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1 Introduction

The present paper is concerned with the emergence of the modern theory of convex
sets. Whereas the special instances of what we today understand by convex sets, such
as the circle or regular polygons, have been studied throughout the history of math-
ematics, the modern theory understood as the systematic study of sets characterised
exclusively by the property of convexity began only towards the end of the nineteenth
century from where it developed into one of the many new disciplines of twentieth
century mathematics. Today the theory of convexity is considered a central theory
not least due to its expansion into almost all important areas of mathematics such as
geometry, analysis, and applied mathematics.1

According to the history2 presented in textbooks on the theory of convexity the Ger-
man mathematician Karl Hermann Brunn (1862–1939) was the first to engage in such
systematic studies. His studies were then followed by the work of another German
mathematician, Hermann Minkowski (1864–1909), who developed the theory further
and explored some of its many applications. Examining this history one realises that
Minkowski did not know about Brunn’s work until after he himself had begun his
own investigations of what led to the theory of convexity. And even though Bonnesen

1 For the significance of the theory of convexity in mathematical programming and the theory of linear
inequalities see (Kjeldsen, 2000, 2001, 2002, 2003, 2006).
2Often presented in introductions to textbooks on the theory of convexity, see for example (Bonnesen
and Fenchel, 1934) and (Klee, 1963). There are a few historical studies on the concept of convexity
(Fenchel, 1983), (Gruber, 1990, 1993).
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60 T. H. Kjeldsen

and Fenchel in the preface to their famous monograph Theorie der konvexen körper3

use the term “Brunn–Minkowski theory” and explicitly characterised the material in
their book as a generalisation of this Brunn–Minkowski theory, the modern theory of
convex sets primarily grew out of Minkowski’s work.4

This prompts interesting historical questions such as: How and why did this the-
ory of convexity emerge? Which kinds of objects did Minkowski study? Why did he
initiate such studies? Did his perception of the objects change? How did he carry out
his investigations? How and why was the theory of convex sets developed through his
work? The study presented in this paper has been guided by these questions in order
to explain:

Why and how the concept of convex bodies emerged, took form, and led to the
beginning of a theory of convexity in Minkowski’s mathematical practise.

The historical analysis presented in this paper reveals that three phases can be iden-
tified in Minkowski’s mathematical practise leading to a theory of convex bodies.
These phases will be described below, and it will be argued that the interfaces between
them are distinguished by shifts in Minkowski’s focus of research. It will be argued
that the dynamics of knowledge production in Minkowski’s mathematical practise
leading to the theory of convex bodies can be characterised as an interplay between
the research strategies of (1) answering known questions in new ways and (2) posing
and answering new questions.5

The story of the origin of the theory of convex bodies in Minkowski’s work is
interwoven with the emergence of the geometry of numbers, another new discipline in
the twentieth century created by Minkowski, and even though this is not the focus of
this paper the investigations presented here will also partly explain how the geometry
of numbers emerged from Minkowski’s mathematical practice.

2 The first phase: geometrical treatment of the minimum problem
for positive definite quadratic forms

The first traces of ideas that led Minkowski to form a concept of convex sets and
to investigate them mathematically are found in his work on the so-called minimum
problem for positive definite quadratic forms in n variables:

f (x1, . . . , xn) =
n∑

h,k=1

ah,k xh xk, ah,k ∈ �, ah,k = ak,h

3 (Bonnesen and Fenchel, 1934).
4 A comparison of Brunn’s and Minkowski’s mathematical practise can provide answers to the question
why the theory did not emerge from Brunn’s work. The results of such a historical investigation will be
presented in a forthcoming study, see (Kjeldsen, forthcoming).
5 Rheinberger has used this distinction to describe the dynamics of knowledge production in experimental
systems; see (Rheinberger, 1997). For the adaptation of Rheinberger’s ideas to the history of mathematics,
see (Epple, 2004).
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Minkowski’s development of the concept of convex bodies 61

The form is said to be positive definite if f (x1, . . . , xn) > 0 for all (x1, . . . , xn) �=
(0, . . . , 0). The minimum problem is the question of finding the smallest number N
that can be represented by f for integer values (not all zero) of the variables x1, . . . , xn .
This minimum is essential in the reduction theory of positive definite quadratic forms.

The minimum problem was not new at Minkowski’s time. Lagrange had already
addressed the problem for forms in two variables in the eighteenth century. Gauss had
realised its connection to the question of so-called reduced forms at the turn of the
century, and Hermite had studied the minimum problem and its connection to reduced
forms of an arbitrary number of variables.6 The new contribution of Minkowski’s work
on the minimum problem was not the statement of the problem itself but the approach
he used in its solution—the way in which he investigated and answered the problem.

As we shall see in this section, Minkowski introduced geometrical methods for
dealing with the minimum problem in n variables and used a geometrical framework
both to discuss the minimum problem and to come up with plausible and convinc-
ing arguments for his results. He relied on geometrical intuition not only to generate
ideas and mathematical questions but also to construct proofs. Minkowski’s thoughts
and work with the minimum problem in this geometrical context are what characte-
rises what I have called “the first phase” of the line of thinking that eventually led
Minkowski to define the mathematical object of a convex body.

In the following I will analyse Minkowski’s use of geometrical intuition in his
number-theoretical work on the minimum problem so as to understand how this par-
ticular mathematical practise laid the foundation for Minkowski’s introduction of
convex bodies and the following theory of convexity. We will see that the merging,
in the hands or mind of Minkowski, of these two mathematical frameworks—number
theoretical inquires, and geometrical intuition and proof-technique—constituted the
melting pot from which Minkowski changed the ways of thinking about the minimum
problem and introduced new concepts, changes and concepts that, in phase three, led
him to define the mathematical object we today think of as a convex set.

2.1 The minimum problem in a number theoretical framework

The number-theoretical part of Minkowski’s thinking can be traced back to his
teenage years as a student in the gymnasium in Königsberg. From a letter that Weber
wrote to Dedekind we know that at the age of 15 Minkowski had already studied
the number-theoretical work of Gauss’s Disquisitiones Arithmeticae and Dirichlet’s
Vorlesungenüber Zahlentheorie. The letter also shows that Weber had high expecta-
tions for Minkowski’s future mathematical achievements, not least because of
two papers on the reduction theory of quadratic forms written by the 15-year old
Minkowski:

On this occasion I will write to you about a very promising mathematical and
especially number theoretical genius who has appeared here. It is a Primaner
in one of the local gymnasiums who will not enter university until next year

6 For historical work on the theory of quadratic forms see (Schwermer, 1991; Goldman, 1998; Scharlau,
1977; Scharlau and Opolka, 1985).
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and on his own initiative has worked himself into higher analysis and number
theory which he has studied through the first edition of your Dirichlet-lectures.
Now he works on the Disquisitiones. That he studies with understanding follows
from two papers he gave me in which he as far as I can see has formulated the
problem himself and worked it out very cleverly. […] In one of the papers he
determined for a negative determinant the number of reduced forms for one of
the three forms (a, 0, c)(a, 1/2a, c)(a, b, a), […]
The other paper treats positive determinants […] For a Primaner this is certainly
a commendable achievement. […].7

Two years later, in 1882, Minkowski submitted a long paper, which in essence is a
foundation for a general theory of quadratic forms with integral coefficients, to the
Grand Prix des Sciences Mathématiques at the French Académie. The occasion was
the prize-question of representing an integer as the sum of five squares posed by the
Académie the year before. Minkowski’s work was so original that the prize was given
to the young Minkowski even though he—contrary to the rules—had written his paper
in German instead of French.8

Minkowski’s further work on quadratic forms was inspired by Hermite’s work on
reduced forms, in particular the letters “sur différents objects de la théorie des nom-
bres” addressed to Jacobi and published in Crelle’s Journal.9 According to Minkowski,
Hermite proved the fundamental theorem of reduction of positive definite quadratic
forms in those letters:

The investigations of Mr. Hermite relate to forms with an arbitrary number of
variables; they start with the statement of the fundamental theorem of reduction
according to which the dimensionless ratio of the smallest number different from
zero that can be represented by a positive quadratic form in n variables by means
of integers to the nth root of the determinant of the form never exceeds a certain
amount that only depends on n, and they represent themselves as a never-ending
witness of the fruitfulness of this theorem in almost every section of number
theory.10

Hermite himself also acknowledged that this theorem was of fundamental importance
in number theory: “De nombreuses questions me semblent dépendre des resultants
precedents.”11 The result is the one Hermite presented in a letter to Jacobi dated
August 6, 1845 stating that for a positive definite quadratic form f (x0, x1, . . . , xn) in

7 The letter is not dated and Minkowski is not named in the letter, but Walter Strobl (1985, pp. 145–146)
convincingly argued that the student that Weber wrote about is in fact Minkowski and that the letter was
written at some point between March 1879 and December 1880. For further information on Minkowski’s
mathematical work while he was still a student see (Strobl, 1985).
8 There were some debates about the prize which was awarded to both Minkowski and the British mathema-
tician Henry John Stephen Smith. See also (Strobl, 1985), (Hilbert, 1909), and (Reid, 1970). Minkowski’s
paper is published in his collected works (Minkowski, 1911, vol. I, pp. 3–144, (1884)).
9 See Minkowski’s note in Comptes rendus de l’Académie des Sciences, Paris 1883, t. 96, pp. 1205–1210,
also published in his collected works (Minkowski, 1911, vol. I, p. 145 (1883)).
10 (Minkowski, 1911, vol. I, p. 245 (1891a)).
11 (Hermite, 1850, p. 263).
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Minkowski’s development of the concept of convex bodies 63

n +1 variables it is “always possible to find n +1 integer numbers α, β, γ, . . . , λ such
that

f (α, β, γ, . . . , λ) <

(
4

3

) 1
2 n

n+1
√

D”

Here D denotes the determinant of the form.12

As mentioned above, this minimum problem plays a fundamental role in the reduc-
tion theory for quadratic forms, which is concerned with the question of finding among
a class of equivalent positive definite quadratic forms a form—the so-called reduced
form—whose coefficients have as simple a form as possible, which basically means
having the smallest coefficients. In the reduced form the leading coefficient must be
taken to be the minimum of the quadratic form for integer values (not all zero) of the
variables. Reduction theory was an important part of the theory of quadratic forms,
and as a consequence the minimum problem was an essential question, and—as will
become clear in the following—it was the pivotal centre for the work of Minkowski
that eventually led him to introduce a concept of convex sets.

2.2 Minkowski’s probationary lecture: geometrical intuition and interpretation
of quadratic forms

The geometrical part of Minkowski’s thinking, which came to lie at the core of his
ideas, was present at least from 1887 on, as can be seen from his so-called probation-
ary lecture “Über einige Anwendungen der Aritmetik in der Analysis” for the German
Habilitation, given on the 15th of March 1887 at the Friedrich-Wilhelm University in
Bonn.13

In the probationary lecture Minkowski gave a new proof of the minimum problem
positive definite for quadratic forms in three variables using a geometrical interpre-
tation of quadratic forms. The idea of interpreting positive definite quadratic forms
geometrically was not Minkowski’s own. Gauss14 in 1831 had given an outline of such
a geometrical interpretation in a review of a book by Seeber, and Dirichlet had shown
in a very clear and transparent way how to represent positive definite quadratic forms
in three variables geometrically.15 Dirichlet’s method had been published in the same
issue of Crelle’s Journal as Hermite’s letters to Jacobi, and even though Minkowski
did not credit Dirichlet in the manuscript for the probationary lecture he did so in
nearly all of his published papers concerning geometrical methods in number theory,
and it is quite clear that he was inspired by Dirichlet’s paper.

To understand how a positive definite quadratic form f (x, y) = ax2 + 2bxy + cy2

can be interpreted geometrically I will briefly illustrate the idea behind Gauss’ outline
in modern terms using vector notation. If x denotes the column vector (x, y), xT its

12 (Hermite, 1850, p. 263).
13 The manuscript for the probationary lecture is published in (Schwermer, 1991).
14 (Gauss, 1863, vol. II, p. 188–196).
15 (Dirichlet, 1850).
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transpose and Q is the matrix

Q =
(

a b
b c

)

then the quadratic form can be written as xT Qx. In the rectangular (x, y)-coordinate
system the level curves f (x, y) = λ form ellipses. We are looking for new coordinates
(u, v) that will reduce the quadratic form to a sum of squares (u2 +v2) and in this new
coordinate system the level curves will form circles. To do this, we let u denote the
column vector (u, v) and set u = Ax. We need to find a matrix A such that f reduces
to u2 + v2. We get

f (x, y) = xT Qx = uT(A−1)T Q A−1u

If Q = AT A then

uT(A−1)T Q A−1u = uTu =u2 + v2

as required.
To understand this geometrically, note that the points (1, 0) and (0, 1) in the (x, y)

coordinate plane are represented in the (u, v) coordinate plan by the first and second
columns of the matrix A. A calculation shows that these are the points (a1, a2) and
(b1, b2) in the (u, v) plane where a2

1 +a2
2 = a, b2

1 + b2
2 = c and the angle, ϕ, between

them is given by the formula

cos ϕ = b√
ac

So the unit squares in the (x, y) plane are mapped to the ‘Elementar-Parallelograms’,
as Gauss called them, or standard parallelograms in the (u, v) plane. The square of the
area of each of theses is ac − b2 the determinant of Q. The simpler geometric object
to study is the quadratic form in the (u, v) plane with respect to the parallelogram
lattice that is the transform of the square grid in the (x, y) plane. In the skew (u, v)

coordinate system f represents the square of the distance from lattice points to the
origin. (See Fig. 1.)

The problem Minkowski considered in his probationary lecture was to find the
best approximation in integers not all zero to a solution of a system of equations
ξ = 0, η = 0, ζ = 0 where ξ, η, ζ are independent linear forms in the three variables
x, y, and z. As Minkowski pointed out, if one proceeds according to the rule of prob-
ability one will pick as the best solution the values for which the sum of the squares
of the errors is a minimum, that is the integer values (not all zero) for x, y, and z for
which ξ2 +η2 +ζ 2 is a minimum. Expressed in x, y, and z, f (x, y, z) = ξ2 +η2 +ζ 2

is a positive definite quadratic form for which the minimum for integer values (not
all zero) of the variables are sought. In this way Minkowski transformed the problem
of finding the best solution into the minimum problem for positive definite quadratic
forms in three variables.
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Minkowski’s development of the concept of convex bodies 65

Fig. 1 Geometrical
interpretation of the quadratic
form f . The smallest distance in

the lattice is M
1/2 = 1. The bold

lines represent the two
coordinate axes

As Minkowski explained in the probationary lecture this problem can be interpreted
geometrically:

Perhaps the most natural way to encounter this square sum is through a geo-
metrical interpretation. It is obvious to interpret the magnitudes ξ, η, ζ , which
appear equally, as orthogonal coordinates in our space. To every system ξ, η, ζ

there corresponds a point, to the system 0, 0, 0 the origin. There is no doubt about
which points are to be considered as the ones closest to the origin: the ones with
the smallest distance to this point. This distance will again be measured through
the root of ξ2 + η2 + ζ 2.16

Formulated in this way the problem became to find the minimum distance from the
origin to points (ξ, η, ζ ) with integer values (not all zero) of x, y, and z in the rect-
angular (ξ, η, ζ )-coordinate system. To examine the points in this coordinate system
with integer values of x, y, and z Minkowski considered the three skew axes (x, y, z)
determined by the three linear forms ξ, η, ζ . The points (x, y, z) with integer values
form a lattice built up by (standard) parallelotopes, and the problem was thereby trans-
formed into the problem of finding such a lattice point closest to the origin, that is to
find the smallest distance between two lattice points. As we saw above the square of
the distance from the origin to a lattice point (x0, y0, z0) is measured by the quadratic
form

f (x0, y0, z0) = ξ(x0, y0, z0)
2 + η(x0, y0, z0)

2 + ζ(x0, y0, z0)
2.

That Minkowski’s construction of the lattice is the same as Gauss’s can be seen by the
following illustration of Minkowski’s procedure for two linear independent forms ξ

16 (Minkowski, 1887) in (Schwermer, 1991, p. 86).

123



66 T. H. Kjeldsen

and η in two variables x and y:

ξ = a1x + b1 y

η = a2x + b2 y

In the (ξ, η)-coordinate system the point (x, y) = (1, 0) have the coordinates (ξ, η) =
(a1, a2) and the point (x, y) = (0, 1) have the coordinates (ξ, η) = (b1, b2). This
means that the unit of the x-axes and y-axes respectively, is

√
a2

1 + a2
2 and

√
b2

1 + b2
2

and the angle ϕ between the axis is determined by

cos ϕ = a1b1 + a2b2√
a2

1 + a2
2

√
b2

1 + b2
2

In the rectangular (ξ, η)-coordinate system the distance from the origin to a point
(ξ, η) equals the root of ξ2 + η2. Expressed in (x, y) we have

f (x, y) = ξ2 + η2 = (a1x + b1 y)2 + (a2x + b2 y)2

That is, the distance from the origin to a lattice point is measured by the root of the
quadratic form:

f (x, y) =
(

a2
1 + a2

2

)
x2 + 2(a1b1 + a2b2)xy +

(
b2

1 + b2
2

)
y2

Comparing the coefficients of the quadratic forms we can see that Minkowski’s con-
struction of the lattice representing the quadratic form is the same as the one described
by Gauss.

In the probationary lecture Minkowski pointed out that when the lattice is given
by its points, the standard parallelotope, that is the parallelotope whose corners are
determined by the eight points for which the coordinates are either 0 or 1, can be
chosen in a variety of ways. Every linear transformation with integer coefficients and
determinant ±1 will transform the coordinate system x, y, z into a new coordinate
system x ′, y′, z′ and in this system the points with coordinates 0 or 1 will determine
a parallelotope which would also represent the lattice. This means that every positive
definite quadratic form that is equivalent to a given positive definite quadratic form can
be used to construct the lattice. Another feature of the lattice representing a positive
definite quadratic form is that the square of the volume of a standard paralllelotope is
equal to the determinant of the form.

The notion of lattices became very important in Minkowski’s thinking about num-
ber theory because every theorem about the lattice can be translated into a theorem
about numbers. So here we witness his first step into a mathematical practice of dealing
geometrically with problems in number theory, a technique he developed further in
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Minkowski’s development of the concept of convex bodies 67

the years to come, and by means of which he laid the foundation for the mathematical
discipline called the geometry of numbers.

The interesting problem now formulated by Minkowski in the probationary lecture
is to determine “the points closest to the origin, or … the smallest distance between
two points in the lattice.”17 Remembering that distances in the lattice are measured
by the square root of the quadratic form f , the problem of the smallest distance in the
lattice is in fact the minimum problem for f .

To find an upper bound for the smallest distance between points in the lattice Min-
kowski imagined a sphere, with the smallest distance as diameter, placed around each
lattice point. The spheres around two lattice points, the smallest distance apart, will
touch each other on the line connecting the two points, he argued, but they will not
intersect and they will leave some free space. Minkowski accordingly concluded that
the volume of such a sphere must be less than the volume of a standard parallelotope.
By this intuitive geometrical reasoning Minkowski derived the following upper bound
for the smallest distance between two lattice points:

The smallest distance [between two lattice points] is smaller than the product of
a constant and the third root of the volume of a standard parallelotope.18

Why is that? If we let M denote the smallest distance between two lattice points, and
V the volume of the standard parallelotope the inequality between the two volumes
is:

4

3
π

(
M

2

)3

< V

leading to the above cited upper bound for M :

M < c 3
√

V

where c is a constant. Minkowski added that if the lattice is changed through some
kind of continuous process in such a way that the volume of the standard parallelotope
keeps decreasing, then the smallest distance between two lattice points will then also
decrease below every limit, and—as he continued—that result is not limited to the
three dimensional case he investigated in the probationary lecture:

The same applies of course to lattices of any dimension and expresses an impor-
tant property of positive quadratic forms which in general was first proved by
Hermite but in a much more complicated way.19

Minkowski did not give any further arguments for this generalisation from three to
n-dimensional space. If we rewrite Minkowski’s inequality above for the n-dimensional
case remembering (1) that if M is the smallest distance between two lattice points then
M2 is the minimum of the quadratic form for integer values not all zero of the variables

17 (Minkowski, 1887) in (Schwermer, 1991, p. 86).
18 (Minkowski, 1887) in (Schwermer, 1991, p. 87).
19 (Minkowski, 1887) in (Schwermer, 1991, p. 87).
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and (2) that the volume of the parallelotopes equals the square root of the determinant
of the quadratic form associated with the lattice, then the inequality reads:

M2 <
(

c
n√

D1/2
)2 = k D1/n

where k is a constant and D is the determinant of the form, expressing the property
found by Hermite.

Immediately following the text quoted above there is a passage in Minkowski’s
manuscript that Minkowski had crossed out saying that:

More important though, is it that the bound reached here is far more natural and
much smaller than the one given by the method of Hermite, even though it is of
course not (cannot be) precise since it contains the transcendental number π .20

Here again we see Minkowski referring to his reasoning as being much more natural
than Hermite’s. Besides the numerical difference between the two limits the main dif-
ference is the method by which they are reached and according to Minkowski among
the different methods one can apply to reach a result some are more natural than others.

This notion of a method “more natural than others” also appears in a letter Min-
kowski wrote to Hilbert two years later in November 1889:

Now I have come much further in the theory of positive quadratic forms […].
Perhaps the following theorem (which I can prove in half a page) will interest
you and Hurwitz: In a positive quadratic form in n(≥ 2) variables and deter-
minant D one can always assign integer values to the variables such that the

form becomes < nD1/n . For the coefficient n Hermite had (4/3)
1/2(n−1), which

obviously, in general, is a much larger limit.21

This is the same theme as the one found in his probationary lecture for the
Habilitation—and again Minkowski drew attention to two aspects: (1) the proof he
claimed to have can be given in just half a page, and (2) the upper bound for the
minimum of a quadratic form for integer values (not all zero) of the variables is lower
than the one given by Hermite. The fact that Minkowski emphasised that he can prove
the theorem in half a page suggests that there was some kind of more or less tacit
mutual understanding here between Minkowski, Hilbert, and Hurwitz to what con-
stitute “good” mathematics. The fact that Minkowski’s proof is only half a page is a
quality in itself.

2.3 Minkowski’s geometrical proof of the minimum theorem for n variables

In the probationary lecture Minkowski claimed that his result could be generalised
to n dimensions, but he did not present a proof. He did not present the proof in the
letter to Hilbert either. In fact two more years passed by before he published the first

20 (Minkowski, 1887) in (Schwermer, 1991, p. 87–88).
21 (Minkowski, 1889, p. 38).
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Minkowski’s development of the concept of convex bodies 69

geometrical proof of the minimum theorem in 1891 in the paper “Über die positiven
quadratischen Formen und über kettenbruchähnliche Algorithmen”.

In the introduction to this paper Minkowski first gave a brief historical summary of
the development of the theory of positive definite quadratic forms as well as an outline
of the most important achievements up to that date, before he explicitly stated that the
present study should be seen as an attempt to fill some of the holes in the theory. The
main focuses of attention were positive definite quadratic forms and their application
in number theory, indicated by the title of the paper, which gives no hint about any
use of geometrical intuition. Only at the very end of the introduction did he stress the
advantage of extending the geometrical intuition from three to n dimensions in the
proof for the minimum problem.

The idea of the proof is the same as the one he outlined in his probationary lecture.
He associated a positive definite quadratic form f in n variables with a n-dimensional
lattice built up of standard paralellotopes. Again, what is of interest is the smallest dis-
tance between two points in the lattice, because if

√
M represents the smallest distance

then its square
(√

M
)2

represents the smallest number different from zero that can be

represented by f with integer values for the variables. In the paper Minkowski gave
two upper bounds for this minimum. In the first one, which gives rise to the bound he
mentioned in the letter to Hilbert quoted above, he constructed a n-dimensional cube
with side length

1√
n

√
M

around each lattice point and imagined the cubes organised in a parallel pattern. The
points of such a cube which have the largest distance to the centre will be corner points
and, as explained by Minkowski, due to the Pythagorean theorem this distance equals
1/2

√
M . He then proceeded as in the probationary lecture arguing that since

√
M is

the smallest distance between two lattice points the cubes will have no inner points in
common, and they will not fill out the whole space, so a comparison of the volumes
of a cube and a standard parallelotope gives rise to the following inequality:

(
1√
n

√
M

)n

<
√




Since 
 is the determinant of the quadratic form, the inequality expresses that the
volume of a cube is less than the volume of the standard parallelotope. Rearranging
the terms Minkowski reached the bound for the minimum he had announced in the
letter to Hilbert:

M < n n
√



(
= nD1/n

)

Minkowski immediately obtained an even lower upper bound (for large n) by extend-
ing the method used in his probationary lecture from three-dimensional spheres to
n-dimensional spheres of radius 1/2

√
M . The replacement of the cubes with the spheres
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70 T. H. Kjeldsen

does of course not change the argument because the spheres—just as the cubes—do
not overlap and they do not fill the whole space either, the only thing that changes is
the upper bound:

M <
2n

πe

n
√

nπe
1

3n
n
√




which, as explained by Minkowski, for large n is approximately 2/(πe) = 0.234 . . .

times the other bound.22

As in the letter to Hilbert Minkowski again emphasised the nature of the proof:

With the help of a geometrical expression that can be transferred to forms with
more than three variables it was achieved, not only to make the fundamental
theorem of Hermite regarding the minimum of a positive quadratic form appear
obvious in a certain sense, but also to narrow considerably the limit required in
this theorem and in its extensions. For this reason new important applications of
this theorem are made possible.23

And he finished the argument by announcing that

We have then put the successful theorem of Hermite about the minimum of a
positive definite quadratic form in its natural light …24

If we consider for a moment the result that Minkowski derived detached from his
mathematical practise the only difference between his and Hermite’s result is that Min-
kowski managed to obtain a smaller upper bound. If instead we examine Minkowski’s
result within the context of his proof another significant difference surfaces, namely
the method of reasoning used. Minkowski moved this number theoretical enterprise of
positive definite quadratic forms in n variables into a completely different mathemat-
ical context—an entirely different way of thinking that—as we shall see in the next
section—led to a new type of inquiry that I have identified as phase 2 of Minkowski’s
mathematical practice, which in time led him to single out and investigate convex sets
for their own sake.

3 The second phase: investigations of the method and the construction
of “measure” bodies

Until now we have seen how Minkowski used geometrical “Anschauung” in his treat-
ment of quadratic forms to reach the fundamental theorem through geometrical intui-
tion. The key step in his line of thought so far was the idea to construct a hypersphere
(cube) around each lattice point enabling him to reach the minimum result simply
by comparing the volume of the hypersphere (cube) with the volume of the standard
parallelotope of the lattice associated with the quadratic form in question.

22 For more detailed calculations see (Minkowski, 1911, vol. I, p. 255–256, (1891a)).
23 (Minkowski, 1911, vol. I, p. 246, (1891a)).
24 (Minkowski, 1911, vol. I, p. 255, (1891a)).
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In what follows we shall see how he further developed this line of thinking, elab-
orating his geometrical approach and turning the “sphere (cube)-trick” into a more
general method, which led him to introduce the notions of nowhere concave bodies
with middle point, “Eichkörpers” or gauge bodies, which functioned as measuring
tools, and to generalize the basic fundamental geometrical idea of the length of a line
segment. It will be discussed in what sense this step was an important precursor for the
emergence of the concept of a general convex set and the beginning of the development
of the modern theory of convexity.

3.1 The lattice point theorem and nowhere concave bodies with middle point

The first sign of Minkowski’s shift in focus can be detected in a written report of a talk
titled “Über Geometrie der Zahlen” he gave in Halle, Germany, in 1891.25 He gave
this talk the same year as the publication of his proof of the minimum theorem for
positive definite quadratic forms in n variables. The demarcation line between what I
have called phase 1 and phase 2 of Minkowski’s mathematical practise leading up to
his introduction of the concept of a convex body can be seen to cut right through these
two presentations. In the 1891 publication Minkowski dealt with the minimum prob-
lem of positive definite quadratic forms treated geometrically—this paper belongs to
phase 1. But as we will see, in the talk he gave in Halle the focus had shifted from the
minimum problem to a scrutiny of the geometrical proof-method—the talk belongs to
phase 2.

The report of the talk relates that he introduced the three dimensional lattice—not
as a geometrical representation of a positive definite quadratic form—but as the col-
lection of points with integer coordinates in the coordinate system with perpendicular
axes. He defined the term “Geometrie der Zahlen” to mean geometrical investigations
of the lattice and associated bodies, as well as the extension to manifolds of arbitrary
dimension. He explicitly stated that the object under investigation was the lattice and
associated bodies, but immediately pointed out that every statement about the lattice
has an arithmetic core, indicating that this inspection of the lattice was justified not in
its own right but because of its relation to number theory. It was an investigation of
a method useful in number theory—not the building of a new theory detached from
number theory. This is further supported by the fact that Minkowski felt the need to
argue for the appropriateness of the use of the term “Geometry”:

Every statement about the number grid [lattice] has of course a purely arithmetic
core. But the word “Geometry” appears to be quite appropriate with regard to
questions that rise from geometrical intuition and to methods of investigation
that are constantly guided through geometrical concepts.26

At this point Minkowski was working and thinking in the mathematical context of
number theory, but the quote also shows that he now viewed the geometrical method
in a broader sense—he no longer associated the lattice with a quadratic form. The

25 (Minkowski, 1911, vol. I, pp. 264–265, (1891b)).
26 (Minkowski, 1911, vol. I, p. 264, (1891b)).

123



72 T. H. Kjeldsen

ideas Minkowski presented in this talk laid the foundation for his upcoming book
Geometrie der Zahlen, and for a new mathematical discipline in the 20th century with
the same name.

In the talk Minkowski drew attention to a special category of bodies, which—as he
phrased it—were constructed in such a way that they circumscribe the origin of the
lattice in a certain manner. For these bodies one can—he claimed—obtain a relation
between the magnitude of their volumes and a property of the lattice. The special cat-
egory of bodies was bodies that have the origin as a middle point and whose boundary
towards the outside is nowhere concave. For those bodies the asserted property with
respect to the lattice is the following:

If the volume of a body from this category is ≥ 23 then this body necessarily
contains additional lattice points besides the origin.27

This theorem is nowadays known as Minkowski’s lattice point theorem (here for three
dimensions). But how did that theorem come out of Minkowski’s mathematical prac-
tise? And how can we explain the emergence of the bodies of this category, the nowhere
concave bodies with middle point, in the context of Minkowski’s mathematical activi-
ties? If we go back for a moment and reconsider his geometrical argument for the upper
bound of the minimum of a positive definite quadratic form f we can come up with a
plausible explanation for the appearance of the lattice point theorem and the nowhere
concave bodies with middle point in the mathematical framework of quadratic forms.
Minkowski reached this upper bound by comparing the volume of a sphere/cube with
a certain radius/side length with the volume of the standard parallelotope in the cor-
responding lattice. In this lattice the ordinary Euclidean distance from the origin to
a lattice point is given by the square root of f taken for the given lattice point. The
question whether there exist integer values (not all zero) of the variables, for which
a given number N can be represented by f transforms into the question whether a
sphere with radius

√
N and centre in the origin passes through a lattice point or not.

In the talk at Halle, Minkowski considered the lattice in the rectangular coordinate
system, and in such a coordinate system the points (x, y, z) for which the quadratic
form equals a certain number, say f (x, y, z) = N , form an ellipsoid. The question of
the minimum value representable by f with integer values not all zero can of course
again be transformed into a question of the volume of this ellipsoid: The minimum
is reached when the corresponding ellipsoid is so big that it contains a lattice point
different from the origin, that is the answer to the minimum problem depends on the
volume of the ellipsoid. But in the talk at Halle, Minkowski was not talking about
ellipsoids; he was talking about a “very general” kind of nowhere concave bodies with
the origin as middle point. If we analyse the geometrical proof he gave in the paper
“Über die positiven quadratischen Form und über kettenbruchänliche Algorithmen”,
which was outlined in the previous section, we can see, that the crucial step in
Minkowski’s proof is the construction of the bodies around each point of the lat-
tice. In the lattice corresponding to a positive definite quadratic form he first gave the
argument for n-dimensional squares and then for n-dimensional spheres. The essen-
tial property of these two different kinds of geometrical bodies is that the bodies

27 (Minkowski, 1911, vol. I, p. 265, (1891b)).

123



Minkowski’s development of the concept of convex bodies 73

constructed around neighbouring lattice points have no inner points in common. The
reason for this is exactly what we today call their convexity property. In fact Minkow-
ski could have used a body of any shape to circumscribe the lattice points as long as
the bodies did not overlap, and the only requirement needed to be put on the shape of
the bodies for them to fulfil that property is that their boundary is nowhere concave
and that they are symmetric around the lattice point—a property Minkowsky probably
singled out somewhere around 1891 and described as nowhere concave bodies with
middle point.

By leaving the skew coordinate system Minkowski in a certain sense also detached
the method used to find the upper bound for the minimum from positive definite qua-
dratic forms. The minimum result for such a form f can still be obtained because
the level curves for a positive definite quadratic form are ellipsoids in the rectangular
coordinate system, and since ellipsoids have the required property, they can be used
as the bodies circumscribed around each lattice point. If the ellipsoid corresponding
to the level curve f = N , has a volume greater than or equal to 23, it is large enough
to contain a lattice point other than zero, meaning that N will give an upper bound for
the minimum problem.

3.2 The “Eichkörper”: gauge bodies and radial distances

The report of the 1891-talk that Minkowski gave at Halle is the first published written
source we have that gives us information about his new geometric number theory. As
we saw above, the theorem he presented in the talk was no longer about the minimum
of a positive definite quadratic form, but about how big the volume of a certain body has
to be in order for this body to contain a lattice point in the ordinary rectangular Euclid-
ean coordinate system. Minkowski gave the proof of the theorem in the paper “Über
Eigenschaften von ganzen Zahlen, die durch räumliche Anschauung erschlossen sind”,
which he read at an international mathematics conference in Chicago in 1893.28

In that paper Minkowski gave an outline of his book Geometrie der Zahlen on
which he was working at the time. The main ideas along with the key result—the
lattice point theorem—are presented. Since this paper gives very clear insights into
Minkowski’s mathematical practice I will quote from it at some length. Just as was the
case with the talk given at Halle two years earlier he also began this paper by justifying
its geometrical aspects:

In number theory as in all other fields of analysis the inspiration often comes
from geometrical considerations even though at the end maybe only the analyt-
ical verification is shown. Therefore, I will not be able to exhaust my theme and
this is also not my intention. Here I will only talk about the geometrical figure
that has the simplest relation to integer numbers, the number grid [lattice].29

As before, the lattice he is considering consists of all the points in three dimensional
space with integer coordinates and the usual Euclidean rectangular coordinate axes.
He mentioned, that what he was going to present would be included for n-dimensions

28 (Minkowski, 1911, vol. I, pp. 271–276, (1893b)).
29 (Minkowski, 1911, vol. I, p. 271, (1893b)).
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in his forthcoming book Geometrie der Zahlen. In the following quote we shall see
how he introduced an abstract notion of a metric even though he did not call it such.
Instead he talked about radial distance functions, which he characterised as “generali-
sations of the concept of the length of a straight line”. He also introduced the associated
“Eichkörper”—a “measuring” or gauge body—which we today would think of as a
kind of unit ball associated with the radial distance function:

The deeper properties of the lattice are connected with a generalization of the
concept of the length of a straight line by which only the theorem, that the sum
of two of the sides in a triangle is never less than the third side, is maintained.
Consider a function S(ab) of two arbitrary variable points a and b, at first only
with the following properties: (1) S(ab) is positive when b is not equal to a, and
equal to zero when b is equal to a; (2) if a, b, c, and d are four points with b
different from a, and if the relationship d − c = t (b − a) holds for t positive
then S(cd) = t S(ab). The relationship should be understood in the sense of the
Barycentric Calculus and means that cd and ab are line segments in the same
direction and with length (in the usual sense) in the proportion t :1. In contrast
to the usual length, S(ab) is called the radial distance from a to b.
Let 0 be the origin; obviously, all the values of S(ab) are determined when the
set of points u for which S(0u) ≤ 1 is given. This set of points is called the
Eichkörper of the radial distance. In any given direction from 0 there exists a
line segment from 0 in this direction with non-vanishing length and belonging
to the “Eichkörper”.
If moreover S(ac) ≤ S(ab) + S(bc) for arbitrary points a, b, and c the radial
distance is called einhellig. Its “Eichkörper” then has the property that whenever
two points u and v belong to the “Eichkörper” then the whole line segment uv
will also belong to the “Eichkörper”. On the other hand every nowhere concave
body, which has the origin as an inner point, is the “Eichkörper” of a certain
“einhellig” radial distance.
[…]
S(ab) is called reciprocal if S(ba) = S(ab) without exceptions. This is the case
when and only when the “Eichkörper” as the origin as middle point.30

Today we would call an “einhellig” reciprocal radial distance function a metric that
also induces a norm, and we would think of the associated “Eichkörper” as the unit
ball.

In Geometrie der Zahlen Minkowski proved what he had claimed in the talk, that the
“Eichkörper” associated with an “einhellig” radial distance function S has the property
that whenever two points u and v belong to the “Eichkörper” then the whole line seg-
ment uv will also belong to the “Eichkörper” as well as the other statement that every
nowhere concave body, which has the origin as an inner point, is the “Eichkörper” of
a certain “einhellig” radial distance function.31 The first part of the proof is straight
forward:

30 (Minkowski, 1911, vol. I pp. 272–73, (1893b)).
31 (Minkowski, 1953, pp. 11–13, (1896)).
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Minkowski considered two points u and v belonging to the “Eichkörper” as well
as a point w = (1 − t)u + tv, 0 ≤ t ≤ 1, on the line segment between u and v. He let
u′ be the point for which u′ − o = (1 − t)(u − o) then

w − u′ = t (v − o), S(ou′) = (1 − t)S(ou) and S(u′w) = t S(ov).

Since the radial distance function is “einhellig”,

S(ow) ≤ S(ou′) + S(u′w),

but then

S(ow) ≤ S(ou′) + S(u′w) = (1 − t)S(ou) + t S(ov) ≤ (1 − t) · 1 + t · 1 = 1

which means that w belong to the “Eichkörper”, and thereby—as we would say
today—that the “Eichkörper” is convex.

Minkowski proved the second part by contradiction. He assumed the existence of
three points a, c, b for which

S(ac) > S(ab) + S(bc)

and determined τ such that

S(ac) > τ > S(ab) + S(bc)

He let v′ and w′ denote the points for which

v′ − o = 1

τ
(b − a) and w′ − v′ = 1

τ
(c − b)

then

S(ow′) = 1

τ
S(ac) >

1

τ
· τ = 1 and

S(ov′) + S(v′w′) = 1

τ
S(ab) + 1

τ
S(bc) <

1

τ
· τ = 1

Minkowski then chose

t = S(v′w′)
S(ov′) + S(v′w′)

, and thereby 0 < t < 1

He then let u and v be determined by

u − o = v′ − o

1 − t
and v − o = w′ − v′

t
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For those points

S(ou) = S(ov′) + S(v′w′) < 1 and S(ov) = S(ov′) + S(v′w′) < 1

This means that u and v belong to the “Eichkörper”, and then also the whole line
segment uv, especially the point (1 − t)u + tv. Since w′ = (1 − t)u + tv Minkowski
had reached a contradiction because w′, belonging to the line segment between u and
v, also belongs to the “Eichkörper”, but in contradiction to this it was also shown
above that S(ow′) > 1, which finished the second part.

As we have seen also in the previous section, at some point probably around
1891 Minkowski realized that the crucial property of the bodies constructed around
each lattice point, besides the symmetry around the lattice point, is the property of
convexity – as we would say today – or as Minkowski phrased it that they are nowhere
concave bodies with middle points. A positive definite quadratic form gives rise to
such a body, but that is the only property of the ellipsoid/sphere in the rectangular/skew
lattice that Minkowski used. At some point he drew the conclusion that it does not
have to be a positive definite quadratic form that is used to measure the distance in
the lattice. It can be any function as long as it has the properties of an “einhellig”
reciprocal radial distance function, as he sketched in the above quote from the talk.

The “Eichkörper” or measuring/gauge body of an “einhellig” reciprocal radial dis-
tance function is, as mentioned above, what we today would call the unit ball. Such a
radial distance function (also called a gauge function) defines the “Eichkörper”, and
it measures the distance from the origin, o, to a point (x, y, z) using the length in the
ordinary sense from o to (xe, ye, ze) as the unit, where (xe, ye, ze) is the intersection
of the ray from o to (x, y, z) with the boundary of the “Eichkörper”. This way of
measuring the length of a straight line was indeed a “generalisation of the concept of
the length of a straight line” and it gives rise to a geometry in which – as phrased by
Thompson (1996):

[…] to someone peering in from outside, it appears that the unit for measuring
length is different in different directions and hence unit “circles” and “spheres”
are not the familiar round objects from Euclidean geometry but are some other
convex shape.32

Minkowski used the “Eichkörper” to prove the lattice point theorem. He considered
an “einhellig” radial distance function S, and argued (for the fist time in print) for the
existence of a smallest radial distance in the rectangular lattice. He called this mini-
mum distance M . Again he imagined the bodies S(au) ≤ 1/2M and S(uc) ≤ 1/2M
constructed around two different lattice points a and c, respectively. Because of the
property

S(ac) ≤ S(ab) + S(bc)

which ensures the convexity property of the bodies S(au) ≤ 1/2M and S(uc) ≤ 1/2M ,
these two bodies will have no inner points in common. If the radial distance is also

32 (Thompson, 1996, p. x).
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reciprocal then S(uc) ≤ 1/2M is identical to S(cu) ≤ 1/2M and the individual bodies
around the lattice points will touch each other at the boundary. Using the same line
of argument, as he did in the probationary lecture and in the 1891 paper in Crelle’s
Journal, Minkowski constructed a system of non-overlapping nowhere concave bodies
with a lattice point as middle point. This system will not fill out the whole space, so
again – by comparing volumes – he reached the inequality

1 ≥
(

M

2

)3

J

Here J denotes the volume of the “Eichkörper” S(0u) ≤ 1. The volumes of the bodies
S(au) ≤ 1/2M are then equal to (1/2M)3 J .33

The conclusion Minkowski reached from this inequality was, that since M is the
smallest distance in the lattice and M ≤ 2J−1/3 there exists at least one lattice point
q for which S(0q) ≤ 2J−1/3. That this theorem is in fact the lattice point theo-
rem he stated in the talk at Halle in 1891 is not mentioned in this paper, but in the
book Geometrie der Zahlen Minkowski interpreted the inequality (for n dimensions
1 ≥ (M/2)n J ) as follows: If J = 2n then M = 1, and if J > 2n then M < 1 meaning
that, since M is the smallest distance between lattice points, there exists a lattice point
b for which S(0b) = M ≤ 1, that is b is contained in the “Eichkörper” associated
with S.34 Remembering that Minkowski in this paper had restricted himself to three
dimensions the inequality expresses that if the volume of the “Eichkörper” is greater
than or equal to 23 then the “Eichkörper” must contain more lattice points than the
origin.

Minkowski finished the discussion of the inequality with the following praise:

The hereby gained theorem about nowhere concave bodies with middle point
seems to me to belong to the most fruitful in the whole of number theory.35

Clearly, Minkowski at this point conceived of the nowhere concave bodies with middle
point as a tool in number theory. The connection to positive definite quadratic forms and
the minimum problem was not presented in the paper, but in a letter Minkowski wrote to
Hermite the same year in which Minkowski also gave what he called a “quick resumé”
of his book Geometrie der Zahlen Minkowski focused on the analytical aspects of the
theory:

The biggest part of the book treats functions ϕ in n variables x1, x2, . . . , xn ,
which, as the square root of a positive definite quadratic form, satisfy the con-
ditions

33 Contrary to the Probationary lecture and the 1891 paper Minkowski actually gave a rigorous proof of

the inequality 1 ≥ (
1/2M

)3 J , as well as an explanation for what was to be understood by the volume of a
body in terms of C. Jordan’s results (Jordan, 1892).
34 (Minkowski, 1953, p. 76, (1896)).
35 (Minkowski, 1911, vol. I, p. 274, (1893b)).
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ϕ(x1, x2, . . . , xn) > 0, if not x1 = 0, x2 = 0, . . . , xn = 0,

ϕ(0, 0, . . . , 0) = 0,

ϕ(t x1, t x2, . . . , t xn) = tϕ(x1, x2, . . . , xn), if t > 0,

ϕ(x1 + y1, x2 + y2, . . . , xn + yn) ≤ ϕ(x1, x2, . . . , xn) + ϕ(y1, y2, . . . , yn),

ϕ(−x1,−x2, . . . ,−xn) = ϕ(x1, x2, . . . , xn).36

And the main result is that one can find integers x1, x2, . . . , xn for which

0 < ϕ(x1, x2, . . . , xn) ≤ 2
n
√

J

where J denotes the volume of the domain ϕ(x1, x2, . . . , xn) ≤ 1. This is the min-
imum result for positive definite quadratic forms if, as Minkowski indicated in the
beginning of the letter, ϕ is the square root of a positive definite quadratic form. The
“Eichkörper” is then the ellipsoid ϕ(x1, x2, . . . , xn) ≤ 1. That is the quadratic form
measures the distances in the lattice. Since the volume, J , of this ellipsoid is a con-
stant, kn , that depends on n, multiplied by 1/

√
D, where D is the determinant of the

quadratic form, the usual minimum result appears

f (x1, x2, . . . , xn) = ϕ(x1, x2, . . . , xn)2 ≤ 4k−2/n
n D1/n

In the letter to Hermite, Minkowski only gave the analytical version of the theorem,
but in the book Geometrie der Zahlen both versions are presented as well as the above
application of the theorem to the minimum problem for positive definite quadratic
forms, which again suggests that even though Minkowski in the sense discussed above
had detached the investigation of the lattice from positive definite quadratic forms, he
still considered his work on the lattice and its associated bodies as a method useful
for solving problems in number theory – not least in the theory of positive definite
quadratic forms.37

In the monograph Geometrie der Zahlen Minkowski devoted the first chapter to
nowhere concave surfaces. He defined the “Aichkörper”38 of a radial distance func-
tion as before and he gave the proof, shown above, of the fundamental property, which
we recognise as convexity:

The “Aichkörper” of an “einhellig” radial distance has the following character-
istics:
If two points belong to the “Aichkörper” so does every point on the line segment
between them. […]
Vice versa, if the “Aichkörper” of the radial distance S(a, b) has the property
that for any two of its points η and ξ , which do not belong to its boundary, any

36 (Minkowski, 1911, vol. 1, p. 266, (1893)).
37 (Minkowski, 1953, pp. 76–77, and p. 196, (1896)).
38 In Geometrie der Zahlen Minkowski spelled Eichkörper with an A instead of an E.
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point on the line segment between η and ξ also belong to the “Aichkörper”, then
the radial distance is “einhellig”.39

But he was not considering them as “convex” sets, they were measuring bodies (gauge
bodies) defined not through their “convexity” property but through a radial distance
function.

In this second phase, Minkowski coined the term “nowhere concave bodies with
middle point” and investigated them as a tool through which he could derive number
theoretical inequalities. The constituent element is the “Eichkörper” associated with
a radial distance function. The connection between these two concepts follows from
the fact that the “Eichkörper” corresponding to an “einhellig” radial distance function
form a nowhere concave body with the origin as an inner point, and every nowhere
concave body, which has the origin as an inner point, is the “Eichkörper” of some
“einhellig” radial distance function. As we have seen, Minkowski’s study of his method
of proof for the minimum theorem for positive definite quadratic forms led him to
realize the essential property of the ellipsoid, which – through his geometrical inter-
pretation of positive definite quadratic forms – measured the distance in the associated
lattice. The only thing needed to carry out the proof for the minimum result was the
convexity property of the ellipsoid; it was not associated with the ellipsoid itself. This
led Minkowski to generalise the proof method and single out the general notions of
nowhere concave bodies and “Eichkörpers”, which he then used to measure distances
in space, creating an abstract general metric space.

So how should we understand Minkowski’s perception of these nowhere concave
bodies at this point? The first time he used the term “nowhere concave” in print was
in the report of the talk from Halle in 1891. Here he did not give a formal definition of
the notion of a nowhere concave body. Rather he talked about bodies of a certain kind
surrounding the origin in a certain way, bodies whose boundary toward the outside is
nowhere concave. The first object he introduced in this respect was the “Eichkörper” of
a radial distance function, defined in the paper he read at the international mathematics
conference in Chicago in 1893. Here he also talked about nowhere concave bodies –
again without giving a definition, probably due to the fact that he thought of the name
as self-explanatory. That he did not give a formal definition at that point indicates that
the significant element at this time in his mathematical practise, the “Eichkörper” –
the measuring (gauge) body – was not interesting as a geometrical object in itself,
but as a tool, a technique, through which the concept of distance in space could be
generalised and measured with the purpose of solving problems in number theory.

It was not until the last chapter of the book Geometrie der Zahlen that Minkowski
gave a formal definition of nowhere concave bodies:

The manifold of all points x1, . . . , xn will be denoted by H . A given set of points
B is characterised as a nowhere concave body already through the following two
properties:

1. that a straight line has either no points, one point or a line of points in
common with the set,

39 (Minkowski, 1953, p. 12, (1896)).
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2. that in the set some n + 1 points, not in the same [hyper]plane, exist.
.....
In 1. is also the following property inherent:

3. when two points belong to B so does every point on the line segment
between the two.40

Here we recognise 3. as a definition of a convex set that is often used today. The title
of this last chapter is “Eine weitere analytisch-arithmetische Ungleichung” in which
Minkowski used the tools he had developed in the first chapters to derive results for
positive definite quadratic forms and ellipsoids, and prove an inequality involving vol-
umes of different bodies constructed through a radial distance function. The definition
of the nowhere concave body occurs in the subsection “Berechnung eines Volumens
durch successive Integrationen” the content of which goes into the proof of the inequal-
ity. We can see here that, even though the importance of these bodies is stressed with
regard to their use in number theory, he slowly began to think of them as mathematical
concepts in their own right.

4 The Third Phase: the concept of a convex body—the beginning
of the theory of convexity

The third phase is characterised by Minkowski’s submersion into the geometry of
nowhere concave bodies – or convex bodies as he soon came to name them – for
their own sake. This also marks the beginning of the systematic study of convex sets
that developed into the modern theory, as it is known today. Minkowski published
four papers in which he treated different aspects of the study of convex sets.41 A fifth
(unfinished) paper was published posthumously in volume II of his Collected Works.42

The shift of Minkowski’s focus is seen very clearly both from the title and the
content of those papers. In the first one “Allgemeine Lehrsätze über die konvexen
Polyeder” from 1897 Minkowski opened the paper with a definition of a convex body:

A convex body is completely characterized by the properties that it is a closed
set of points, has inner points, and that every straight line that takes up some of
its inner points always has two points in common with its boundary.43

In a footnote he directed the reader towards page 200 in his Geometrie der Zahlen

There [page 200 in Geometrie der Zahlen] I called these objects nowhere concave
bodies; here I will use the shorter term convex.44

While in “Geometrie der Zahlen” he used the nowhere concave bodies as a tool, this
first paper in what I call the third phase of Minkowski’s practise is dedicated to the

40 (Minkowski, 1953, p. 200, (1896)).
41 (Minkowski, 1911, vol. II, (1897), (1901a), (1901b), (1903)).
42 (Minkowski, 1911, vol. II, pp. 131–229).
43 (Minkowski, 1911, vol. II, p. 103, (1897)).
44 (Minkowski, 1911, vol. II, p. 103, (1897)).
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study of convex bodies. Minkowski argued that investigations of such bodies were
mathematically interesting not only because of their applicability in other areas of
mathematics, notably number theory, but also because

The theorems about convex bodies have a special appeal because they as a rule
are valid for the whole category of objects without any exceptions.45

Besides this general interest in convex bodies Minkowski gave a more particular moti-
vation behind the paper. He wanted to prove a theorem that he

had expected for a long time [ …]: A convex body that is build up by a finite num-
ber of sheer bodies with middle point that only touch each other at the boundaries
has a middle point as well.46

The resemblance between this problem and the proof-method Minkowski first used
in his work on the minimum problem and later, in Geometri der Zahlen, to prove the
lattice point theorem is striking and suggests that Minkowski was led to consider this
theorem through his work in phase 1 and phase 2 on these problems and the associated
convex bodies—or nowhere concave bodies with middle point—as he called them at
that time.

Minkowski proved the theorem not for arbitrary convex bodies but for convex poly-
topes in three dimensional space, but, as he claimed in a finishing remark, the theorem
can be extended to manifolds of arbitrary dimensions.

4.1 Hermann Brunn’s influence on Minkowski’s theory of convex bodies

In this section I will discuss the question of Brunn’s possible influence on Minkow-
ski’s work. I claimed in the introduction that the story, as it is presented in various
textbooks, leaves the reader with the impression that Minkowski’s work on convex sets
was a continuation of Hermann Brunn’s work. If one reads Minkowski’s first paper
solely devoted to the theory of convex sets without taking Minkowski’s mathematical
practise in phase 1 and phase 2 into account, one can indeed get this impression. In the
second section of that paper, entitled “Die Grundlagen der Untersuchung”, Minkowski
referred to Brunn’s thesis, in which Brunn, according to Minkowski, developed the
following theorem:

If a convex body is intersected by three parallel planes A′, B ′, C ′ of which the
middle one B ′ divides the distance between A′ and C ′ in the ratio t : 1 − t and
if the cross sections have the area A, B, C , then the inequality

√
B ≥ (1 − t)

√
A + t

√
C

is true.47

45 (Minkowski, 1911, vol. II, p. 103, (1897)).
46 (Minkowski, 1911, vol. II, p. 103, (1897)).
47 (Minkowski, 1911, vol. II, p. 108, (1897)).
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The theorem Minkowski was referring to is Theorem 5 on page 23 in Brunn’s dis-
sertation “Ueber Ovale und Eiflächen” from 1887. In his thesis Brunn did not use
the term “convex body”, he worked on geometrical objects, which he named “Oval”
(oval), “volles Oval” (full oval), “Eifläche” (egg-surface) and “volles Eifläche” (full
egg-surface). The ovals are plane figures whereas the egg-forms are the corresponding
figures in three dimensional space. Brunn defined an oval as:

a closed curve that has two and only two points in common with every intersecting
straight line in its plane.48

By the term “volles” oval Brunn understood an oval together with the inner points
enclosed by the oval. He defined egg-surface and “volles” egg-surfaces in an analo-
gous way for three dimensions. Brunn was working with what we today would call
convex sets in the plane and in space and their boundaries. The theorem, which Min-
kowski claimed to be at the foundation of his own investigation in his first paper
entirely on convex sets, was phrased differently by Brunn, who wrote:

Among a family of parallel cross sections in an egg-surface there exists one and
only one with maximum area realised through one cross section or through one
continuum of congruent cross sections forming part of a cylinder.49

This is certainly not the same formulation as the one given by Minkowski cited above,
so first of all why was Minkowski crediting the theorem to Brunn, and second, what
role – if any – did Brunn’s work play in Minkowski’s investigations?

Regarding the first question: In the proof Brunn first considered two parallel planes
each containing a rectangle with equal area, and parallel sides. He then compared a
cross section, parallel to the two planes, of the obelisk formed by the two rectangles.
This cross section lies between the two planes and Brunn argued that the area of the
cross section of the obelisk is at least the size of the rectangle.50 In the argument he
presented the inequality

F ′ ≥ F(λ + λ′)2

where F ′ is the area of the cross section of the obelisk, F the area of the two original
rectangles, and λ + λ′ = 1. With the help of this result Brunn was able to give an
argument for the first part of the theorem, whereas his proof for the second part, as
we shall see below, was deemed flawed according to the standards of the time. This
inequality by Brunn is contained in the one presented by Minkowski in 1897 that
was quoted above, which is probably why Minkowski credited the inequality result
to Brunn. These types of inequalities are nowadays in textbooks and mathematical
papers known and referred to as Brunn–Minkowski inequality or Brunn–Minkowski
theorem.

Regarding the second question on Brunn’s influence on Minkowski: As is evident
from all his publications, Minkowski was very careful to acknowledge the papers by

48 (Brunn, 1887, p. 1).
49 (Brunn, 1887, p. 23).
50 (Brunn, 1887, p. 23).
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other mathematicians that he had drawn on for inspiration. Brunn’s inaugural thesis
is from 1887 and his Habilitation dissertation, which Brunn saw as a continuation
of the inaugural thesis, is from 1889,51 but Minkowski’s first reference to Brunn did
not occur in print until 1896 where it can be found on page 209 in Geometrie der
Zahlen, almost at the end of the book. Here Minkowski stated the inequality for n
dimensions, writing that the theorem “is due to Mr. Brunn” and referred the reader to
the last section of the book, Sect. 57, for the proof.52 In a footnote on page 237 there
is a second reference to Brunn. As I have also argued in (Kjeldsen, forthcoming) there
are several circumstances that indicate that these references probably were added in
the proofreading process. First of all, Minkowski introduced the “Eichkörper” and the
nowhere concave surfaces already in the first chapter of the book and on page 200,
as mentioned above, he defined the notion of a nowhere concave body. Considering
Minkowski’s practise of crediting his sources of inspiration, if he had been inspired by
Brunn’s work he most likely would have referred to Brunn at those particular places
in the book. Secondly, in 1894 Brunn published what is basically a revision of parts
of his inaugural thesis especially regarding Theorem 5 on page 23, the one to which
Minkowski was referring. The title of this revision is “Referat über eine Arbeit: Exacte
Grundlagen für eine Theorie der Ovale”, and Brunn gave the following explanation
for the occurrence of the work:

The occasion to return to this subject [the inaugural thesis] the revision of
which for a long time has appeared ungrateful for the author is the knowledge
of similar work by Mr. Minkowski in Bonn (in the future Könningsberg). At
Teubner Minkowski has published a preannouncement of a book in print entitled
“Geometrie der Zahlen” in which an unexpected and fruitful connection between
number theory and the geometry of bodies whose boundaries are nowhere con-
cave is established and thereby also in analytical terms treats the theory of the
latter. Thus also from other sides than a geometrical point of view a certain impor-
tance is attached to egg-forms and this has encouraged the author to supplement
his doctoral thesis in the manner indicated above.53

About Theorem 5, Brunn wrote in the revision:

The proof of the first part of the theorem can be more sharply clarified without
essentially changing it by means of the investigations in the preceding report.
Regarding the last claim in the theorem, that part of a cylinder is formed, Min-
kowski has brought to my attention that the indicated proof in my doctoral thesis
(III, 9, 10) is too superficial regarding the occurrence of a difficulty. The author
may here be permitted to close this gap.54

The quotes suggest that Brunn, after having seen the announcement from Teubner,
probably presented his thesis to Minkowski, who then apparently pointed out some

51 (Brunn, 1889).
52 (Minkowski, 1953, p. 209, (1896)). Minkowski used the letter m instead of n to indicate the dimension.
53 (Brunn, 1897, p. 94).
54 (Brunn, 1897, p. 94).
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weaknesses. Thirdly; in the very last paragraph of Geometrie der Zahlen, which
probably was written in 1896 but apparently not published until the 1910-edition,
Minkowski came back to Brunn with a reference to the revision from 1894, so that
part was certainly added after 1893, that is during the proof reading.55 Here Minkowski
wrote:

The merits of being the first one to set up the important inequality (4) [ n−1
√

T ′ ≥
(1 − t) n−1

√
B ′ + t n−1

√
C ′] goes to Mr. Brunn. (see his paper Ueber Ovale und

Eiflächen, p. 23, Art. 5). Mr. Brunn’s exposition refers primarily to the case
n = 3 and is held more in geometrical terms whereas here a pure analytical
presentation is given. … Because of a remark from me about the necessity of a
sharper argumentation for some additional theorems as they appear through the
remarks mentioned at the site (pp. 24–25, Art. 9 and 10) Mr. Brunn has returned
to the case of the limit in question in the paper “Exacte Grundlagen für eine
Theorie der Ovale”.56

Finally; Brunn explicitly stated that his theorem could not be used to prove extremal
properties of the sphere,57 which was, as will be shown below, exactly what Minkowski
was going to use it for and the reason why it is counted as a fundamental theorem in the
modern theory of convexity. So, even though Minkowski credited the result to Brunn
it is almost certain that Minkowski worked independently of Brunn, and one can say
for sure that Brunn was not able to use the theorem to prove extremal properties.

4.2 Minkowski’s further work on the theory of convexity

Minkowski’s first paper exclusively committed to investigations of convex bodies was
followed three years later, in 1901, by two further papers on convex bodies. One of
them is a summary of a talk published in Jahresbericht der Deutschen Mathemati-
kervereinigung where Minkowski talked about the problems of justifying the notions
of the length of curves and the surface area of curved surfaces as limits of the length
of polygons and surface areas of polyhedrons respectively.58 He argued for the signif-
icance of convex bodies in the generalisation of the notion of surface area. The main
issue in Minkowski’s talk was to use these considerations to give a

new and more rigorous proof of the theorem that among all convex bodies with
equal volume the sphere has the smallest surface and at the same time to trace
this theorem back to a more substantial and analytically simpler one.59

55 There are some indications that this very last part of the book was not published until 1910 with the
second edition of the book. Apparently the book was published in two parts: the first part in 1896 consisting
of the first 240 pages and the last part consisting of the last 14 pages was added to the 1910-edition. See
also (Kjledsen, forthcoming).
56 (Minkowski, 1953, p. 254, (1896)).
57 (Brunn, 1887, p. 31).
58 (Minkowski, 1911, vol. II, p. 122, (1901a)).
59 (Minkowski, 1911, vol. II, p. 125, (1901a)).
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In order to accomplish that, Minkowski used the theorem that he again ascribed to
Brunn now in the following formulation:

Let J0 and J1 be two arbitrary non-similar convex bodies with volumes W0 and
W1, respectively. If one combines each point of J0 with every one from J1 and
divides every connecting line segment in the constant ratio t : 1 − t , where
0 < t < 1, then the set of all the different dividing points form again a convex
body Jt and for the volume Wt of this the following inequality holds:

3
√

Wt > (1 − t) 3
√

W0 + t 3
√

W1

In the reference to Brunn’s thesis Minkowski cited Brunn:

At the mentioned cite Mr. Brunn has indeed uttered the opinion that: “This
theorem cannot be used to prove the maximum property of the sphere.”60

Here again we see Minkowski carefully crediting Brunn for being the first one to
consider matters leading to the above inequality but – at the same time – emphasising
that the interpretation of these matters and their significance in a broader theory of
convex sets cannot be ascribed to Brunn.

In the second 1901 paper, Minkowski continued to pursue questions and results
about extremal properties of the sphere, considerations that led him to introduce the
notion of mixed volumes of convex bodies, which has become a key notion in parts
of convexity theory.61

He published only one longer paper on his theory of the geometry of convex bod-
ies before he died but a second longer work, found after his death, was published in
volume II of Minkowski’s Collected Works.62 Together these papers can be seen as
the beginning of a foundation for a systematic development and presentation of what
soon became established as the theory of convexity. In these two papers Minkowski
introduced many of the now-standard notions such as supporting and separating
hyperplanes, mixed volumes and centre of gravity, to name some of them. In these
papers he developed a geometric theory of convex sets in three dimensional space, but
for example the existence of supporting hyperplanes he had introduced and proved for
n-dimensional “Eichkörpers” in Geometrie der Zahlen.

5 Conclusion

The modern theory of convexity entered the world of mathematics at the turn of
the twentieth century. It constituted a new research field in which new mathemati-
cal knowledge was created. As described in the introduction the historical research
presented above has been directed towards answering the question: Why and how
did the concept of convex bodies emerge, take form, and lead to the beginning of a

60 (Minkowski, 1911, vol. II, p. 125, (1901a)).
61 (Minkowski, 1911, vol. II, p. 129, (1901b)).
62 (Minkowski, 1911, vol. II, pp. 230, (1903)), (Minkowski, 1911, vol. II, pp. 131).
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theory of convexity in Minkowski’s mathematical practise? This analysis has brought
forward three phases in Minkowski’s mathematical practice that led him to introduce
the study of convex bodies as a new research field. The shift from one phase to the
next is characterised by a change in Minkowski’s focus of research, showing that the
dynamics of Minkowski’s production of the knowledge that led to the theory of convex
bodies can be described as an interplay between two ways of generating knowledge:
(1) by answering new previously unimagined questions, and (2) by answering known
questions using new methods, following new roads and ways of argumentation.

The first phase is characterised by Minkowski’s effort to answer a well known,
important question in the reduction theory of positive definite quadratic forms, namely
the minimum question. By using geometrical methods Minkowski was able to solve
the minimum problem in a new way. The geometrical method he created was so pow-
erful that it turned into a new mathematical discipline of the twentieth century, called
the geometry of numbers. This is a clear manifestation of new knowledge generated by
answering old questions in new and previously unknown ways. Even though Minkow-
ski was not the first one to interpret positive definite quadratic forms geometrically,
he took the method much further. Through his geometrical intuition and the way he
put it to use, he moved number theory into a new epistemic place, which opened up
new kinds of questions, and new pathways to explore, leading to the formation of
the discipline known today as the geometry of numbers, which is an upshot of the
method, the technique, and the context of argumentation more than the theorem of the
minimum problem in itself.

Minkowski did not stop at the minimum problem. Instead he went on and turned
his attention towards researching the geometric method itself, and that is the part of
Minkowski’s mathematical practise I have called the second phase. In this phase he
investigated the proof-method used in his work on the minimum problem, research that
led him to introduce radial distance functions, to construct the associated “Eichkörper”
as well as to introduce the notions of nowhere concave bodies with and without middle
point. Along with the notion of the lattice these new mathematical concepts functioned
as tools in his number theoretical investigations, tools that allowed him to prove the
minimum theorem through geometrical intuition without cumbersome calculations, a
proof-method Hilbert later in his commemorative speech characterised as “a pearl of
the Minkowskian art of inventions”,63 and indeed, as we have seen, this second phase
was extremely fruitful. This phase also shows Minkowski as a mathematician of the
new trend of abstraction and axiomatization that became the hallmark of twentieth
century mathematics. Minkowski’s radial distance functions are highly abstract and
n-dimensional. They are detached from the meaning of distance that we know from
our empirical, physical world and as such they have another ontological status than
mathematical objects had in the beginning of the nineteenth century where they usu-
ally were thought of as abstractions of familiar objects. The associated “Eichkörpers”
as well as Minkowski’s nowhere concave bodies are abstract mathematical entities
in n-dimensional mathematical spaces not abstractions from figures in our “real”
world. Jeremy Gray has characterised this ontological change as a revolution in the

63 (Hilbert, 1909, p. XI) in (Minkowski, 1911, vol. I).
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ontological status of mathematical objects,64 a change that was notably apparent in
Hilbert’s Grundlagen der Geometrie from 1899 where the modern axiomatic method of
the twentieth century mathematics served as the foundation for geometry. Minkowski
was in this sense a very modern mathematician.

This new geometrical way of argumentation Minkowski developed for solving num-
ber theoretical problems also led him to recognise the essential properties—that we
today call convexity—of the objects used in his geometrical line of reasoning for the
minimum problem and the lattice point theorem. This led Minkowski to introduce, in
phase three, the concept of a convex body as a geometrical object independent of num-
ber theory, the minimum problem, and the lattice point theorem. The convex bodies
were interesting geometrical research objects in themselves, partly because of their
applicability to those areas of mathematics, but also because statements about them
had a certain appeal, as Minkowski wrote in his first paper exclusively committed to
the study of convex bodies.

This marked the beginning of the third phase of Minkowski’s mathematical practise
leading to his introduction of the modern theory of convexity. This third and final phase
is characterised by the generation of new mathematical knowledge obtained by asking
new questions, questions about the geometry of these very general bodies, which are
only required to satisfy the property of convexity.

The identification and analysis of the three phases show that the concept of a convex
body as well as the modern theory of convexity emerged through an interplay between
the two ways of generating new knowledge: the answering of an old question with
new methods created new knowledge that opened the possibility of introducing new
mathematical objects and asking new questions, together laying the foundation of the
modern theory of convexity.

Analysed with hindsight we can see that Minkowski changed his perception of what
a mathematician of today would call a convex set from an “Eichkörper”, which he
conceived as a tool, to an independent geometrical object detached from the process
of measuring. This change in perception is also supported by Minkowski’s change of
dimension: The “Eichkörper” was a tool to handle number theoretical problems, and
in order to function as such it had to “live” in n-dimensional manifolds. In accordance
with that Minkowski developed in his Geometrie der Zahlen a theory of n-dimensional
“Eichkörper”. When he changed his research perspective in phase three, defined the
geometrical concept of a convex body, and began to develop a theory of convexity he
focused on three dimensions. Even though he claimed at several places that the results
could be extended to n-dimensions he only derived results for three-dimensional con-
vex bodies, indicating again a shift in focus from number theory to geometry in three
dimensional space. This change in perception made it possible for Minkowski to ask
geometrical questions, and gain new mathematical knowledge about the properties of
convex bodies.

When he suddenly died from a ruptured appendix, Minkowski left a new mathemat-
ical research field where he had laid the foundation for the new discipline of convexity
in twentieth century’s mathematics. His work inspired others, in the beginning

64 (Gray, 1992)
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notably Carathéodory65 and Steinitz66, who took up and extended Minkowski’s work
in different directions and for different purposes.

Acknowledgments I wish to thank Jeremy Gray for helpful comments on an earlier version of this paper.
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