
Under the present assumptions there is no reason why the envelope expansion
should stop at or before [the point labelled as] VII, while the observed H-R dia-
grams of globular clusters seem to indicate that the expansion should essentially
stop about at [the point labelled as] V, and then mainly a brightening […] and only
little further expansion […] should occur. One may speculate that around [the
point labelled as] V a physical process not included in the present computations
should start to play an essential role.137

The two authors considered two tentative explanations for the “physical process not
included in the present computations”: (1) helium ignition and burning in the central
regions and (2) a certain amount of mixing near the shell due to stellar rotation, which
might reduce the degree of inhomogeneity.

As for helium ignition, the central temperature Sandage and Schwarzschild came
up with was too low if compared to Salpeter’s coeval estimates.138 Nevertheless, it
was of the same order of magnitude, which implied that helium fusion could not

137 Sandage and Schwarzschild (1952, p. 475).
138 Salpeter (1952).
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Fig. 12 Evolutionary tracks
(which the authors defined
“speculative”) in the H–R
diagram for stars of different
masses, according to the
helium-burning model. The
heavy line is the expected
distribution of a globular cluster
3.5 billion years in age (from
Sandage and Schwarzschild
1952, p. 475). Reprinted with
kind permission of the American
Astronomical Society

be thoroughly ruled out. Assuming helium actually underwent the fusion process,
preliminary estimates were made for stars constituted by “a hydrogen-rich envelope,
a shell in which hydrogen burns, a helium-rich intermediate zone, a shell in which
helium burns, and an inert core of heavy elements.”139 These led to an H–R diagram
(see Fig. 12) more closely matching the diagram of globular clusters.

Noticeably, the idea that convection could settle in the envelope was not considered
as a possible explanation of why the tracks in Fig. 11 move far to the right without
bending upwards.

More generally, we can identify three critical assumptions in Sandage and Schwarzs-
child’s models: (1) a lack of gas degeneracy, (2) an abrupt discontinuity in the µ value
and (3) obviously enough, the absence of convection in the envelope.

All the three assumptions were further investigated by Schwarzschild and associates
in the following years, and the whole issue of the giant stars was finally solved.

9.3 Gas degeneracy and continuous mixing

The degeneracy issue was addressed in 1953 by Schwarzschild, together with I. Rabi-
nowitz and R. Härm.140 Core degeneracy was not considered in the previous models,
and Sandage and Schwarzschild had actually discussed whether such an assumption
was tenable. It turned out that in fact it was, although some degeneration could be
present in the innermost zones of less massive stars.

Then Schwarzschild, Rabinowitz and Härm focused on a more detailed investi-
gation of possible, partial degeneracy in the stellar core, following in Gamow and
Keller’s footsteps. They considered a shell-source model with an isothermal core sur-
rounded by an inert envelope. Composition was again thought to change abruptly at
the envelope–core interface (i.e. in the infinitesimally thin shell). The basic equations
remained similar to (35) and (37) for the envelope, but were changed for the core.

139 Sandage and Schwarzschild (1952, p. 475).
140 Schwarzschild et al. (1953).
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As had been the case with Gamow and Keller, Wares’ solutions141 were adopted for
integration purposes. The resulting stellar models happened to fit the red giant region
of the H–R diagram well:

[...] the present models cover well the area occupied by the red giants. Hence the
present detailed computations appear to substantiate the earlier tentative conclu-
sions by Gamow and Keller142 that models with partially degenerate isothermal
cores may under certain circumstances have very large radii.143

Once again, however, some models turned out to have huge (larger than expected)
radii and very low (around 103 K) surface temperatures, as no convection in the enve-
lope was considered.

This issue was further investigated in a paper by Härm and Schwarzschild,144 who
assumed a continuously changing chemical composition, with µ varying by a factor
2.5 from the core to the surface. Their models were constructed as follows: µ = µi
(constant) in the core and µ = µe = 0.4µi (constant) in the envelope, µ(r) continu-
ously varying from µc to µe in an intermediate zone. Degeneracy and (as in all previous
papers) radiation pressure were neglected. Both convective-core (point-source) and
isothermal-core (shell-source) models were investigated. Equations 39 were replaced
to meet the requirement that U and V be continuous throughout the star. The resulting
numerical integrations showed that, for stars having the same mass, central temper-
ature and overall chemical compositions, no great differences in brightness were to
be expected when moving from the discontinuous to the continuous case. As for the
radii, Härm and Schwarzschild observed that red giants were well described and that,
once more, “for the more extended stars, however, the discontinuous models appear
to exaggerate the radius.”145

The issue of the continuous variation of µ was also tackled by Roger J. Tayler
in 1954.146 The English astrophysicist pointed out that, as the core retreats during
evolution, a region of continuously varying composition must exist. Consequently,
he calculated some models for a massive star of 9.9 M�—in which electron opacity
dominates and radiation pressure is taken into account—with a diminishing hydrogen
content in the interior and a shrinking core. Following hydrogen depletion in the core,
the star’s radius increases and its surface temperature decreases. Although the evolu-
tionary track for this star is somewhat different from the ones developed by Sandage
and Schwarzschild for the stage preceding the collapse of the core, overall evolution
was not much different and the resulting H–R diagram for a globular cluster of a
given age proved to be quite similar.

141 Wares (1944).
142 In the original paper reference is here given to Gamow and Keller (1945).
143 Schwarzschild et al. (1953, p. 333).
144 Härm and Schwarzschild (1955).
145 Härm and Schwarzschild (1955, p. 453).
146 Tayler (1954).
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Fig. 13 H–R diagram (colour
index versus visual magnitude)
for a globular cluster (from
Hoyle and Schwarzschild 1955,
p. 2). Reprinted with kind
permission of the American
Astronomical Society

9.4 Hoyle, Schwarzschild and the first reliable giant stars models

In 1955, Hoyle and Schwarzschild published a landmark paper entitled “On the evolu-
tion of Type II stars”.147 Hoyle and Schwarzschild were awarded the International Bal-
zan Prize for Astrophysics in 1994 for, as the formal citation stated, “their pioneering
contributions to the theory of stellar evolution, upon which the modern development
of the field is founded.”148 The prize was actually giving credit to their 1955 paper. It
is always a little risky to identify a single work as the one that brought a long-debated
scientific issue to an end. However, the 1955 paper by Hoyle and Schwarzschild defi-
nitely stands out among coeval works, both for the results it yielded and for the physical
insight it showed, and can be identified as the one that finally solved the giants issue,
at least for low-mass stars.

Hoyle and Schwarzschild’s aim is to study stars approaching the turning-point in the
H–R diagram of globular clusters, i.e. with masses around 1.1–1.2 M� and belonging
to population II. Such a choice was fostered by Arp, Baum and Sandage’s recent work
upon globular clusters M3 and M92 mentioned above, as well as by another paper by
Sandage published in 1954.149

Hoyle and Schwarzschild started by drawing an H–R diagram for a globular cluster
(Fig. 13).

They observed that:

The latter line [i.e. the line occupied by the stars in the diagram] is the locus for
stars of various masses at one time, while an evolutionary track is the locus for
stars of the same mass at various times. This difference, however, is in practice
rather small [because] all the stars in globular clusters which are now observed
between points M and P [of fig. 13] have started their evolution within a short

147 Hoyle and Schwarzschild (1955).
148 See http://www.balzan.it/en\Cprizewinners\FredHoyleeMartinSchwarzschild.aspx (as of October
2009).
149 Sandage (1954).
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section of the main sequence, have therefore nearly the same masses, and are
evolving along a tight family of tracks which closely hug the observed sequence
in the colour-magnitude diagram.150

Hence, it was a matter explaining the different sections of the path for a star of
1.1–1.2 M�.

First, the authors investigated the path from L to M . They considered energy supply
as mainly due to the CNO cycle.151 As the core gets exhausted, it must become iso-
thermal due to the electron conduction that occurs as degeneracy settles in. The whole
issue then boils down to investigating what happens to an isothermal, partially degen-
erate core surrounded by a layer of negligible thickness where hydrogen transmutation
takes place.152 Hoyle and Schwarzschild’s also assumed no relativistic degeneracy,
a negligible radiation pressure, an abrupt change in chemical composition between
the core and the envelope. This means that initially µc = 0.533 (mainly hydrogen)
anywhere in the star. Then a discontinuity is established: µc changes to the value 4/3
(pure helium), while µe remains equal to 0.533.

Furthermore, the envelope was supposed to be in radiative equilibrium, but “this
assumption applies only to the evolution from L to M [and it will] be dropped when
we come to consider the later stages of the evolution.”153 One of the paper’s key points
was clear right from the outset, namely the introduction of convection in the envelope
in later stages of evolution. Finally, the envelope was split into two parts as a conse-
quence of two opacity regimes: free–free in the outer part (obeying Kramers’ formula
(10)) and electron scattering in the inner one—opacity always being continuous, but
with an abrupt change from one formula to the other.

The method of the homology invariants U and V had become a standard technique
by then, and Hoyle and Schwarzschild introduced them as set out in Eq. 14. They also
used as a further homology invariant the effective polytropic index:

n + 1 = dlogP(r)

dlogT (r)
= T (r)

P(r)

dP(r)

dT (r)
= 16πacGT (r)4 M(r)

3κ(r)P(r)L(r)
→ (envelope)

n = ∞ → (core)

(41)

(the expression of n + 1 in (41) follows directly from Eqs. 1 and 13; Eq. 13 holds
as long as the envelope is supposed to be in radiative equilibrium).

They estimated an abundance of C and N around 0.0005, that seemed appropriate
for type-II stars.

The results of the integration process are illustrated in Fig. 14, in which a star is
placed in the H–R diagram as a function of the increasing core mass.

150 Hoyle and Schwarzschild (1955, p. 2).
151 Although the authors reckoned that such an assumption “is not correct for the early part of the evolution
near L”, they nevertheless adopted it, as “the present work has been undertaken by way of a preliminary
reconnaissance of the problem” (Hoyle and Schwarzschild 1955, p. 3 and 1).
152 The authors explicitly referred to Schwarzschild et al. (1953), claiming they would essentially follow
the same procedure.
153 Hoyle and Schwarzschild (1955, p. 4).
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Fig. 14 A comparison between
the observational H–R diagram
for a globular cluster (shaded
area) and the calculated models
with exhausted, partially
degenerate, isothermal cores and
radiative envelopes (filled
circles). The numbers indicate
the mass fraction of the core,
which grows over time (from
Hoyle and Schwarzschild 1955,
p. 10). Reprinted with kind
permission of the American
Astronomical Society

The tendency of the calculated points to lie on the left side of the shaded area can
be easily explained in the light of the approximations made. However, this is not true
for the 0.22 point, and even less so for a 0.25 point that lies so far to the right as to
fall outside the diagram. This evolution to the right at an almost constant luminosity
is exactly the same result Hoyle and Lyttleton got in 1949 (see Fig. 8), with Sandage
and Schwarzschild following suit in 1952 (see Fig. 11). As we saw above, Sandage
and Schwarzschild investigated possible ways to get rid of this discrepancy, but they
did not consider the possibility that convection might arise in the envelope. Hoyle
and Schwarzschild realized that and commented that “radiative-envelope solutions
integrated to the mathematical boundary condition of zero pressure and temperature
at the surface of the star cease to give a satisfactory expression of the actual physical
boundary condition.”154 Consequently, at the surface T must approach Teff and ρ must
approach a value consistent with the fact that light escapes from the star. In their late
models, Hoyle and Schwarzschild found that density fell off too soon, i.e. reached a
value that was acceptable for the photosphere before T decreased to Teff .

Other scholars had already suggested that red stars must possess a convective zone
in the outer envelope. In 1951, J. G. Gardiner attempted to build a red giant model
moving inwards from the surface of the star.155 Although he stuck to the assumption
of a fully radiative envelope in his calculations, he found that “the outer regions of the
atmosphere, as calculated for this model, will probably possess convectively unstable
zones”.156 In 1953, following detailed calculations, Donald E. Osterbrock suggested
that red dwarf stars might have an outer convective zone extending inwards for about
1/3 of the stellar radius.157

Convection in the envelope could well be the solution to the discrepancies Hoyle
and Schwarzschild had found. This played a crucial role in explaining the increase in
luminosity that occurred in the MN track of Fig. 13.

154 Hoyle and Schwarzschild (1955, p. 12).
155 Gardiner (1951).
156 Gardiner (1951, p. 102).
157 Osterbrock (1953).
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Consequently, the two scholars introduced convection in the outer envelope, replac-
ing Eq. 13 with P = kT 2.5 (Eq. 20 with γ = 5/3 and k to be determined by surface
conditions). The equations for the core remained unchanged. It was then a matter of
integrating the different zones: core, radiative envelope and convective envelope.

Let us begin with the core. Its uniform temperature, that had been shown by previ-
ous calculation to rise from about 13–20 million degrees along the LM path, was now
supposed to keep constant at 20 ×106 K throughout the evolution from M to N , so
as to sustain the CNO cycle in the burning shell. However, Hoyle and Schwarzschild
found that such an assumption could not be extended to the N O path—if it had been,
the growing core mass would have triggered too large a decrease in the density of the
burning shell. In order for the correct rate of energy production to be secured, this
density decrease had to be balanced by a temperature boost. This implies a stage when
the core warms up:

Stellar models for the portion N-O of the evolutionary track may be defined as
the portion of the evolution where the core begins to warm up. Along the portion
L-M there was some degree of heating of the core, from about 13 × 106◦K to
about 20 ×106◦K. This rise was occasioned mainly by the proton-proton chain’s
being the main source of energy production for stellar models near L. Once the
carbon cycle becomes the main source of energy production, as it is near M, the
value of T1 [= temperature in the core] stays nearly constant at 20 × 106◦K until
the neighbourhood at N is reached. Then a further stage of heating sets in.158

The computations for the inner zone of the star showed that, along with a core
mass increase from approximately 0.3 to 0.6, temperature also grew from about 20
to 50 × 106 K, and the star’s luminosity underwent a huge boost from a few tens
to about ten thousand solar luminosities. As for the radius, it could not be deduced
from the configurations of the core as it depended upon the boundary conditions of
the star. More specifically, luminosity turned out to be determined by the core’s mass
during evolution and to be scarcely dependent upon surface temperature and radius,
whereas surface temperature and (for a given luminosity) the radius itself resulted
scarcely dependent upon the mass content of the core but strongly dependent upon the
boundary conditions.

As for surface conditions, with special emphasis on the newly introduced convec-
tive zone, Hoyle and Schwarzschild carefully described the structure of the stellar
atmosphere by dividing it into three regions:

(1) an upper photospheric region with isothermal equilibrium; (2) a lower photo-
spheric region in which energy flow is predominantly by radiation (convection
may occur in this region but is unable to convey the whole energy flux); and
(3) a convection zone in which the energy flow is predominantly by convec-
tion. The convection is divided into two parts, a thin outer shell in which the
ionization of hydrogen is incomplete and the deeper zone that runs into the
interior solution.159

158 Hoyle and Schwarzschild (1955, p. 19).
159 Hoyle and Schwarzschild (1955, p. 21).
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Fig. 15 Comparison between
the observational H–R diagram
for a globular cluster (shaded
area) and the calculated models
overtopped by a convective
envelope. The numbers indicate
the mass fraction of the core
(which grows over time). Circles
refer to type-II giants, crosses to
type-I giants (from Hoyle and
Schwarzschild 1955, p. 27).
Reprinted with kind permission
of the American Astronomical
Society

An elaborate analysis of this multi-layered atmosphere and of the way it fitted the
interior led to estimate the value of R/R� as determined by L/L�. It turned out that, as
luminosity increased up to values of the order of 7000L�, radius enlargement reached
values of the order of 160R�. The representative points were depicted in the H–R
diagram (Fig. 15).

A comparison between Figs. 14 and 15 shows that a core mass ratio around 0.20
acts as the “turning point” in the steepness of the giant branch. “For earlier models
(i.e. with the mass ratio below 0.2)—the authors commented—it seems highly likely
that convection in the envelope plays only a minor role”.160

From Fig. 15, there appears to be a fair agreement between calculated models and
observations, except for the models with a larger core/mass ratio, e.g. 0.55. According
to Hoyle and Schwarzschild, this could be due to an assumption they made while
discussing the atmosphere, namely that the supply of free electrons was mainly due to
hydrogen. Clearly, at decreasing Teff the contribution by metals is expected to exceed
the contribution by hydrogen at some point, even if metals are supposed to be present in
a very small amount. According to the calculations, the hydrogen–metal ratio required
to overcome the discrepancy and to shift the 0.55 point downwards to meet the giant
branch must be of the order of ≈ 105, in fair agreement with coeval spectroscopic
data.

Moreover, this observation fostered Hoyle and Schwarzschild’s interest in metal-
richer stars, like Type-I giants. Assuming a hydrogen-to-metals ratio of the order of
≈ 104, the resulting models for type-I giant turned out to be less luminous than for
type II, in good agreement with the observations: “in the photospheric regions […]
the metal content […] greatly affects the extent of the tenuous envelope, i.e. the radius
of the star.” 161

One final issue still remains open: what happens after the star has reached the
topmost point O of its evolutionary curve? Why does not brightness get any larger?

160 Hoyle and Schwarzschild (1955, p. 27).
161 Hoyle and Schwarzschild (1955, p. 30).
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All models constructed so far rested upon the isothermal core assumption. The
steady boost in its temperature along the NO track goes hand in hand with the increase
in energy generation and in brightness. But at some point the isothermal condition
begins to fade. As more and more material is added to the core, gravitational energy is
released. This generates a temperature gradient capable of triggering a flux of energy
out of the core. Such en energy flux is proportional to the rate at which helium is added
to the core, i.e. to the star’s brightness.162 As a consequence of that, the isothermal
condition becomes increasingly questionable as the star climbs the N O track.

But what is the effect of a rising temperature in the innermost part of the core? As
long as the inner part of the core maintains an essentially degenerate structure, the
temperature increase has little effect on pressure and consequently on core structure:
“it therefore appears that a really marked deviation from the models discussed is con-
tingent on the core’s assuming a non-degenerate structure, even in its inner part.”163

It remained to be decided what process could remove the core’s degeneracy.
That process was probably—Hoyle and Schwarzschild argued—helium ignition,

as suggested by Salpeter in 1952 and by Hoyle himself in 1954.164 Helium fusion
can cause problems when it takes place in a degenerate material. As is well known,
a degenerate gas cannot balance itself by expanding if the energy production ratio is
too high. Provided the star does not explode altogether, degeneracy must be removed
at some point. According to the two scholars, this was the reason why the star stopped
its ascent along the giant branch. Hoyle and Schwarzschild performed a quantitative
analysis to tackle that issue. The helium ignition temperature was assumed to lie at
1.2 × 108 K. This led to estimate that the luminosity at which such a temperature was
achieved in the centre must be around 5000 L�—the same order of magnitude of point
O in the diagram. This conclusion was the same for both type-I and -II giants.165

These considerations made an analysis of the OP track of Fig. 13 finally possible.
The authors considered these stars to have a non-degenerate core, a double nuclear
energy source resulting from helium burning in the core and hydrogen burning in the
shell, and an enclosing radiative envelope (convection in the envelope was no longer
considered). Due to the strong dependence of helium fusion on temperature, a convec-
tive innermost zone could be expected. Calculations were carried out in a way similar
to previous investigations, and results (shown in Fig. 16) were reckoned to be “not
entirely discouraging”.166

At first, these stars began to slip down the giant branch, then moved mainly to the
left, parallel to the O P path, although, roughly one order of magnitude above it. Hoyle

162 Provided L continues to be mainly sustained by nuclear reactions in the shell, i.e. provided the con-
tribution of gravitational energy to L is minor. Hoyle and Schwarzschild reckoned this assumption to be
valid, as they thought that the release of gravitational energy had the main effect to heat up the core.
163 Hoyle and Schwarzschild (1955, p.31).
164 Salpeter (1952) and Hoyle (1954).
165 Due to the fact that their work is, in the authors’ words, “a preliminary reconnaissance of the problem”
(see also note 151), small discrepancies between the estimated value of 5000 L� and the actual position of
the point O should not be overrated. A greater problem seems to arise from the fact that the points associ-
ated to type-I giants lie much lower down. Hoyle and Schwarzschild ascribed this to different bolometric
corrections for the two star types.
166 Hoyle and Schwarzschild (1955, p. 37).
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Fig. 16 H–R diagram with the
whole evolution of type-II stars.
The squares stand for the
helium-burning calculated
models (with core to total mass
ratios equal to 0.60, 0.70 and
0.80); filled and open circles
have the same meaning as in
Figs. 14 and 15 respectively
(from Hoyle and Schwarzschild
1955, p. 36). Reprinted with
kind permission of the American
Astronomical Society

and Schwarzschild regarded this as possibly due to the fact that all helium had to burn
up before the cores attained a mass ratio of 0.7. This led to an even more complicated
model, with an inner (perhaps partially degenerate and isothermal) carbon core and a
helium-burning shell. But the integration of such a model was judged by the authors
to be beyond the scope of their paper.

The paper by Hoyle and Schwarzschild is rightfully considered to be a pivotal work
in the history of twentieth-century stellar astrophysics, especially when it comes to the
giants issue. As we said, it provided the first sound model of red giant stars. Moreover,
it depicted a grand scenario that brought together contributions from different fields:
the concepts developed by Hoyle and Schwarzschild themselves and their colleagues
regarding giant stars, as well as suggestions from the theory of stellar atmospheres
and recent insights from nuclear physics about the helium ignition stage.

Moreover, Hoyle and Schwarzschild’s paper plays a symbolic role, in that it “marks
the end of the older era of stellar models, when models were generated one at a time
by incredibly tedious work using hand-operated office desk calculators. This allowed
snap-shot views of a star’s history, but conveyed only a rough sense of evolution”.167

Here and there this difficulty surfaces in the words of the scientists involved as a vindi-
cation for making reasonable approximations. For example Hoyle and Schwarzschild
stated that “the arithmetical work was found to be so heavy that it seemed desirable,
always remembering that the present investigation is only a preliminary reconnais-
sance, to introduce an approximation into the calculations.”168 The two scientists also
remarked, towards the end of their 1955 paper, that the huge difficulties they met in
carrying on the calculations possibly were “an indication that an entirely new line of
attack is desirable. In this case, we feel that the new line may turn out to be a fully
automatic representation, using large electrical machines”.169

167 Arny (1990, p. 225).
168 Hoyle and Schwarzschild (1955, p. 15).
169 Hoyle and Schwarzschild (1955, pp. 39–40).
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1955 was also the year when the first computer-based stellar models appeared.170

This opened up an era of much easier calculations and the subsequent possibility to
develop more complex stellar models. The research fields involved in stellar evolu-
tion that benefited from it include convection in stellar envelopes, nuclear reactions
beyond hydrogen fusion (helium ignition, helium flash, further reactions up to iron
formation), post-giant evolution, mass loss.171 Clearly, some of them were already
included in Hoyle’ and Schwarzschild’s work.

10 Conclusions

All things considered, the road that led to the recognition of giants as evolved stars and
to a satisfactory description of their structure was long but not excessively winding.
The discontinuity of the twenties was followed by a period of “normal science”172

that lasted at least until the 1950s, during which a number of scholars focused on
explaining the evolutionary role played by giant stars.

What was the interplay of theory and observation in solving the giants issue, and
how did progress in both fields influence the search for a solution?

Major advances were made in observational astronomy during the decades con-
sidered. In fields of astrophysics such as cosmology, ground-breaking achievements
opened up new scenarios for the structure of the universe. On the other hand, if we
restrict our analysis to the field we are dealing with, namely stellar astrophysics, we
can easily spot a number of significant results like the study of the H–R diagram of
globular clusters and the discovery of the existence of two populations of stars. Obvi-
ously enough, these achievements had an impact on the giants issue in the final part
of the timeframe investigated in this paper. However, in our opinion they cannot be
considered ground-breaking observations: from an observational viewpoint, the giants
issue was already well established in the 1910s. The new observational data gathered
afterwards provided additional insights that had to be incorporated in the theories, but
did not have an impact on the basic features of the issue as a whole.

The issue was mainly a theoretical one. The final breakthroughs that led to a sat-
isfactory explanation of the giants’ structure came in steps. The ideas put forth by
Strömgren, Gamow, etc. laid the foundations for further speculations. Of course, one
should not forget that scientists went down a number of blind alleys as well. Some
of them unveiled new possible paths to be pursued, others did not. Furthermore, the
scientists involved depicted evolutionary paths on the H–R diagram that were to be
discarded afterwards. But this was fully to be expected. These considerations do by
no means affect the conclusion that, all in all, the solution to the giants issue should
be regarded as “normal science”.

170 Henyey et al. (1955a,b).
171 For a first-level elaboration about these topics see Arny (1990, pp. 225–227), Tassoul and Tassoul
(2004, pp. 152–158).
172 Such a term is to be put in quotes, as it is not meant in a fully Kuhnian sense. For the same reason,
the birth of theoretical astrophysics can more accurately be described as a discontinuity rather than as a
revolution. See also note 1.

123



264 D. Cenadelli

The issue was mainly a theoretical one, as I said. At a closer inspection, although the
onset of nuclear physics obviously played a crucial role, the description of degenerate
gas behaviour and the rejection of electron–proton annihilation (in turn an outcome
of the mass-energy equivalence principle) were also important. However, although
the inclusion of nuclear physics theories into astrophysics was a necessary and huge
step, it was rather different in character from the discontinuity that the ground-break-
ing inclusion of atomic physics had brought about in a previous period. It was only
natural that the theories about the nucleus should enter the existing field of theoretical
astrophysics and provide scientists with new tools to look deeper into the mysteries of
stellar matter, building on a picture of stellar structure that was already available. From
nuclear physics scholars took what they needed to integrate stellar structure equations.

Having reached the end of the long road that led to a satisfactory understanding
of red-giants structure, it might be appropriate to hint at an issue that has basically
remained in the background so far. What does physically cause red giants to be formed?
Answering this question is by no means a straightforward task. As we saw, the descrip-
tion of the structure of red giants resulted from a huge number of time-consuming
numerical integrations. Clearly, there is no other way to try and figure out the steps of
stellar evolution. But telling the technical aspects of integration apart from the essen-
tial underlying physics is not easy. If there is but one message to take home from the
quest for an explanation of giants, it is that a complex interplay of several primary
causes is at work here.

The difficulty of developing a simple physical explanation of red giants becomes
apparent when reading books about their nature. Entry-level books point to the core
collapse and core–envelope uncoupling as main factors that cause giants to puff up.
Which they are, of course. But the other factors are seldom mentioned. Higher-level
books are obviously very accurate, but usually much more focused on integration. I
think it fair to conclude by highlighting this issue, as well as the existence of consider-
able literature about it.173 This might be an interesting topic for further investigation
work.

References

Applegate, J.H. 1988. Why stars become red giants. Astrophysical Journal 329:803–807.
Arny, T. 1990. The star makers: a history of the theories of stellar structure and evolution. Vistas in Astronomy

33:211–233.
Arp, H.C., Baum, W.A., and Sandage, A.S. 1952. The HR diagrams for the globular clusters M 92 and M

3. Astronomical Journal 57:4–5.
Arp, H.C., Baum, W.A., and Sandage, A.S. 1953. The color-magnitude diagram of the globular cluster M

92. Astronomical Journal 58:4–9.
Atkinson, R.d’E., and Houtermans, G. 1929. Zur Frage der Aufbaumöglichkeit der Elemente in Sterne.

Zeitschrift für Physik 54:656–665.
Baade, W. 1944. The resolution of Messier 32, NGC 205, and the central region of the Andromeda Nebula.

Astrophysical Journal 100:137–146.

173 This topic is discussed, for example, in Yahil and van der Horn (1985), Applegate (1988), Celnikier
(1990), Renzini et al. (1992), Faulkner (1997), Eggleton et al. (1998). Whitworth stated that “a simple
explanation of giantness simply does not exist.” (Whitworth 1989, p. 505). This list of references is just a
tentative suggestion for further elaboration and should not be regarded as exhaustive.

123



Solving the Giant Stars Problem 265

Beech, M. 1988. The Schoenberg-Chandrasekhar limit: a polytropic approximation. Astrophysics and Space
Science 147:219–227.

Celnikier, L.M. 1990. A simple way to assess the structure of red giants. American Journal of Physics
58:169–177.

Celnikier, L.M. 2006. Find a hotter place! A history of nuclear astrophysics. Singapore: World Scientific
Publishing.

Cenadelli, D. 2008. The hydrogen abundance in stars: a first major step for quantitative astrophysics. Journal
of Astronomical History and Heritage 11:134–145.

Chandrasekhar, S. 1939. An introduction to the study of stellar structure. Chicago: University of Chicago
Press.

Collins, G.W. II. 1989. The fundamentals of stellar astrophysics. New York: W H Freeman & Co.
Cowling, T.G. 1930. On a point-source model of a star. Monthly Notices of the Royal Astronomical Society

91:92–108.
Cowling, T.G. 1931. Note on the fitting of polytropic models in the theory of stellar structure. Monthly

Notices of the Royal Astronomical Society 91:472–478.
Cowling, T.G. 1934. The stability of gaseous stars. Monthly Notices of the Royal Astronomical Society

94:768–782.
Cowling, T.G. 1935a. The stability of gaseous stars (Second paper). Monthly Notices of the Royal Astro-

nomical Society 96:42–60.
Cowling, T.G. 1935b. Convection in stars. Observatory 58:243–247.
Cowling, T.G. 1966. The development of the theory of stellar structure. Quarterly Journal of the Royal

Astronomical Society 7:121–137.
Critchfiled, C.L., and Gamow, G. 1939. The shell-source stellar model. Astrophysical Journal 89:244–254.
DeVorkin, D.H., and Kenat, R. 1983a. Quantum physics and the stars (I): the establishment of a stellar

temperature scale. Journal for the History of Astronomy 14:102–132.
DeVorkin, D.H., and Kenat, R. 1983b. Quantum physics and the stars (II): Henry Norris Russell and the

abundances of the elements in the atmospheres of the Sun and stars. Journal for the History of Astronomy
14:180–222.

Dingle, H. 1963. A hundred years of spectroscopy. The British Journal for the History of Science 1:199–216.
Eddington, A.S. 1916. On the radiative equilibrium of the stars. Monthly Notices of the Royal Astronomical

Society 77:16–35.
Eddington, A.S. 1917. Further notes on the radiative equilibrium of the stars. Monthly Notices of the Royal

Astronomical Society 77:596–612.
Eddington, A.S. 1924a. The absorption of radiation inside a star. Monthly Notices of the Royal Astronomical

Society 84:104–123.
Eddington, A.S. 1924b. On the relation between the masses and luminosities of the stars. Monthly Notices

of the Royal Astronomical Society 84:308–332.
Eddington, A.S. 1927. Stars and atoms. Oxford: Oxford University Press.
Eddington, A.S. 1932. The hydrogen content of the stars. Monthly Notices of the Royal Astronomical Society

92:471–481.
Eddington, A.S. 1938. Star models with variable polytropic index. Monthly Notices of the Royal Astronom-

ical Society 99:4–13.
Eggleton, P.P., Faulkner, J., and Cannon, R.C. 1998. A small contribution to the giant problem. Monthly

Notices of the Royal Astronomical Society 298:831–834.
Faulkner, J. 1997. Why stars don’t become red giants—and why they DO! Advances in Stellar Evolution,

Proceedings of the Workshop Stellar Ecology, held in Marciana Marina, Elba, Italy, 23–29 June 1996,
9–10.

Gamow, G. 1938a. Nuclear energy sources and stellar evolution. Physical Review 53:595–604.
Gamow, G. 1938b. A star model with selective thermo-nuclear source. Astrophysical Journal 87:206–208.
Gamow, G. 1938c. Tracks of stellar evolution. Physical Review 53:907–908.
Gamow, G. 1939a. The energy-producing reaction in the Sun. Astrophysical Journal 89:130–133.
Gamow, G. 1939b. Physical possibilities of stellar evolution. Physical Review 55:718–725.
Gamow, G. 1939c. Nuclear reactions in stellar evolution. Nature 144:575–577.
Gamow, G. 1944. The evolution of contracting stars. Physical Review 65:20–32.
Gamow, G. 1945. The red-giant stage of stellar evolution. Physical Review 67:120–121.
Gamow, G., and Keller, G. 1945. A shell source model for red giant stars. Reviews of Modern Physics

17:125–137.

123



266 D. Cenadelli

Gamow, G., and Teller, E. 1939. Energy production in red giants. Physical Review 55:791.
Gardiner, J.G. 1951. A model of a red giant star. Monthly Notices of the Royal Astronomical Society

111:102–110
Gingerich, O., and Lang, K. (eds.). 1979. A source book in astronomy and astrophysics, 1900–1975. Cam-

bridge: Harvard University Press.
Goldberg, L. 1988. Atomic spectroscopy and astrophysics. Physics Today 41:38–45.
Hall Harrison, M. 1944. The generalized Cowling Model. Astrophysical Journal 100:343–346.
Hall Harrison, M. 1946. Stellar models with partially degenerate isothermal cores and point-source enve-

lopes. Astrophysical Journal 103:193–206.
Härm, R., and Schwarzschild, M. 1955. Inhomogeneous stellar models. IV. Models with continuously

varying chemical composition. Astrophysical Journal 121:445–453.
Hearnshaw, J.B. 1986. The analysis of starlight: one hundred and fifty years of astronomical spectroscopy.

Cambridge: Cambridge University Press.
Hen, L., and Schwarzschild, M. 1949. Red-giant models with chemical inhomogeneities. Monthly Notices

of the Royal Astronomical Society 109:631–646.
Henrich, L.R., and Chandrasekhar, S. 1941. Stellar models with isothermal cores. Astrophysical Journal

94:525–536.
Henyey, L.G., Lelevier, R., and Levée, R.D. 1955a. The early phases of stellar evolution. Publications of

the Astronomical Society of the Pacific 67:154–160.
Henyey, L.G., Lelevier, R., and Levée, R.D. 1955b. Evolution of Sirius. Publications of the Astronomical

Society of the Pacific 67:341–342.
Herrmann, D.B. 1984. The history of astronomy from Herschel to Hertzsprung. Cambridge: Cambridge

University Press.
Hoskin, M. (ed.).1999. The Cambridge concise history of astronomy. Cambridge: Cambridge University

Press.
Hoyle, F. 1954. On nuclear reactions occuring in very hot stars. I. The synthesis of elements from carbon

to nickel. Astrophysical Journal Supplement 1:121–146.
Hoyle, F., and Lyttleton, R.A. 1942a. On the internal constitution of the stars. Monthly Notices of the Royal

Astronomical Society 102:177–193.
Hoyle, F., and Lyttleton, R.A. 1942b. On the nature of red giant stars. Monthly Notices of the Royal Astro-

nomical Society 102:218–225.
Hoyle, F., and Lyttleton, R.A. 1946. Note on stellar structure. Monthly Notices of the Royal Astronomical

Society 106:525–530.
Hoyle, F., and Lyttleton, R.A. 1949. The structure of stars of non-uniform composition. Monthly Notices of

the Royal Astronomical Society 109:614–630.
Hoyle, F., and Schwarzschild, M. 1955. On the evolution of type II stars. Astrophysical Journal Supplement

2:1–40.
Hufbauer, K. 2006. Stellar structure and evolution, 1924–39. Journal for the History of Astronomy 37:203–

227.
Kippenhahn, R., and Weigert, A. 1990. Stellar structure and evolution. Berlin-Heidelberg: Springer.
Kuiper, G.P. 1937. On the hydrogen content of clusters. Astrophysical Journal 86:176–197.
Leverington, D. 1995. A history of astronomy from 1890 to the present. London: Springer.
Longair, M.S. 2007. The cosmic century: a history of astrophysics and cosmology. Cambridge: Cambridge

University Press.
Masani, A. 1984. Astrofisica. Roma: Editori Riuniti.
Meadows, J. 1984. The origins of astrophysics. American Scientist 72:269–274.
Menzel, D.H. 1972. The history of astronomical spectroscopy I: qualitative chemical analysis and radial

velocities and The history of astronomical spectroscopy II: quantitative chemical analysis and the struc-
ture of the solar atmosphere. Annals of the New York Academy of Sciences 198:225–244.

Mestel, L. 2004. Arthur Stanley Eddington: pioneer of stellar structure theory. Journal of Astronomical
History and Heritage 7:65–73.

Milne, E.A. 1930. The analysis of stellar structure. Monthly Notices of the Royal Astronomical Society
91:4–55.

Oke, J.B., and Schwarzschild, M. 1952. Inhomogeneous stellar models. I. Models with a convective core
and a discontinuity in the chemical composition. Astrophysical Journal 116:317–330.

Öpik, E. 1939. Stellar structure, source of energy, and evolution. Publications de l’Observatoire Astrono-
mique de l’Universite’ de Tartu 30:1–115.

123



Solving the Giant Stars Problem 267

Osterbrock, D.E. 1953. The internal structure of red dwarf stars. Astrophysical Journal 118:529–546.
Payne, C.H. 1925. Stellar atmospheres; a contribution to the observational study of high temperature in the

reversing layers of stars. Harvard Observatory Monographs, no. 1. Cambridge.
Prialnik, D. 2000. An introduction to the theory of stellar structure and evolution. Cambridge: Cambridge

Univerity Press.
Rebsdorf, S.O. 2007. Bengt Strömgren: interstellar glow, helium content, and solar life supply, 1932–1940.

Centaurus 49:56–79.
Renzini, A., Greggio, L., Ritossa, C., and Ferrario, L. 1992. Why stars inflate to and deflate from red giant

dimensions. Astrophysical Journal 400:280–303.
Richardson, R.S., and Schwarzschild, M. 1948. A stellar model for red giants of high central temperature.

Astrophysical Journal 108:373–387.
Russell, H.N. 1914. Relations between the spectra and other characteristics of the stars. Nature 93, 227–231,

252–258 and 281–286.
Russell, H.N. 1925. The problem of stellar evolution. Nature 116:209–212.
Russell, H.N. 1929. On the composition of the Sun’s atmosphere. Astrophysical Journal 70:11–82.
Salpeter, E.E. 1952. Nuclear reactions in stars without hydrogen. Astrophysical Journal 115:326–328.
Sandage, A.R. 1954. A survey of present knowledge of globular clusters and its significance for stellar evo-

lution. Les Processus Nucléaires dans les Astres, Communications présentées au cinquième Colloque
International d’Astrophysique tenu à Liège les 10–12 Septembre, 1953, 254–274.

Sandage, A.R., and Schwarzschild, M. 1952. Inhomogeneous stellar models. II. Models with exhausted
cores in gravitational contraction. Astrophysical Journal 116:463–476.

Schönberg, M., and Chandrasekhar, S. 1942. On the evolution of the main-sequence star. Astrophysical
Journal 96:161–172.

Schwarzschild, M., Rabinowitz, I., and Härm, R. 1953. Inhomogeneous stellar models. III. Models with
partially degenerate isothermal cores. Astrophysical Journal 118:326–334.

Sitterly, B.W. 1970. Changing interpretations of the Hertzsprung-Russell Diagram, 1910–1940: a historical
note. Vistas in Astronomy 12:357–366.

Smith, R.C. 1995. Observational astrophysics. Cambridge: Cambridge University Press.
Srinivasan, G. 1996. Stars: their structure and evolution. Journal of Astrophysics and Astronomy 17:53–76.
Strömgren, B. 1931a. The possible solutions of the “equations of fit” on the Standard Model. Monthly

Notices of the Royal Astronomical Society 91:466–472.
Strömgren, B. 1931b. The point-source model with coefficient of opacity k = k1ρT−3.5. Zeitschrift für

Astrophysik 2:345–369.
Strömgren, B. 1932. The opacity of stellar matter and the hydrogen content of the stars. Zeitschrift für

Astrophysik 4:118–152.
Strömgren, B. 1933. On the interpretation of the Hertzsprung-Russell-Diagram. Zeitschrift für Astrophysik

7:222–248.
Strömgren, B. 1938. On the helium and hydrogen content of the interior of the stars. Astrophysical Journal

87:520–534.
Strömgren, B. 1972. The rise of astrophysics. Annals of the New York Academy of Sciences 198:245–254.
Tassoul, J.-L., and Tassoul, M. 2004. A concise history of solar and stellar physics. Princeton: Princeton

University Press.
Tayler, R.J. 1954. Evolution of massive stars. Astrophysical Journal 120:332–341.
Trumpler, R.J. 1925. Spectral types in open clusters. Publications of the Astronomical Society of the Pacific

37:307–318.
Wares, G.W. 1944. Partially degenerate stellar models. Astrophysical Journal 100:158–175.
Whitworth, A.P. 1989. Why red giants are giant. Monthly Notices of the Royal Astronomical Society

236:505–544.
Yahil, A., and van der Horn, L. 1985. Why do giants puff up? Astrophysical Journal 296:554–564.

123


	Solving the Giant Stars Problem: Theories of Stellar Evolution from The 1930s to The 1950s
	Abstract
	1 Introduction
	2 Theoretical background: basic stellar models
	2.1 The basic equations
	2.2 Eddington's ``standard model''
	2.3 Cowling's ``point-source'' model
	2.4 Composite models
	2.5 The problem of fitting polytropes together

	3 Historical background: a brief synopsis of stellar evolution theoriesup to the early 1930s
	3.1 Early theories
	3.2 Russell and Eddington on stellar evolution
	3.3 Further developments up to the Thirties

	4 The influence of chemical composition upon evolution
	4.1 Strömgren on the influence of changing chemical composition upon evolution
	4.2 The helium issue
	4.3 A focus shift from mass to chemical composition

	5 The inclusion of nuclear reactions into stellar evolution theories
	5.1 A major advance: nuclear physics and the stars
	5.2 Gamow's simplified stellar models
	5.3 Further progress in nuclear physics and its incorporation into stellar models

	6 Early attempts to embed chemical inhomogeneities into stellar models
	6.1 Öpik's pioneering work
	6.2 Hoyle and Lyttleton: a first attempt to recover Öpik's work

	7 Inhomogeneous models and the Schönberg--Chandrasekhar limit
	7.1 Henrich and Chandrasekhar on homogeneous stars
	7.2 Schönberg and Chandrasekhar on inhomogeneous stars: the Schönberg--Chandrasekhar limit

	8 Giant stars models with partially degenerate cores
	8.1 Gamow's discontent with the Schönberg--Chandrasekhar limit
	8.2 Evolution on the H--R diagram

	9 The first reliable giant star models
	9.1 Inhomogeneous models in the years around 1950
	9.2 Sandage and Schwarzschild: inhomogeneous stars with a collapsing core
	9.3 Gas degeneracy and continuous mixing
	9.4 Hoyle, Schwarzschild and the first reliable giant stars models

	10 Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


