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Abstract This paper examines the contribution of Gabrio Piola to continuum
mechanics. Though he was undoubtably a skilled mathematician and a good
mechanician, little is commonly known about his papers within the interna-
tional scientific community, principally because a large part of the Italian school
of mechanics was isolated in the first half of the XIXth century. We examine
and comment on Piola’s most important papers, and compare them with those
of his contemporaries Cauchy, Poisson and Kirchhoff.

1 Introduction

At the beginning of the XIXth century the state of theoretical mechanics and
science in general did not seem remarkable in Italy. An overview of the scien-
tific production of the time shows a deep lack of creativity and a certain cultural
isolation, with the exception of some contacts of northern Italian scientists with
the nearby French school; even the best works reveal a remarkable cultural
gap.1 The Italian situation in some way reflected the international one, which
had reached a point of stagnation after Lagrange. The models of material point

1 For a portrait of mathematics and mechanics at the beginning of the nineteenth century in Italy,
see (Bottazzini 1994).
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and rigid body, used by the mechanicians of the XVIIIth century, had exhausted
their powers: the problems which could be solved by them were either too diffi-
cult, such as the problem of the n bodies, or of little importance. Hydraulics was
in a different situation, since much could still be obtained from these models.

New studies of mechanics emerged from this point of stagnation in two
directions. In one, the rigid body model was abandoned and the idea of energy
and dissipation gained importance. Indeed, at the beginning of the 1820s the
mechanics of elastic continua originated in the works of Navier and Cauchy; a
little later scientists focused on the idea of work, and mechanics became linked
to the new discipline of thermodynamics. In the other, the theory was perfected
thanks to the introduction of a general formulation and a renewed form of
geometrical language, which turned out to be a powerful tool of rationalisation.
The contributions of Hamilton and Jacobi in the first half of the nineteenth
century were fundamental here.2

A lively and extremely interesting discussion of the fundamentals began in
France and the rest of Europe, inspired by the publication of Lagrange’s Mécha-
nique analitique in 1788. In this book the founding principle is that of virtual
velocities as stated by Bernoulli, suitably generalised by the calculus of varia-
tions. Italians made only a marginal contribution to this discussion, as is shown
by the papers of the major Italian scientists in the most important Italian jour-
nals, the Memorie di matematica e fisica della Società italiana delle scienze, the
Memorie dell’Istituto nazionale italiano and the Memorie dell’Istituto lombardo.
Vittorio Fossombroni wrote a book3 which was well received even in France;
for example, Prony4 recommended it to his students at the École polytechnique.
Michele Araldi5 and Girolamo Saladini6 tried to prove rigorously the princi-
ple of virtual work, unaware of the results of the French school of mechanics.
Gregorio Fontana produced studies on mechanics which were still anchored in
the previous century.7 In 1790 and 1794 Antonio Maria Lorgna8 and in 1809
and 1811 Paolo Delanges presented papers on elasticity which are interesting
from the point of view of applications but of modest theoretical content. Pietro
Ferroni presented his view of the principles of mechanics.9 In the absence of
an original and creative vein, most of the Italian mechanicians simply provided
critical comments in the spirit of an eighteenth century tradition.

To many Italian mathematicians and mechanicians, modernity was repre-
sented by Lagrange. This was partly because Lagrange, even after leaving Turin

2 For an overview of these aspects, see (Dugas 1950).
3 (Fossombroni 1796).
4 (Prony 1797), p. 204.
5 (Araldi 1806).
6 (Saladini 1808).
7 For instance in (Fontana 1802).
8 In 1782 this scientist had promoted the foundation of the Società italiana, which edited Memorie
di matematica e fisica. The founders being forty in number, the society was also called Accademia
dei XL and still operates with this name.
9 (Ferroni 1803).



Piola’s contribution to continuum mechanics 305

in 1766, had remained in contact with the Italian world of science, and partly
because Italians considered him Italian and this was a period of rising nationalis-
tic feelings. Vincenzo Brunacci (1768–1818), professor of “Matematica sublime”
(Calculus) in Pavia, was one of the main supporters of Lagrange’s ideas. Along
with the fashionable purism of the time, he accepted Lagrange’s reduction
of differential calculus to algebraic procedures10 and rejected the eighteenth
century concept of infinitesimal in both calculus and mechanics.11 Brunacci
transmitted these ideas to his pupils, including Ottaviano Fabrizio Mossotti
(1791–1863), Antonio Bordoni (1788–1860) and Gabrio Piola (1794–1850), the
brightest Italian mathematicians of the first half of the nineteenth century.
As an example of the spirit of that school, one may consider the notes12 to
Giuseppe Venturoli’s book on hydraulics.13 In these notes Venturoli’s proofs,
which were originally obtained by using infinitesimals, were re-drawn by Bor-
doni and Piola using Lagrange’s method of derivative functions. Lagrange’s
ideas were so deeply rooted in Brunacci’s pupils that in due course they found
it difficult to accept the “progressive” ideas of Cauchy, with whom they came in
contact during his voluntary exile in Italy from 1830 to 1833. Only after some
time did Piola start to appreciate Cauchy’s new mathematical conceptions, and
he was never to accept them completely.14

Though undoubtably one of the most brilliant Italian mechanicians of the
XIXth century, little is commonly known about Gabrio Piola’s life and work
within the scientific community.15 His name, however, is well known because
in most textbooks on continuum mechanics it is associated with two tensors
describing stress at a point of a body undergoing large deformations. With this
paper we aim to illustrate in some depth the role played by Piola in continuum
mechanics.

Count Gabrio Piola was born in Milan on July 15th, 1794, into a rich and
noble family. At first he studied at home and later attended a local lyceum. He
soon showed his skills in mathematics and physics, and studied mathematics at
the University of Pavia, where he was a pupil of Vincenzo Brunacci and gained
his doctorate on June 24th, 1816. He did not follow an academic career, though
he was offered the chair of Applied Mathematics at the University of Rome.
Instead, he did private teaching—one of his pupils was Francesco Brioschi,
later professor of Rational Mechanics in Pavia and president of the Accademia
dei Lincei. Piola began as a researcher in mathematics and mechanics in 1824,
winning a prize competition from the Istituto Lombardo in Milan with a long

10 In (Lagrange 1797, 1813b), the derivative of a function of a real variable is defined as the factor
multiplying the increment of the variable in the first term of the Taylor series expansion of the
function itself.
11 (Brunacci 1804).
12 (Bordoni 1833).
13 (Venturoli 1826).
14 For some of the Italian mathematicians’ view of Cauchy see (Bottazzini 1989).
15 For Piola’s biography and an analytical list of his papers, see (Masotti 1950).
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article on Lagrange’s analytical mechanics.16 His contributions to mathematics
are on finite differences and integral calculus, while in mechanics he was inter-
ested basically in continuum mechanics and hydraulics. He was the editor of a
journal, Opuscoli matematici e fisici di diversi autori, of which only two volumes
appeared. Amongst other things, the journal was the medium which presented
Cauchy’s mathematical theories in Italy: in fact, it contained some of Cauchy’s
fundamental works, which were translated from French into Italian.17

Piola was a highly cultured person and dedicated himself also to history and
philosophy, most notably writing a paper on Bonaventura Cavalieri.18 He was a
member of numerous societies, among which the Società italiana delle scienze,
and from 1825 he belonged also to the Accademia romana di religione cattolica.
In fact, Piola was very attached to traditions and an extremely strong Catholic,
a faith he shared with Cauchy. This is why the latter kept Piola as as a first point
of reference in his stay in Italy from 1830 to 1833.19 Piola also taught religion
for twenty-four years in a parish in Milan, and was a friend of Antonio Rosmini,
the most important exponent of Italian Catholic spiritualism. He died in 1850
in Giussano della Brianza, near Milan.

2 Piola’s principles of mechanics

Among Brunacci’s pupils, Piola was the most interested in mechanical aspects;
in his works he devoted much effort to the task of eliminating infinitesimals,
re-formulating the principle of virtual velocities as proposed by Lagrange. For
reasons which are still not clarified by historians, there was in Italy a certain
reluctance to accept the idea of force as a primitive concept, as Newton and
Euler had proposed. Rather, the preferred approach was that of d’Alembert,
according to whom force is a derived concept and f = ma is simply a definition.
According to this point of view, dynamics precedes statics. This is the belief of,
among others, Giovanbattista Magistrini, to whom Piola refers:20

Elements of the former [statics] cannot be but a particular determination
of the elements of the latter [dynamics], and its [of dynamics] equations
could not be good and general unless they did not include equilibrium with
all its accidents. Putting into practice the ideas derived from putting statics
prior to dynamics makes us notice this truth by means of irregularity and

16 (Piola 1825).
17 (Bottazzini 1989), pp. 28–29.
18 (Piola 1844).
19 For a short excerpt on the religious view shared by Cauchy and Piola, see (Bottazzini 1989),
footnote (40), p. 29.
20 (Piola 1825), pp. IX-X.
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contradiction […]. Indeed, [this practice] is obliged to use the expedient
of a certain infinitesimal mechanical motion.21

Piola’s epistemological views are set out in the paper which won a prize from
the Reale Istituto Lombardo di Scienze in Milan in 1824 and was published in
1825. These views remained unaltered in practice in Piola’s later works. The
metaphysics in his work is the same as that found in Lagrange: all mechanics
can be expressed in terms of differential calculus and there is no need, nor is
it convenient, to use other branches of mathematics which use intuition, such
as geometry for example, and which can therefore lead to errors. Piola called
the key tool of his treatment ‘equazione generalissima’, that is, the most general
and “indubitable” equation of mechanics. This equation coincides with what
we now call the equation of virtual work, formulated according to Lagrange’s
approach using the calculus of variations. Yet the equation of virtual work may
not be considered as evident per se; even Lagrange had doubts on the subject,

[…] it is necessary to admit that it is not sufficiently evident to be regarded
as a primitive principle.22

In line with the Aristotelian view of science of his time, Piola could not
assume the equation of virtual work explicitly as a true principle and felt com-
pelled to derive it from first principles, which had to be absolutely evident, at
least in a purely empirical sense, i.e., experienced in everyday life. In so doing,
Piola abandoned d’Alembert’s position,23 where mechanics is a purely rational
science just like geometry, and linked himself to the “empiric” epistemology
of Newton, even though he did not accept Newton’s fundamental concept of
force:

It is therefore necessary to give up all our pretences and, following the
great precept of Newton, to seek in the nature those principles which can
explain other natural phenomena […]. These ideas persuade us that it
would be a bad philosopher who would persist in wanting to know the
truth about the fundamental principle of mechanics in the same way as
the axioms are evident to us. […] But, if the fundamental principle of

21 Gli elementi della prima non possono essere che una particolare determinazione degli elementi
della seconda, e le formole di questa non si potrebbero aver per buone e generali se il caso non
comprendessero dell’equilibrio con tutti gli accidenti che ad esso appartengono. La pratica stessa
dei ragionamenti che impiegasi nel premettere la statica alla dinamica ci fa sentire questa verità
coll’irregolarità e con la contraddizione […]. Perciocché vedesi costretta a mettere in campo il
ripiego di certo meccanico movimento infinitesimale (Magistrini 1816, p. 450).
22 […] il faut convenir qu’il n’est pas assez evident par lui-même pour être érigé en principle
primitif (Lagrange 1788, p. 23).
23 (d’Alembert 1758), p. XXIX.
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mechanics cannot be evident in itself, at least it should be a truth easy to
understand and to be persuaded of.24

The empirical first principle introduced by Piola is the superposition of
motions: the motion due to the action of two causes is the sum, in the mod-
ern sense of vector sum, of the motions due to each single cause.25 Along
with d’Alembert’s definition of force, this principle leads to the property of
superposition of forces. These two assumptions are not sufficient to study the
mechanics of extended bodies, and the idea of mass must be introduced. Piola
followed the norm of his time, by identifying mass with the quantity of matter: he
believed that the substance of a given material can be considered to be formed
by very small atoms which are all equal. These can be arranged in space in var-
ious different ways and constitute bodies with apparently different densities;
the mechanical behaviour of a body depends only on the number of atoms it
contains. In a scholion, Piola expressed clearly his ideas about atoms, or infin-
itesimal components in mathematics and in physics, refusing their existence in
the former and accepting them in the latter:

I, educated by Brunacci in the school of Lagrange, have always avoided
the metaphysical infinitesimal, by assuming that in analysis and geometry
(if we want to have clear ideas) we must always replace it with the unde-
terminate, as small as we need: but I accept what could be called physical
infinitesimal, of which we have a clear idea. It is not an absolute zero,
rather it is any such quantity that could be noticeable by other beings, but
it is a zero relative to our senses.26

Piola then “proved” the equation of virtual work using of these ingredients,
and so he believed he had eliminated all the mechanical and mathematical
uncertainties he found in Lagrange’s formulation. Indeed, Piola had no need
to use the somewhat obscure concept of XVIIIth century infinitesimal, and he
used the calculus of variations established rigorously by Lagrange.27 The equa-
tion of virtual work for a system of constrained material points is provided by
Piola in the following form:

δL + λ δC = 0 , (1)

24 È dunque necessario abbandonare alquanto le nostre pretese, e, seguendo il gran precetto di
Newton, cercare nella natura que’ principi con che spiegare gli altri fenomeni naturali […]. Queste
riflessioni persuadono che sarebbe un cattivo filosofo chi si ostinasse a volere conoscere la verità
del principio fondamentale della meccanica in quella maniera che gli riesce manifesta l’evidenza
degli assiomi. […] Ma se il principio fondamentale della meccanica non può essere evidente, dovrà
essere non di meno una verità facile a intendersi e a persuadersi (Piola 1825, p. XVI).
25 The same principle, using a similar vocabulary, is assumed in (Mossotti 1868).
26 Io, educato da Brunacci alla scuola di Lagrange, ho sempre impugnato l’infinitesimo metafisico,
ritenendo che per l’analisi e la geometria (se si vogliono conseguire idee chiare) vi si deve sempre
sostituire l’indeterminato piccolo quanto fa bisogno: ma ammetto ciò che potrebbe chiamarsi l’in-
finitesimo fisico, di cui è chiarissima l’idea. Non è uno zero assoluto, è anzi tal grandezza che per
altri esseri potrebbe riuscire apprezzabile, ma è uno zero relativamente alla portata dei nostri sensi
(Piola 1848, p. 14).
27 (Lagrange 1797).
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where δL is the first-order variation of the work of all the active forces
(including inertia), δC represents the first-order variation of the constraint
equations and λ is a Lagrange multiplier. Hence, the virtual displacements that
must be taken into account are free from any constraint and do not need to be
infinitesimal. There is a weak point in Piola’s proof of the equation of virtual
work, i.e., the vanishing of the work of constraint reactions, which is implicitly
assumed but not proved.28 However, even if Piola had been conscious of the
weakness of his reasoning, he would probably not have been severely worried.
He had no doubt that the equation of virtual work was right and its rigorous
proof was only a question of style, which did not modify the development of
the mechanical theory.

By means of the ‘equazione generalissima’, the undisputed general equa-
tion of motion, Piola’s empiric and positivist strategy could be applied in a
convincing and interesting way to the mechanics of extended bodies. In his
papers, Piola questioned the need to introduce uncertain hypotheses on the
constitution of matter by adopting a model of corpuscles and forces among
them, that the French mechanicians did. Piola stated that it is sufficient to
refer to evident and certain phenomena: for instance, in rigid bodies, the shape
of the body remains unaltered. Then, one may use the undisputed equation
of balance of virtual work; only after one has found a model and equations
based exclusively on phenomena, said Piola, is it reasonable to look for deeper
analyses:

This is the great advantage of Analytical Mechanics. It can put into equa-
tions facts about which we have clear ideas, without requiring us to con-
sider their causes, of which we have obscure ideas […]. The action of
forces, whether active or passive (according to a known distinction by
Lagrange) are such that we can sometimes have some ideas about, but
more often the full doubt remains […] that nature is different […]. But
in the A. M. what is contemplated is the effect of internal forces and not
the forces themselves, namely, the conditional equations which must be
satisfied […] and in such a way all difficulties that belong to the action of
forces are bypassed, and we have the same equations, secure and exact,
like those which would result from the thorough knowledge of the said
actions.29

28 (Capecchi 2003).
29 Ecco il maggiore vantaggio del sistema della Meccanica Analitica. Esso ci fa mettere in equaz-
ione i fatti di cui abbiamo le idee chiare senza obbligarci a considerare le cagioni di cui abbiamo
idee oscure […]. L’azione delle forze attive o passive (secondo una nota distinzione di Lagrange) è
qualche volta tale che possiamo farcene un concetto, ma il più sovente rimane […] tutto il dubbio
che il magistero della natura sia ben diverso […]. Ma nella M. A. si contemplano gli effetti delle
forze interne e non le forze stesse, vale a dire le equazioni di condizione che devono essere sod-
disfatte […] e in tal modo, saltate tutte le difficoltà intorno alle azioni delle forze, si hanno le stesse
equazioni sicure ed esatte che si avrebbero da una perspicua cognizione di dette azioni (Piola 1833,
pp. 203–204).
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Piola approaches mechanics in a modern way which can be found unchanged
in many modern handbooks on rational mechanics. Lanczos writes the following
on the subject:

It frequently happens that certain kinematical conditions exist between
the particles of a moving system which can be stated a priori. For example,
the particles of a solid body may move as if the body were “rigid” […].
Such kinematical conditions do not actually exist on a priori grounds. They
are maintained by strong forces. It is of great advantage, however, that the
analytical treatment does not require the knowledge of these forces, but
can take the given kinematical conditions for granted. We can develop the
dynamical equations of a rigid body without knowing what forces produce
the rigidity of the body.30

3 Piola’s papers on continuum mechanics

Piola’s contributions to continuum mechanics are developed in a number of
papers listed in the first part of the References. Many of these papers deal
with hydraulics; they usually focus on particular aspects and are worth read-
ing mainly to appreciate the author’s mathematical skill. A few papers deal
with continuum mechanics in general, implicitly assuming that the solid state
is the preferred one. These papers were published in 1833, 1836 and 1848
and will be commented upon separately and in some detail in this section.
A further paper was published posthumously by Piola’s former pupil France-
sco Brioschi in 1856: it may be considered a mature revision and a rewriting
of the article of 1848 and for this reason will not be commented upon sep-
arately here. With the exception of the paper from 1833, all the rest consist
of more than 200 pages that systematically expound a full approach to the
statics and dynamics of one-, two- and three-dimensional continua. Though
they are very interesting in every aspect, we believe the parts concerning
balance equations to be the most interesting and will therefore focus
on those.

As become usual in mathematical physics in the nineteenth century, Piola’s
papers contain a lot of mathematics, most of which is quite extensive. To report
his equations efficiently and compactly we have decided to give them a differ-
ent form by using the language of linear algebra, which the Italian mechanician
could not know.31 We have tried, however, not to corrupt the original spirit

30 (Lanczos 1970), pp. 4–5.
31 The precise concept of matrix and the related modern symbolism are found in
(Cayley 1858). Disposition of data in matrix form stems however from the theory of deter-
minants, well known to Cauchy, who in 1811 developed a two-index notation (Kline 1972,
ch. 33).
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of Piola’s work avoiding any modern interpretation of the symbols, which are
introduced only for the sake of brevity. Piola’s actual equations can be obtained
by performing matrix operations and expressing the results in scalar form.
Table 1 of Sect. 3.1 will be useful for this purpose and compares some of the
modern notations with Piola’s.32

The first paper will be analysed in depth: it is short in comparison with the
other two, but contains all the notable results from a mechanical point of view
which are also present in the others. However, it has also many drawbacks and
cannot be fully understood without analysing the others.

3.1 Piola’s Meccanica de’ corpi naturalmente estesi

Piola’s first paper on continuum mechanics, La meccanica de’ corpi natural-
mente estesi trattata col calcolo delle variazioni, dates back to 1833. The ti-
tle is ambiguous because at Piola’s time ‘estesi’ (extended) meant both rigid
and deformable, while Piola in this paper studied only rigid bodies, qualifying
them as solid, a term used by Euler and Lagrange as synonymous with rigid.
Piola maintained this ambiguity throughout the paper, since he used nota-
tions which can be extended to deformable bodies. The reason stems from his
declared intention, which he did not fulfill, to study deformable bodies in a
sequel.33

Piola started the paper by characterising rigid motions globally and lo-
cally. The physical points of the body under consideration are labelled by two
sets of Cartesian co-ordinates. The first (following Lagrange in the Mécanique

32 This is the complete correspondence among the formul here and in (Piola 1833).

Our eq. no. Piola’s eq. no. Our eq. no. Piola’s eq. no.
(1) [3] p. 208 (10) [20] p. 216, [22] p. 217
(2) [4], [5] p. 209 (11) [23]–[27] pp. 218–

219
(3) [6]–[8] p. 209 (12) [28] p. 219
(4) [9] p. 210 (13) [29]–[30] pp. 219–

220
(5) [10]–[12] pp. 210–

211
2nd addend of l.h.s.
of (14)

[31] p. 221

(6) [13], [14] pp. 211–212 (15) [33] p. 222, [35] p. 223
(7) Unnumbered eq. p.

214
(16-1) [36] p. 223, [38], [40]

p. 224
(8) [16] p. 215 (16-2) [45] p. 226

2nd addend of l.h.s.
of (9)

[18] p. 215 (17) [46] p. 226

33 The title of (Piola 1833) contains the statement ‘Memoria prima’, i.e., first paper (of a series).
Piola spoke, for instance on p. 227, about a ‘successiva memoria’, i.e. a further paper which was
intended to complete the study; such a paper never appeared in the journal.
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Analytique34) refers to axes called a, b, c that are rigidly attached to the body,
so their position with respect to points of the body does not vary with time, and
the second to axes called x, y, z, fixed in the ambient space and to which the
motion of the body is referred. Here these quantities will be denoted by the lists
ai and xi, i = 1, 2, 3, respectively, or, in short, a and x, respectively. The link
between x and a represents the global rigidity condition and is given, provided
the subscript 0 refers to a chosen point of the body, by

x = x0 + Q(a − a0), (2)

where Q is a matrix made up of the cosines of the angles between the xi- and
the ai-axes, satisfying the orthogonality conditions

Q�Q = QQ� = I, Q� = Q−1. (3)

Piola proved35 that only six of the scalar equations implied by Eqs. (3) rep-
resent independent conditions on the components of Q. He also remarked that
in the rigid motion provided by Eq. (2) the partial derivatives of the present co-
ordinates with respect to the invariable ones coincide with the director cosines
which are the components of Q, viz.

F = Q, F = Grad x = ∂x
∂a

(4)

The differential operators introduced here will be indicated with upper-
or lower-case initials depending on the derivatives being made with respect
to a or x, respectively. Consequently, the fields operated upon will be con-
sidered as functions of a or x. Similar considerations govern the the fields
appearing in integrals evaluated in the reference or in the present configuration,
respectively.

From this point onwards Piola’s expressions remain somewhat ambiguous,
because he did not make a clear distinction between the components of F, which
can be defined in a generic motion, and the components of Q, characterising
a rigid motion. On the basis of Eqs. (3) and (4) Piola was able to eliminate
x0 and Q, the global characteristic parameters of a rigid motion, and obtain
‘equazioni di condizione’ [condition equations, i.e., constraint equations; such
a terminology is still present, for instance, in (Todhunter and Pearson 1893)]
which express a local condition of rigidity. These relate x and a in differential
form and are equivalent to

C = F�F = I, B = FF� = I, F−1 = F�. (5)

34 (Lagrange 1815), Sect. XI, art. 4.
35 (Piola 1833), ‘Nota IA’ in the Appendix, pp. 228–230.
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Due to the symmetry of B and C, Eqs. (5–1) and (5–2) provide two sets
of six independent scalar differential constraint equations.36 Since Eqs. (5–1)
and (5–2) provide local conditions of rigid motion, it is appropriate for their
first-order variation to be inserted into the ‘equazione generalissima’ to obtain
the required local balance equations:

δC = (δF�)F + F�(δF) = 0, δB = (δF)F� + F(δF�) = 0. (6)

Piola tried to understand if there can be less than six independent scalar
equations expressing the local rigidity constraint. He advanced the hypothesis
that the minimum number of scalar equations of inner constraint is three, and
that the other three make the problem undetermined. From a modern point
of view, we accept that a rigid three-dimensional body is internally statically
undetermined; it is highly probable, however, that such a fact disturbed Piola,
who advanced some obscure statements to infer that there are only three inde-
pendent inner constraints.37

Piola then began to use the methods of analytical mechanics and wrote the
‘momenti delle forze acceleratrici’, i.e., the virtual work of the mass density of
distance interactions f (including both bulk and inertial actions) as an integral
over the mass of body B ∫

B
[f · (δx)]dm, (7)

where dm is the body mass element. Piola stated that Eq. (7) can be reduced
to a volume integral (‘integrale triplicato’) defined over the domain κ of the
unvariable co-ordinates ai

∫

κ

�J[f · (δx)]dV. (8)

36 In the first edition of the Méchanique Analitique (1788) Lagrange studied statics and dynamics
of elastic and incompressible fluids. The incompressible case is developed in an unnecessary wide
general notation, which allowed Lagrange to extend the results he obtained to compressible fluids.
Piola followed this approach when he started talking about rigid bodies, hoping to extend the
results to deformable bodies, ignoring the relation F = Q. Lagrange introduced the local rigidity
in hydrostatics (Lagrange 1811, Sect. VII, art. 13). The local incompressibility constraint is pro-
vided by dV = const., where dV is an infinitesimal of volume in the XVIIIth century sense (actual
infinity). Lagrange obtained the condition equation for the virtual displacements from this rigidity
condition. With his symbols (Lagrange 1811, Sect. VII, art. 11):

δdV = dV
(

dδx
dx

+ dδy
dy

+ dδz
dz

)
.

The result was obtained first by Euler vith the use of velocity instead of variation (Dugas 1950, p.
290; Truesdell 1991, p. 101). Though Piola could not accept Lagrange’s reasoning, based on actual
infinity, he could accept the conclusion: the local condition equation must be in differential form.
37 This is put into evidence also in (Todhunter and Pearson 1893), art. 762, p. 420.
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where dV = da1da2da3 is the volume element in κ , which can be interpreted as
a reference configuration, � is the mass density in the present configuration χ ,
and J = det F.38

The variation δx in Eq. (8) cannot be arbitrary but must be subjected to the
rigidity constraint. The usual way to take these constraints into account is with
the introduction of Lagrange multipliers and constraint equations. Here the con-
straint equations are the global rigidity conditions expressed by Eq. (2): their
use leads to six scalar global balance equations. According to Piola, using the
local rigidity conditions expressed by Eqs. (5) and (6), local balance equations
can be obtained. Piola started using Eqs. (5–2) and (6–2), which he considered
more suitable for reasons which are not explained but which will become clear
at the end of the paper. By adding the first-order variation of the constraints
given by Eq. (6–2) to Eq. (8), the following unconstrained variational problem
results: ∫

κ

�J[f · (δx)]dV +
∫

κ

[T · (δB)]dV = 0, (9)

where T is a symmetrical matrix of Lagrange multipliers, each associated to
a scalar component of Eq. (6–2). The components of T are denoted by Piola
in such a way as to reproduce Cauchy’s notation39 for the stress components
(see Table 1). To obtain expressions in which the variation δx is not affected by
derivatives, Piola applied integration by parts, claiming to follow the rules of

38 The use of a reference frame other than the present one was introduced in hydrodynamics by
Lagrange. Since the differential problem for dynamics can be more difficult than that for statics,
Lagrange tried to simplify it by pulling the equations back to the reference configuration, in which
the co-ordinates of a fluid point are a, b, c (like Piola used): all quantities in the balance equations
shall then be functions of a, b, c. In particular, Lagrange pulled back the volume element from the
present to the reference configuration (Lagrange 1815, Sect. XI, artt. 4–7):

dx dy dz = �da db dc,

where� (corresponding with the Jacobian J in Eq. (8), called ‘sestinomio’ by Piola) is the coefficient
which makes it possible to invert the expressions

dξ = ∂ξ

∂a
da + ∂ξ

∂b
db + ∂ξ

∂c
dc, ξ = x, y, z.

Lagrange recognised that for incompressible fluids � = 1; in spite of this, he never simplified that
factor, and so did Piola for his ‘sestinomio’. Lagrange commented:

It must be remarked that this value of Dx Dy Dz is that which we must employ in the triple
integrals with respect to x, y, z, when we want to substitute, in place of the variables x, y, z,
assigned functions of other variables a, b, c (Il est bon de remarquer que cette valeur de
Dx Dy Dz est celle qu’on doit employer dans les intégrals triples relatives à x, y, z, lorsqu’on
veut y substituer, à la place des variables x, y, z, des fonctions données d’autres variables
a, b, c) (Lagrange 1813, pp. 284–285).

39 (Cauchy 1827), p. 108.
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the calculus of variations.40 The variational problem (9) leads to two systems of
definite integrals, one on κ and the other on its surface. Piola studied the first
one and claimed he would deal with the second in a further paper. After some
work, Piola obtained

Div (TF)+ �Jf = 0 (10)

but, without giving any interpretation of this result, moved on to prove that Eq.
(10) may be reduced to the form of the local balance equations provided by
Cauchy and Poisson.41 For this purpose, Piola obtained a theorem42 which lets
us transform differential operators with respect to a into differential operators
with respect to x, and can be read as

Div[Lκ(JF−�)] = J div Lt, (11)

where L is a matrix function and the subscripts κ and t denote its descriptions
in terms of a or x, respectively. Note that Eq. (11) is general; on the other hand,
in art. 14 Piola restricted himself assuming

F� = JF−1 (12)

which is true only when F = Q. Then, inserting Eqs. (11) and (12) into Eq. (10)
yields

div T + �f = 0 (13)

and Piola commented upon this result in art. 15:

Observe the perfect agreement of this result with those obtained by the
two celebrated geometers cited at the start of the introduction [Cauchy
and Poisson] by absolutely different means and treating the two cases of
equilibrium and motion separately. I recommend to note that in my anal-
ysis A, B, C, D, E, F [the components of T] are not pressures exerted on
different planes, but are coefficients to which in the following I also will
attach a representation of forces, when it will seem more natural to me:
they are functions of x, y, z, t of a still unknown form, but of which we know
that nothing is changed by passing from one part of the body to the other.
One can object that these equations […] were found by the methods of
the A. M. only in the case of systems of rigid bodies, while those of the two
famous Frenchmen refer to elastic and deformable systems. I reply that
in the next memoir I will show how they can be generalised to include all

40 (Lagrange 1813), Sect. IV, artt. 14 and 15.
41 The papers to which Piola refers are (Cauchy 1827), (Cauchy 1828), (Poisson 1829), (Poisson
1831a,b). It is remarkable that the model of the body is continuous in Cauchy’s papers, while it is
discrete in those of Poisson.
42 (Piola 1833), ‘Nota IIIA’ in the Appendix, pp. 234–236.
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the cases considered by the cited Authors without leaving the analytical
methods by Lagrange.43

Piola was probably dissatisfied with the results that he obtained by implic-
itly taking Eq. (12) into account, and therefore he tried a different approach.
He now maintained that in order to extend his results to the general case of
deformable bodies it is useful to examine the variational problem obtained
using Eq. (6–1)

∫

κ

�J[f · (δx)]dV +
∫

κ

[P2 · (δC)]dV = 0, (14)

where P2 is another symmetrical matrix of Lagrange multipliers, each asso-
ciated to a scalar component of Eq. (6–1), and different from the Lagrange
multipliers listed in T. Piola did not say why he thought that this procedure
is more general, as he did not explain why he took Eqs. (5–2) and (6–2) in
the first place. By applying integration by parts on Eq. (14) and ignoring the
contribution of the surface integrals, Piola obtained

Div (FP2)+ �Jf = 0. (15)

He did not comment upon this equation, but said that he wanted to adjust the
first addend so as to apply the transformation rule in Eq. (11). For this purpose,
he introduced quantities which are the components of a new symmetric matrix
S which is such that

SJF−� = FP2

(
JS = FP2F�, P2 = JF−1SF−�)

(16)

Piola wrote exhausting and lengthy passages to prove the equations cor-
responding to Eq. (16–2). Then, by using Eqs. (11) and (16), Eq. (15) reads

div S + �f = 0 (17)

which is formally equivalent to Eq. (13), as Piola himself remarked.
Table 1 compares some of our equations with the corresponding writing in

the Meccanica de’ corpi naturalmente estesi, so as to be able to capture the spirit
of the full expressions, which we have shortened.

43 Osservisi la perfetta coincidenza di questo risultato con quello ottenuto dai due celebri geometri
citati dal principio dell’introduzione dietro ragionamenti affatto diversi e nei due casi dell’equilibrio
e del moto trattati separatamente. Raccomando di notare che nella mia analisi le A, B, C, D, E, F
non sono pressioni che si esercitino sopra diversi piani, ma sono coefficienti, cui nel seguito attac-
cherò io pure una rappresentazione di forze secondo mi sembrerà più naturale: sono funzioni delle
x, y, z, t di forma ancora incognita, ma di cui sappiamo che non cambia passando dall’una all’altra
parte del corpo. Mi si può obbjettare che queste equazioni […] sono state trovate coi metodi della
M. A. nel solo caso dei sistemi solidi rigidi, laddove quelle dei due chiarissimi francesi si riferisc-
ono anche a’ solidi elastici e variabili. Rispondo che nella seguente memoria farò vedere come
esse si generalizzano ad abbracciare tutti i casi contemplati dai citati Autori senza dipartirsi dagli
andamenti analitici insegnati da Lagrange (Piola 1833, p. 220).
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Table 1 Some comparison among the expressions here and in (Piola 1833)

Our eq. no. Piola’s eq. no. Expression in full

(2) [4] p. 209

x = f + α1a + β1b + γ1c

y = g + α2a + β2b + γ2c

z = h + α3a + β3b + γ3c

(5–1) [10] p. 210

( dx
da )

2 + (
dy
da )

2 + ( dz
da )

2 = 1

( dx
db )

2 + (
dy
db )

2 + ( dz
db )

2 = 1

( dx
dc )

2 + (
dy
dc )

2 + ( dz
dc )

2 = 1

( dx
da )(

dx
db )+ (

dy
da )(

dy
db )+ ( dz

da )(
dz
db ) = 0

( dx
da )(

dx
dc )+ (

dy
da )(

dy
dc )+ ( dz

da )(
dz
dc ) = 0

( dx
db )(

dx
dc )+ (

dy
db )(

dy
dc )+ ( dz

db )(
dz
dc ) = 0

(8) [16] p. 215 SdaSdbSdc · �H
{[(

d2x
dt2

)
− X

]
δx+

[(
d2y
dt2

)
− Y

]
δy+

[(
d2z
dt2

)
− Z

]
δz

}

Matrix T in [18] p. 215

⎛
⎜⎝

A F E
F B D
E D C

⎞
⎟⎠

(13) [30] p. 220

�

[
X −

(
d2x
dt2

)]
+

(
dA
dx

)
+

(
dF
dy

)
+

(
dE
dz

)
= 0

�

[
Y −

(
d2y
dt2

)]
+

(
dF
dx

)
+

(
dB
dy

)
+

(
dD
dz

)
= 0

�

[
Z −

(
d2z
dt2

)]
+

(
dE
dx

)
+

(
dD
dy

)
+

(
dC
dz

)
= 0

3.2 Piola’s Nuova analisi

The article Nuova analisi per tutte le questioni della meccanica molecolare was
submitted in 1835 and published in 1836. It could be seen as a turning point
in Piola’s mechanical conceptions, the passage from an “ancient” and continu-
ous to a “modern” and discrete model of matter. The discrete model was well
attested in the French scientific community. Poisson paid particular attention
to it because he wanted to develop a system of physical mechanics based on a
model of matter made up of particles interacting with each other, juxtaposed
with the analytical mechanics of continua:44

[…] Lagrange came as far as one can conceive when he replaced the phys-
ical connections of bodies with equations between the coordinates of their
different points: that is what constitutes Analytical mechanics; but along-
side this admirable conception one can now raise Physical mechanics,

44 Note that Piola nearly neglected Cauchy’s formulations by attributing the molecular conception
to Poisson only. This can in part be explained by the fact that Piola personally knew and had a high
regard for Cauchy, so probably he did not want to criticise him. In (Dahan 1993), p. 291, a letter
by Cauchy to Piola is quoted where the French scientist contests Piola’s continuum approach to
mechanics and the extended use of variational calculus.
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whose sole principle will be to reduce everything to molecular actions
which transmit the action of given forces from a point to another and
which mediate their equilibrium.45

The use which Lagrange has made of this calculus [the calculus of vari-
ations] in the Mécanique analytique is only really valid for continuous
masses, and the calculations with which the results so found are extended
to natural bodies, must be rejected as inadequate.46

In fact the Nuova analisi represents only a temporary digression, which
was more suffered than accepted. Piola somehow reluctantly accepted Pois-
son’s claim that continuum mechanics starts from a consideration of molecular
actions, but did not want to abandon Lagrange’s techniques completely:

[…] Mr. Poisson […] would reduce everything to molecular actions only. I
accept this point of view by admitting only a reciprocal action of attraction
and repulsion apart from external forces […]. I do not believe that in so
doing I have abandoned the other way used by Lagrange; indeed, I am
convinced that with it we can fruitfully treat many modern problems, and
I have already published an essay which can partially prove this claim of
mine.47

Some new theorems have been obtained, but a large part of the advan-
tages and beauties of an analysis elaborated by our teachers by means of
long studies has been lost.48

So, even though Piola gave up the continuum model, he retained virtual
work as the basic principle from which to derive the equation of motion of the
corpuscular model of matter:

[…] to show how in this way a great part of the analyses of d’Alembert,
Euler and Lagrange is still valid, by supposing, with moderns, the matter
as discontinuous: to maintain the treasure of science transmitted from our

45 […] Lagrange est allé aussi loin qu’on puisse le concevoir, lorsqu’il a remplacé les liens physiques
des corps par des équations entre les coordonnées de leurs différents points: c’est là ce qui constitute
la Mécanique analytique; mais à coté de cette admirable conception, on pourrait maintenant élever
la Mécanique physique, dont le principe unique serait de ramener tout aux actions moléculaires,
qui transmettent d’un point à un autre l’action des forces données, et sont l’intermédiaire de leur
équilibre (Poisson 1829, p. 361).
46 L’usage que Lagrange a fait de ce calcul dans la Mécanique Analytique ne convient réellement
qu’à des masses continues; et l’analyse d’après laquelle on étend les résultats trouvés de cette
manière aux corps de la nature, doit être rejetée comme insuffisante (Poisson 1829, p. 400).
47 […il] Sig. Poisson […] vorrebbe ridurre tutto alle sole azioni molecolari. Io mi conformo a
questo voto non ammettendo appunto oltre le forze esterne, che un’azione reciproca di attrazione
e repulsione […]. Non è già che io creda da abbandonarsi l’altra maniera usata da Lagrange, ché
anzi io sono d’avviso che eziandio con essa si possano vantaggiosamente trattare molte moderne
questioni, ed ho già pubblicato un saggio di un mio lavoro che può in parte provare questa mia
asserzione (Piola 1836, p. 171).
48 Si guadagnarono alcuni nuovi teoremi, ma si perdette gran parte dei vantaggi e delle bellezze
di un’analisi elaborata con lungo studio dai nostri maestri (Piola 1836, p. 155).
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predecessors and meanwhile to progress along with the enlightenment of
our century.49

Almost all of the mathematical procedures contained in this paper stem
from the attempt to lead the results obtained by the physical and mathematical
discrete model of matter back to the mathematical continuum model. Indeed,
Piola was not satisfied by the passage used also by Lagrange in which, by inter-
preting molecules as infinitesimal volume elements, infinite sums are turned
directly into definite integrals.50

In order to be as thorough as possible, Piola introduced an original concept
which he was to use again in the work of 1848. The reference configuration
of the molecules of a body, labelled by the invariable co-ordinates a as in the
paper of 1833, is an imaginary regular reticular disposition, to which Piola gave
the intuitive meaning of an

[…] ideal configuration prior to the true status in which the matter of the
body itself was contained in a parallelopipedon […] and all the as differ
by no more than an amount equal to α, the bs by no more than β, and the
cs by no more than γ […].51

The use of this regular lattice allowed Piola to write summations where the
spatial difference of coordinates is constant so that from

[…] the irregularity due to the discontinuity of the matter […] I obtain a
regularity […] necessary for the calculus used by Lagrange in the Analyt-
ical mechanics.52

For these kind of summations the application of theorems which link a sum-
mation (‘integrale finito definito’) to an integral (‘integrale continuo definito’)
is easiest. All the theorems presented in the first two sections of the Nuova
analisi aim to provide expressions for internal forces among molecules in terms
of a suitable series expansion of a non-linear function of the mutual distance
between pairs of molecules. Later, again using the principle of virtual work, but
with no equations of condition for the present position x, Piola obtained the
local balance equation in the following form:

Div P1 + f = 0. (18)

49 […] mostrare come si sostenga ancora in gran parte l’analisi di D’Alembert, di Eulero e di
Lagrange supponendo coi moderni la materia discontinua: conservare il tesoro di scienza trasmes-
soci dai nostri predecessori, e nondimeno progredire coi lumi del nostro secolo (Piola 1836, pp.
155–156).
50 Todhunter and Pearson provide detailed comments upon the mathematical aspects of the first
two sections of Piola’s paper, with reference to theorems of the calculus of finite differences. See
(Todhunter and Pearson 1893), artt. 769–772, pp. 422–425.
51 […] disposizione ideale antecedente allo stato vero nella quale la materia del corpo stesso era
contenuta in un parallelepipedo […] e tutte le a non diversificano fra loro che di aumenti eguali ad
α, le b di aumenti eguali a β, le c di aumenti eguali a γ […] (Piola 1836, p. 167).
52 […fatta salva] l’irregolarità voluta dalla discontinuità della materia, […] ottengo una regolarità
[…] necessaria pel meccanismo del calcolo quale è adoperato da Lagrange nella Meccanica analitica
(Piola 1836, p. 167).
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Equation (18) has the same form of Eq. (15) but for the missing product �J,
the mass density in the ideal state, now supposed to be uniform and equal to
unity. Each of the components of P1 is a non-linear function of the successive
derivatives of x with respect to a. Piola then pushed the local balance equations
forward to the present configuration by the theorem in Eq. (11), presented in
the Meccanica de’ corpi naturalmente estesi

div T + �f = 0, (19)

where � is the mass density of the body at x; T = �P1F� with T symmetric; F
is defined by Eq. (4–2), so that Eq. (19) is similar to that obtained by Poisson.53

Piola went on to deal with the simplification of the local balance equations
obtained in the previous sections on the basis of constitutive assumptions about
molecular interaction. Following Poisson,54 Piola insisted that the molecular
interaction is negligible for sensible distances (the localisation assumption), so
that some higher-order terms in his former expressions can be discarded:

[…] the expression of molecular action may have a sensible value for
points very close […], molecular action is insensible at sensible distances
[…].55

[…] the radius of the activity sphere of molecular action, though extended
to a very large number of molecules, must still be considered as an insen-
sible quantity […].56

Under this assumption Piola could then introduces six quantities which are
the components of a symmetric matrix P2 such that

P1 = FP2, P2 = JF−1TF−� (20)

Unlike the Meccanica de’ corpi naturalmente estesi, where he did not com-
ment upon Eq. (15) and the coefficients appearing in it, Piola gave a physical
meaning to the components of P1 under the localisation assumption. They are
functions of a and represent the components of stress on planes through a point
x corresponding to planes through the corresponding place a in the ideal state.

It is interesting that, in order to obtain Eq. (19), Piola introduced no partic-
ular constitutive assumption except for a generic dependence of the molecular
action on the distance among pairs of corpuscles. This approach is different
from that taken by Poisson and Cauchy,57 who introduced linearisation and

53 (Poisson 1829), p. 387; (Poisson 1831b), pp. 578–579.
54 (Poisson 1829) p. 369.
55 […] l’espressione dell’azione molecolare può avere un valore sensibile pei punti estremamente
vicini […], l’azione molecolare è insensibile per distanze sensibili […] (Piola 1836, p. 248).
56 […] il raggio della sfera di attività dell’azione molecolare, quantunque si estenda ad un numero
grandissimo di molecole, deve ancora considerarsi una quantità insensibile […] (Piola 1836, p. 253).
57 (Cauchy 1827), (Cauchy 1828), (Poisson 1829), (Poisson 1831a,b).
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localisation together with some isotropy assumptions. This fact is very impor-
tant from a theoretical point of view because it makes local balance equations
independent of the constitutive law, which seems desirable.

3.3 Piola’s Intorno alle equazioni fondamentali

Piola’s paper Intorno alle equazioni fondamentali del movimento di corpi qual-
sivogliono, considerati secondo la naturale loro forma e costituzione was submit-
ted in 1845 and published in 1848. It contains a mature and complete revision
of the article of 1833, Piola having eliminated some mistakes and complications
which he himself recognised. As a matter of fact, some twelve years had passed
since the publication of the Meccanica de’ corpi naturalmente estesi and mathe-
matics and mechanics had moved forward somewhat. In mathematics, Cauchy
had contributed some important results to the theory of integration and this
made the passage from discrete to continuum less problematic for Piola. In
mechanics, Cauchy, Green and Saint-Venant had introduced the idea of strain
in a clear form. The main differences from the article of 1833 are: the proof
of the local balance equation even in the case of deformable bodies; the study
of the terms appearing as surface integrals in the application of the calculus
of variations; and the particularisation of the general expressions for two- and
one-dimensional continua.

Piola began this paper by re-affirming the superiority of Lagrange’s approach
compared with others, almost apologising for having partially abandoned it in
the Nuova analisi and for his previous ingenuities:

I have often written that I do not think it necessary to create a new
Mechanics, abandoning the luminous methods of Lagrange’s Analytical
mechanics […]. I was and I am faced also now by very respectable author-
ities, in front of which I should surrender […]. But […] I thought it would
be convenient […] to collect my opinions on the subject in this Memoir
[…]. Indeed, I do not now conceal that in my preceding writings some of
my ideas were expounded with insufficient maturity; there are some much
too fearful and some much too daring. Some parts of these writings could
be omitted, […] mainly those which […] I would not repeat anymore.58

Piola then replied to Poisson, who had claimed that Lagrange’s methods were
too abstract:

I hope to clarify in the following Memoir that the only reason why Analyt-
ical mechanics seems inferior in treating some problems is that Lagrange,

58 Scrissi più volte non parermi necessario il creare una nuova Meccanica, dipartendoci dai luminosi
metodi della Meccanica analitica di Lagrange […]. Però mi stettero e mi stanno anche attualmente
contro autorità ben rispettabili, davanti alle quali io dovrei darmi per vinto […]. Ma […] credetti
convenisse […] [riunire] in questa Memoria i miei pensieri sull’argomento […]. Perocchè non dissi-
mulo accorgermi ora che ne’ precedenti miei scritti alcune idee non furono esposte con sufficiente
maturità: ve ne ha qualcuna troppo spinta, ve ne ha qualch’altra troppo timorosa: certe parti di
quelle scritture potevano essere ommesse, […] a più forte ragione quelle altre che […] non mi
sentirei più di ripetere […] (Piola 1848, pp. 1–2).
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while writing about the equilibrium and motion of a solid body, did not
give equations that apply to each point of it. If he had done so, and he
could without leaving the methods taught in his book, he would have eas-
ily reached the same equations as the famous Geometers of our time have
arrived at with much effort, and that now are the basis for new theories.
But what he did not accomplish […] can be made by others […].59

In the first section of Intorno alle equazioni fondamentali, Piola gave some
preliminary notions, among which he recalled that of ideal disposition with
uniform unit mass density. The present position x depends on that in the ideal
state a, x = x(a). Piola moved on to bodies with non uniform density and
described the density in the present configuration via the Jacobian J of the
transformation x(a), so that he could express the equation of continuity. As
Piola himself remarked, there are passages which denote the use of a mature
and up-to-date theory of limits and integration, approaching the “modern” Lac-
roix and Bordoni60 rather than the “ancient” Lagrange, when dealing with the
passage from the discrete to continuum for the one-dimensional case:

We have got a theorem which gives us the ability to pass from a finite
definite integral [a summation] to a well defined continuous integral [an
ordinary definite integral] […].61

Two- and three-dimensional cases are reduced to the one-dimensional one.
The second section is devoted to extending the equation of virtual work from

the discrete to the continuous, in the case of three-, two-, and one-dimensional
bodies. For three-dimensional bodies, Piola eventually obtained the equation
of virtual work in the ideal state

∫

κ

[f · (δx)]dV +
∫

κ

[P2 · (δL)]dV +  = 0, (21)

where the density is not made explicit since it is supposed to be unitary and
uniform in the ideal state; P2 is a symmetric list of Lagrange multipliers; L is a

59 Spero mettere in chiaro nella seguente Memoria che l’unico motivo pel quale la Meccanica
Analitica parve restar addietro nella trattazione di alcuni problemi, fu che Lagrange nello scrivere
dell’equilibrio e del moto di un corpo solido, non è disceso fino ad assegnare le equazioni spettanti
a un solo punto qualunque di esso. Se questo avesse fatto, e lo potea benissimo senza uscire dai
metodi insegnati nel suo libro, sarebbe giunto prontamente alle stesse equazioni cui arrivarono con
molta fatica i Geometri francesi del nostro tempo, e che ora servono di base alle nuove teoriche.
Però quello ch’egli non fece […] può esser fatto da altri […] (Piola 1848, p. 4).
60 (Lacroxi 1811), vol. II, p. 97 and (Bordoni 1831), vol. II, p. 489.
61 Abbiamo un teorema di analisi che ci somministra il mezzo di passare da un integrale finito
definito a un integrale continuo parimenti definito […] (Piola 1848, p. 42).
The theorem referred to by Piola is found in (Lacroxi 1811), for example, in the form:

∫
udx = h

∑
u + αh2

∑ du
dx

+ βh3
∑ d2u

dx2 + . . . ,

where α,β, . . . are numerical coefficients and h is a small quantity (the step of discretisation).
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symmetric list of scalar equations of condition; and  represents the contribu-
tion of surface actions, which are not represented by a volume integral.

In the third section, Piola obtained the local balance equations for a rigid
body. He used equations of condition equivalent to Eqs. (6–1), which he had
obtained in the Meccanica de’ corpi naturalmente estesi, but which are now more
general, since the identity F = Q is no longer assumed. By following the same
steps he had used in the paper of 1833, but with some improvements to their
form, he got local balance equations in the ideal state, equivalent to Eq. (15).
The comments Piola added to this result are particularly revealing; indeed, he
declared that equations such as (15) have no physical meaning for him, because
the ideal state does not represent an actual physical state of the body:

[…] it would be useful to transform these equations […] into others which
have no trace of a, b, c and which only contain quantities proper of the real
state of the body […].62

By means of his push-forward theorem, which transforms quantities in the
reference to the present configuration, expressed by our Eq. (11), Piola then
obtained the local balance equations for the present configuration, having the
same form of Eq. (17).

In the fourth section, Piola derived the local balance equations for a deform-
able body. He started by affirming that it is impossible to provide a specific form
of local condition equations as he had done in the case of the rigid body, and
that some other procedure is needed. This is identified in the introduction of an
intermediate configuration χp labelled by p, so that the path from a to x turns
into a path from a to p and from p to x; this second step is assumed to be rigid.
With this assumption, the mass density � in χp is the same as in χ , and Piola
could write Eq. (25) in χp, by using the transformation p = p(a)

∫

χp

�[f ∗ · (δx)]dVp +
∫

χp

[T∗ · (δL∗)]dVp + ∗ = 0, (22)

where f ∗ is the volume density of distance interactions seen in χp, T∗ is a
symmetric list of Lagrange multipliers, different from P2; the list of the equa-
tions of condition L∗ refers to the transformation x(p); and ∗ represents the
contribution of surface actions seen in χp. Piola’s trick reduces the equation
of virtual work with unknown condition equations to an equation where the
condition equations are known. In fact, the motion from p to χp is rigid, hence
the equations of condition are the same as in Eqs. (5–1), with F = Q, Q being
the rotation matrix from the pi- to the xi-axes, and the derivatives being formed
with respect to p. Thus, Piola obtained the local balance equations in χp,

div T∗ + �f ∗ = 0 (23)

62 […] si vorrebbero tramutare queste equazioni […] in altre che non contenessero traccia delle
a, b, c e non constassero che di quantità spettanti allo stato reale del corpo […] (Piola 1848, p. 63).
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and pushed them forward to χ by means of the theorem in Eq. (11), obtaining

div T + �f = 0, T = QT∗Q� (24)

Next, Piola gave an interpretation of the surface integrals arising from the
variational procedure in terms of the pressures acting on the boundary of the
body. Also, using the calculus of variations he proved a relation which, he said,
reproduces Cauchy’s theorems on pressures

T(x)n = t(x, n) (25)

with t being the stress vector at a point x and on a surface with unit normal n
in the present configuration χ . After some more work, Piola showed that what
he had proven for T holds also for T∗; thus, the components of either T or T∗
are the analytical expressions containing the effect of all internal actions on a
point p or the corresponding x

[…] the six named quantities are in both cases analytical expressions con-
taining the whole effect of all internal actions on the generic point (p, q, r)
or (x, y, z) […].63

Note that, though clever, Piola’s reasoning is not entirely conclusive. His
analysis is based on the possibility of passing from the unknown condition
equations of the balance equation (21) to the known condition equations of
Eq. (22). This reasoning is inconsistent, however, because it is not possible to
define condition equations for a deformable body; put simply, the points of a
deformable body have no constraint, they are free.

In art. 60 of the paper Piola gave a summary of his procedure, starting
with some considerations about the virtual displacements δx. Piola’s reluc-
tance to introduce virtual displacements as infinitesimals has already been
underlined. Piola considered virtual displacements simply as first-order vari-
ations of the position of body-points satisfying equations of condition. In this
article Piola characterized the virtual displacements explicitly, affirming that
they coincide with the variation of the co-ordinates of the same body-point
when referred to two co-ordinate systems shifted, one from the other, by a
very small amount, and that this consideration may vary from body-point to
body-point

[…] such a principle lies in the simultaneous reference of any system
to two triads of orthogonal axes. It can work in two ways and for both
of them it is very effective. It is used in the first way […] to prove the
principle of virtual velocity and also those others [principles] regarding
conservation of the motion of centre of gravity and of areas. Instead
of conceiving the δx, δy, δz of the various points of the system as virtual

63 […] le mentovate sei quantità in ambi i casi sono le espressioni analitiche contenenti l’effetto
complessivo di tutte le azioni interne sopra il punto generico (p, q, r) ovvero (x, y, z) […] (Piola
1848, p. 101).
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velocities or infinitesimal spaces described by that fictitious motion (which
after [Lazare] Carnot was named geometrical motion64), it is more natural
and unmysterious to consider them as an increase of the coordinates of
such points when the system is referred to another set of three orthogonal
axes, displaced very little from the first […] so it is clear how the increase
in the coordinates occurs without changing the reciprocal actions among
the parts of the system […].65

In this way, it is apparent that the virtual displacements considered take place
without modifying inner actions. In a similar way, the equations of condition
in the rigid motion from p to x may be thought of as transformations of equa-
tions of condition when the co-ordinate system varies; this, claimed Piola, was
certainly an original approach of his

The simultaneous reference to two triads of orthogonal axes then plays out
efficiently in another way […]. Here we intend to speak about the method
which leaves δx, δy, δz completely general and considers constraint equa-
tions by introducing indeterminate multipliers. In such a way the use
of the two triads is useful for writing down the named constraint equa-
tions, which could not otherwise be given in general […]. Such a point
of view seems to me to have escaped Lagrange and the other geometers:
all things in the present Memoir which are worthy of attention derive
from it […].66

64 Lazare Carnot introduced the idea of “mouvement géométrique” in the last part of the eighteenth
century

[…] if a system of bodies starts to move from a given position, with an arbitrary velocity,
but such that it would be also possible for the system to follow another velocity exactly of
the same magnitude and opposite, each one of these velocities will be named geometrical
velocity […]. ([…] si un systéme de corps part d’une position donnée, avec un mouvement
arbitraire, mai tel qu’il eût été possible aussi de lui en faire prendre un autre tout-à-fait ègal
et directement opposè; chacun de ces mouvements sera nommè mouvement géométrique
[…] (Carnot 1783, pp. 23–24)).

65 […] tal principio sta nel riferimento simultaneo di un qualunque sistema a due terne di assi
ortogonali: esso può adoperarsi in due maniere e in entrambe produce grandiosi effetti. Si adopera
in una prima maniera […] a fine di dimostrare il principio delle velocità virtuali, ed anche gli altri
della conservazione del moto del centro di gravità, e delle aree. Invece di concepire in tal caso
le δx, δy, δz dei diversi punti del sistema come velocità virtuali o spazietti infinitesimi descritti in
virtù di quel moto fittizio (il quale fu poi altresì detto dopo Carnot un moto geometrico), è assai
più naturale e non ha nulla di misterioso il ravvisarle quali aumenti che prendono le coordinate
degli anzidetti punti quando il sistema si riferisce ad altri tre assi ortogonali vicinissimi ai primi,
come se questi si fossero di pochissimo spostati. […] allora si capisce chiaro come gli aumenti delle
coordinate abbiano luogo senza alterazioni nelle azioni reciproche delle parti del sistema le une
sulle altre […] (Piola 1848, p. 110).
66 Il riferimento simultaneo del sistema a due terne di assi ortogonali giuoca poi efficacemente in
un’altra maniera […]. Qui s’intende parlare di quel metodo che lascia alle δx, δy, δz tutta la loro
generalità e tratta le equazioni di condizione, introducendo moltiplicatori indeterminati. In tal caso
la contemplazione delle due terne di assi giova per l’impianto delle dette equazioni di condizione,
che altrimenti non si saprebbero assegnare in generale […]. Un tal punto di vista parmi sfuggito a
Lagrange e ad altri Geometri: ad esso si riferisce quanto nella presente Memoria può essere più
meritevole di attenzione (Piola 1848, p. 111).
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The last sections of the Intorno alle equazioni fondamentali are dedicated to
the motion of fluids, not directly linked with the subject of this paper, and to a
reformulation of the treatment of molecular forces in the paper of 1836. Even-
tually Piola extends the results of previous sections to two- and one-dimensional
continua.

Piola died in 1850, and in 1856 Francesco Brioschi, a former pupil of
Piola and at that time professor of Rational Mechanics in Pavia, edited the
posthumous publication of Piola’s last work on continuum mechanics, enti-
tled Di un principio controverso della Meccanica Analitica di Lagrange e delle
sue molteplici applicazioni. This paper is stated to be directly linked with the
Intorno alle equazioni fondamentali and to be its natural completion and
refinement. In his work of 1848 Piola had said that he felt that Lagrange’s
technique of indeterminate multipliers of the first-order variation of the equa-
tions of condition contained something unclear and unproven. Therefore, he
said, in this article he felt compelled to show how to overcome this diffi-
culty. In the first chapter Piola showed that the first-order variation of the
equations of condition in the rigid body motion from χp to χ can be ob-
tained simply by moving the reference frame of the present configuration.
Thus, Piola surpassed the difficulty due to the intermediate configuration χp,
which is unknown and in principle may not exist, so that it might be mean-
ingless to take derivatives with respect to p. Starting from this proof, which
turns out to be a terrific tool for Piola, who desired to leave nothing to intu-
ition, in the rest of the paper Piola re-derived the local balance equation, ex-
tended the results to two- and one-dimensional continua, re-interpreted the
Lagrange multipliers as expressions of inner forces and provided a molecu-
lar representation for the latter; moreover, he gave a clear and completely
modern interpretation of the components of C as measures of strain, recalled
the property of the ellipsoid of finite strain, recovered Cauchy’s theorem on
stress and wrote down localised and linearised elastic constitutive relations
for three-, two-, and one-dimensional continua. In many aspects, this work
may be seen as the natural completion of Piola’s path in the field of continuum
mechanics, yet, probably because it was published posthumously, it is somewhat
ignored.

3.4 Solidification principle and generalised forces

Certainly Piola’s most relevant contribution to continuum mechanics is the
way he introduces internal stresses: they are presented as Lagrange multi-
pliers of constraint equations. Piola applied this approach in all his papers,
but in the articles of 1848 and 1856 the concept is made extremely
clear.

When dealing with the equilibrium of deformable bodies Piola said he could
simply follow Lagrange, who had treated some deformable bodies as they were
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rigid by using what Poinsot had called ‘principle de solidification’.67 According
to this principle, the active forces present in a deformable body are equivalent
to the passive forces obtained assuming ‘the same functions that remain con-
stant for rigid bodies’68 as condition equations. This is what Lagrange said on
the subject:

One adds to this integral S Fδds the integral S Xδx + Yδy + Zδz which
expresses the sum of the moments [works] of all external forces acting on
the thread […] and by equating all them to zero, we obtain the general
equilibrium equation of the elastic thread. Now it is clear that this equa-
tion has the same form as that […] for the case of inextensible thread,
and [it is clear too] that by changing F in λ, the two equations will be-
come identical. One therefore has in the present case the same particular
equations that we found in the case of art. 31, simply by putting F in
place of λ.69

In other words, for example in the case of a thread, Lagrange stated that
the elastic forces can be treated as constraint reactions by introducing the first-
order variation of the inextensibility constraint. Piola was not convinced by this
argument:

[Lagrange] in his A. M. […] adopted a general principle (§. 9. of Sect.
II and 6. of IV70) according to which the analytical expression for the

67 (Poinsot 1848). The principle of solidification was used also by Stevin in his study of the equi-
librium of fluids De beghinselen des waterwichts, 1586, and by Euler to treat hydrostatics in the
Scientia Navalis, 1738 (Capecchi 2001, pp. 17–18). Cauchy used it in (Cauchy 1823) to introduce
the idea of stress. Later on, it was used to study systems of constrained bodies. Lagrange used it
to prove the equation of virtual work (Lagrange 1811, Sect. II, art. 1.). Nowadays it is more often
derived from the equation of virtual work, as in (Duhem 1891):

It is not unpleasant to deduce from the Principle of virtual velocity and from the ther-
modynamic generalization of this principle the following consequence: If a system is
in equilibrium when it is subjected to certain constraints, it will persist in equilibrium
when it will be subjected not only to these constraints but also to some more [con-
straints] which are consistent with them […] (Il n’est pas malaisé de déduire du Prin-
cipe des vitesses virtuelles et de la généralisation thermodynamique de ce principe la
conséquence suivant: Si un système est en équilibre lorsqu’il est assujetti à de cer-
tains liaisons, il demeura en équilibre lorsqu’on l’assujettira non seulement à ces liaisons
mais encore à des nouvelles liaisons compatibles avec les premières […] (Duhem 1891,
pp. 36–37).).

68 […] quelle stesse funzioni che rimangono costanti per corpi rigidi (Piola 1848, p. 76).
69 On ajoutera donc cette intégrale S Fδds à l’intégrale S Xδx + Yδy + Zδz, qui exprime la somme
des momens de toutes les forces extérieures qui agissent sur le fil […], & égalent le tout à zéro, on
aura l’équation générale de l’équilibre du fil à ressort. Or il est visible que cette équation sera de la
même forme que celle […] pour le cas d’un fil inextensible, & qu’en y changeant F en λ, les deux
équations deviendront même identiques. On aura donc dans le cas présent les mêmes équations
particulieres pour l’équilibre du fil qu’on a trouvées dans le cas de l’art. 31, en mettant seulement
dans celle-ci F à la place de λ […] (Lagrange 1788, p. 100)
70 Piola’s quotation is not entirely correct, since in these sections Lagrange deals with constraints
in general.
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effect of the internal active forces is similar to that for passive ones
when we have constraints: this is obtained by assuming indeterminate
coefficients and by multiplying them by the variation of those functions
which remain constant for rigid, inextensible, or liquid bodies. If we
adopted such a method, we could immediately generalize the results ob-
tained in the previous chapter: I, however, prefer to abstain, because
my appreciation for the great Geometer does not prevent me from rec-
ognizing that that principle proposes something obscure and not yet
proved.71

There are reasons for Piola’s rejection of Lagrange’s use of the principle of
solidification: the first is that this approach stems from intuition, being based on
a non formalised procedure; as an analyst, Piola preferred to obtain his result
as consequences of a chain of formulae where nothing is left to intuition. Sec-
ondly, it requires the ideas of deformation and inner action, which Piola did not
provide and did not want to use, at least in the Intorno alle equazioni fondamen-
tali. Unconvinced by Lagrange’s procedure, Piola looked for a different one,
thereby showing his skills and talent.

Piola might have suspected some weakness in his reasoning because he
returned to the argument in the posthumous paper of 1856, when he took a
different approach, avoiding the use of an intermediate configuration χp. Here,
he practically adopted Lagrange’s use of the solidification principle. At the heart
of this reconciliation is Piola’s explicit understanding that the coefficients of the
matrix C in Eq. (5–1) represent deformations. More precisely, Piola studied
metrics in the present configuration with respect to the ideal state. His dislike
of infinitesimals seems to have diminished somewhat, probably because of the
spread of Cauchy’s rigorous concept of differential, which could replace the
XVIIIth century concept of infinitesimal; as noted above, Cauchy was some-
one whose ideas Piola appreciated even though he did not always agree with
them. However, Piola did not adopt the differential, though he came close to
it. In the metric considerations for the present configuration, where he could
comfortably use the infinitesimal element of length ds he preferred to consider
the quantity s′ = √

x′2 + y′2 + z′2, which he called ‘elemento di arco’, where
the prime means derivative with respect to a parameter varying in the ideal
configuration.

71 [Lagrange] nella sua M. A. […] adottò un principio generale (§. 9. della Sez. IIa, e 6. della IVa),
mediante il quale l’espressione analitica dell’effetto di forze interne attive riesce affatto analoga a
quella che risulta per le passive quando si hanno equazioni di condizione: il che si ottiene assumen-
do dei coefficienti indeterminati e moltiplicando con essi le variate di quelle stesse funzioni che
rimangono costanti per corpi rigidi, o inestensibili, o liquidi. Se ci conformassimo ad un tal metodo,
potremmo a dirittura generalizzare i risultamenti ai quali siamo giunti nel capitolo precedente: io
però preferisco astenermene, giacché la mia ammirazione pel grande Geometra non m’impedisce
di riconoscere come in quel principio rimanga tuttavia alcun che di oscuro e di non dimostrato
(Piola 1848, p. 76).
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For the three-dimensional case, art. 29 and art. 33, Piola developed geomet-
rical relations of a local character which partially reflect Cauchy’s approach,72

yet have a certain originality. For the element of arcs which in the ideal con-
figuration have, at a given point P, a tangent characterized by director cosines
α1,α2,α3, the expression of the square of the arc element s′ in the present
configuration is represented by

(s′)2 =
∑

i,j

Cijαiαj (26)

where the Cij are the coefficients of the matrix C in Eq. (5–1) evaluated at P.
The expression (26) with equal indices coincides with that of the coefficient ε
which Cauchy called ‘la dilatation linéaire’.73 Similar expressions are obtained
for the cosines of angles between two curves.

In any case Piola remained critical of Lagrange’s approach to deformable
systems. He now had explicit reasons for this criticism, claiming that Lagrange
had not given the criterion for establishing what and how many components of
deformation must be used:

Indeed there are many possible contemporary expressions for quanti-
ties that the internal forces of a system tend to vary. Which of them
shall we consider, which shall we neglect? Who will assure us that by
using many such functions that are subject of variation because of the
action of internal forces, we do not make useless repetitions and by means
of some express an effect already written with some some others? And
could it not happen that we neglect those [expressions] which are neces-
sary in order that the whole effect of internal forces could be expressed
completely?74

However, Piola believed he had resolved the question and found how many
condition equations are needed and what they are:

Regarding the problem: which of the functions that are varied by internal
forces we must use, preferring them to others, I proved that they are those
trinomials of derivatives […]. For the other question: how many must such

72 For instance, they can be found in (Cauchy 1841).
73 (Cauchy 1841), p. 304.
74 Infatti molte possono essere contemporaneamente le espressioni di quantità che le forze in-
terne di un sistema tendono a far variare; quali di esse prenderemo, quali ommetteremo? Chi
ci assicura che adoperando parecchie di tali funzioni soggette a mutamenti per l’azione delle
forze interne, non facciamo ripetizioni inutili, esprimendo per mezzo di alcune un effetto già
scritto con altre? E non potrebbe invece accadere che ommettessimo di quelle necessarie ad in-
trodursi affinché l’effetto complessivo delle forze interne venga espresso totalmente? (Piola 1856,
p. 391).
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functions be […] I answered so many as they are necessary to get the
variation of those trinomials equated to zero […].75

Once Piola had introduced deformations he could legitimately write Eq. (21)
for deformable systems; now δL does not represent the variation of condition
equations but the variation of deformation and is given by δC.

The introduction of strain threw new light on Lagrange multipliers. The lat-
ter were seen as forces producing displacements associated with the variation
of condition equations. Piola extended Lagrange’s76 concepts and conceived of
very general inner forces, anticipating modern approaches to internal forces in
structured continua, for example Cosserat’s.77 Indeed, it is apparent that when
dealing with one-dimensional continua Piola introduced the twist of the line as
a strain measure, defining the dual inner action as the corresponding Lagrange
multiplier. In Piola’s words,

The concept that Lagrange wanted us to have about forces, and which we
expounded in the prologue, is more general than what is usually accepted.
Everybody easily intends that a force is a cause which, by means of its
action, modifies the magnitude of certain quantities. In the most evident
case, by making a body or a material point approach another, it modifies
distances, and so makes the length of rectilinear lines vary; but it can also
modify an angle, a density, etc. In these latter cases the way the forces act
remains obscure to us, while it is clear in the former. But, perhaps, the
reason of this is independent of the nature of the forces. Actually, even
in the former case it is not understood how a force can communicate its
action to the body so as to decrease or increase the distance of the body
from another; meanwhile, we see the fact continuously; everyday obser-
vation decreases the will to look further into this. But, if on scrutiny we
find that here also the action of forces is mysterious, no wonder that it is
mysterious in the other cases too. To want to reduce the action of forces
always to that decreasing a distance, is to reduce a vaster concept, and
to recognize but a particular class of forces. Generally speaking, how far
can our ideas about causes which are object of measurements be driven?
perhaps to comprehend their intimate nature and the true way in which
they act? […] When we have given all unknown concepts a unit with which
we measure things of the same kind, we say we know the truth when we
can assign ratios with such unit, originally assumed arbitrary. Now, when,
following Lagrange, we conceive of forces in a more general way, namely
as causes which may vary quantities other than lines, we obtain the data
necessary to affirm that we can measure them. We have all we can reason-
ably pretend: if we lack the imagine with which to invest the concept, it is

75 Circa la questione: quali sono le funzioni fatte variare dalle forze interne che si debbono adope-
rare a preferenza di altre, ho dimostrato che sono que’ trinomj alle derivate […]. Relativamente
all’altra questione: quante poi debbano essere tali funzioni […] ho risposto quante ce ne vogliono
per risalire alle variate di que’ trinomj poste uguali a zero […] (Piola 1856, p. 421).
76 (Lagrange 1811), Sect. V.
77 (Cosserat 1896, 1907).
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because we want to describe it in the same way as when forces act along
lines. An unknown part always remains both in these more general cases
and in the very ordinary one.78

This conception of forces led Piola to reconsider the condition equations
by investigating what happens to Lagrange multipliers (the forces) when these
equations are transformed into others, with some mathematics. Piola examined
one-, two-, and three-dimensional cases; in the latter he focussed solely on
fluids.

4 Piola’s stress tensors and theorem

According to the ideas of the history of science prevailing today, the modern
interpretation of a non-contemporary text is something to be avoided at all
costs. The aim of the historian is to reconstruct the “actual” thinking of the
scientists, and this can be done only by using the categories of the time in
which the scientists wrote. From this point of view it is necessary to understand
all aspects which could influence the way of thinking, not only in science: the
political environment, dominant metaphysics, and so on.

We agree with this approach and in the previous sections we have tried to fol-
low it as much as possible. Nonetheless, the modern interpretation of relatively
recent papers such as Piola’s are of remarkable interest also to the historian: it
may be seen as a complement to the reconstruction of the history of a part of con-
tinuum mechanics from Piola’s time up to now. In fact, it should not be forgotten
that reference to Piola’s papers is made in some monographs79 at the beginning

78 Il concetto che Lagrange voleva ci formassimo delle forze, e che esponemmo nel prologo, è
più generale di quello universalmente ammesso. S’intende facilmente da tutti essere la forza una
causa che mediante la sua azione altera la grandezza di certe quantità. Nel caso più ovvio, av-
vicinando un corpo o un punto materiale ad un altro, cambia distanze, ossia fa variare lunghezze
di linee rette: ma può invece far variare un angolo, una densità, ecc. In questi altri casi il modo
di agire delle forze ci riesce oscuro, mentre ci par chiaro nel primo: ma forse la ragione di ciò è
estrinseca alla natura delle forze. Per verità anche in quel primo caso non si capisce come faccia la
forza a infondere la sua azione nel corpo sì da diminuirne od accrescerne la distanza da un altro
corpo: nondimeno noi vediamo continuamente il fatto: l’osservazione giornaliera sopisce in noi
la voglia di cercarne più in là. Se però sottilmente esaminando si trova che qui pure il modo di
agire delle forze è misterioso, nessuna meraviglia ch’esso ci appaja oscuro negli altri casi. Voler
ridurre in ogni caso, l’azione delle forze a quella che diminuisce una distanza, è impiccolire un
concetto più vasto, è un non voler riconoscere che una classe particolare di forze. Generalmente
parlando, a qual punto possono essere spinte le nostre cognizioni intorno alle cause che sottopo-
niamo a misura? forse a comprenderne l’intima natura, e il vero modo con cui agiscono? […]
Radunato tutto quanto vi è d’incognito nella unità di misura della stessa specie, noi diciamo di
conoscere la quantità, lorché possiamo assegnarne i rapporti colla detta unità assunta original-
iamente arbitraria. Ora eziandio quando si concepiscono le forze alla maniera più generale di
Lagrange, cioè siccome cause che fanno variare quantità talvolta diverse dalle linee, concorron-
o i dati necessari a poter dire che sappiamo misurarle: si ha tutto ciò che ragionevolmente ci è
lecito di pretendere: se pare che ci manchi l’immagine con che rivestirne il concetto, è perché
vogliamo colorirla come nel caso particolare delle forze che agiscono lungo le rette: un fondo
incognito rimane sempre tanto in questi casi più generali, come in quello sì comune (Piola 1856,
pp. 456–457).
79 (Müller and Timpe 1906), p. 23; (Hellinger 1914), p. 620.
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of the twentieth century, where the formulation of mechanics essentially coin-
cides with today’s. Moreover, the reconstruction of the history of continuum
mechanics allows us to highlight the aspects that Piola “failed to understand”
and try to explain why. These can be internal, that is, they can depend on logical
or methodological grounds, or external, such as the lack of time or of atten-
tion devoted to a particular subject. For instance, it is interesting to understand
why Piola did not attribute the meaning to P2 which is attributed to it today.
Understanding facts like this helps us to comprehend how Piola “actually”
thought.

In modern continuum mechanics it is customary to attribute the following to
Piola: a) two stress tensors, which provide respectively stress in the present con-
figuration and stress in the present configuration pulled back to the reference
configuration when applied to the unit normal in the reference configuration;80

b) a theorem on the derivation of balance equations from the principle of vir-
tual power.81 In this section we shall try to explain the reasons behind these
attributions.

4.1 A modern interpretation of Piola’s contributions

Piola’s papers contain a lot of interesting hints from the point of view of mod-
ern continuum mechanics. Firstly, the ai co-ordinates are fundamental to all his
works. In Meccanica de’ corpi naturalmente estesi Piola declares ai to be inde-
pendent of time. One could thus interpret the same co-ordinates to be those
in a reference configuration, but Piola did not affirm that explicitly. However,
it is clear from this choice that the description of motion used by Piola is a
referential one, and to us the a list will describe a reference configuration κ . In
the Nuova analisi Piola took a daring step forward, because the introduction
of the concept of ideal state and its identification with the a list is exactly the
construction of a reference configuration in the sense of Truesdell.82 This is
a shape useful for calculations, but which in principle may not coincide with
a shape that the body may have assumed or will assume. Otherwise a purist
and an analyst, Piola did not realize the power of such an abstract formulation,
which nowadays is the basis of many treatments of finite continuum mechanics.
Indeed, in this he followed the norms of his time, and, while in principle he
should have realised that his “lagrangean” description of motion would lead
him to a different description of balance, he felt urged to focus only on the pres-
ent configuration χ , as all his contemporaries had done. We remarked upon
this in Sect. 3.3, where we quoted a passage in which Piola felt compelled to

80 (Truesdell and Toupin 1960), pp. 553–554; (Truesdell and Noll 1965), pp. 124–125; (Malvern
1969), pp. 220–224; (Gurtin 1981), pp. 178–180; (Truesdell 1991), pp. 185.
81 (Müller and Timpe 1906), p. 23; (Hellinger 1914), p. 620; (Truesdell and Toupin 1960),
pp. 595–600; (Truesdell and Noll 1965), pp. 124–125; (Malvern 1969), pp. 246–248; (Truesdell 1991),
p. 185.
82 (Truesdell 1991), p. 96.
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push the referential balance equations forward to χ , the only “real” state of the
body.

Another interesting point is the implicit definition, when Piola dealt with the
local rigidity equations of condition, of the right (C) and left (B) Cauchy–Green
strain tensors. As it is well known, C is a measure of the metric in the present
configuration with respect to the reference one, while B−1 is a measure of the
metric in the reference configuration with respect to the present one. Imposing
the metric as the identity, as Piola does, amounts to supposing that the metric
does not change during the motion. Modern measures of strain are the right
and left Green–Saint-Venant tensors,

M := 1
2
(C − I), N := 1

2
(B−1 − I) (27)

and Piola’s local rigidity equations of condition, equivalent to Eq. (5–1), coin-
cide with the vanishing of M and N defined by Eq. (27). This is of course the case
of a rigid motion. However, Piola was not interested in defining a deformation
measure, and so what could have been a formidable intuition is not presented,
even if one may suspect that Piola had something in mind; it was made clear
only in his posthumous Di un principio controverso.

Moreover, the ambiguity that Piola kept between the expression of a generic
motion gradient F and the gradient of a rigid motion Q makes some of his
equations generally invalid. Indeed, in a rigid motion it is apparent from Eq.
(5) that C = B(= I), while in general C �= B since the product of two tensors
is not commutative. In his work of 1833 Piola made no distinction between the
equations of condition in terms of either B or C, and the Lagrange multipliers
he introduced have the meaning of stresses in χ ; however, since B−1, not B,
expresses a metric, the local balance equations derived from the use of B have
no physical significance. Piola corrected himself in the last part of Meccanica
de’ corpi naturalmente estesi, and in his other papers he seems never to have the
same doubts and used only C. It seems reasonable, however, to think that Piola
offered no metric consideration other than in Di un principio controverso, so
it is likely that he “felt” he was right in using C, rather than having rationally
proven this.

In the Lagrange multipliers listed in P2 a modern reader sees the com-
ponents of the so-called second Piola’s stress tensor, and in P1 = FP2 the
so-called first Piola’s stress tensor; the list S in Eq. (16) shall be equal to
the list T in Eq. (19) and coincide with Cauchy’s stress tensor. In his paper
of 1833, Piola provided an interpretation neither of the mechanical meaning
of any of these quantities, nor of the local balance equation (15). Moreover,
he did not introduce the list of components of S as an array of Lagrange
multipliers, as they would be supposed to be given the mechanical meaning
of the stresses. Indeed, he introduced the components of S merely as a list
of auxiliary quantities to which he applied his already described push-for-
ward theorem, Eq. (11). Moreover, Piola gave no mechanical interpretation
of the surface integrals which follow from the applications of the techniques
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of the calculus of variations. Thus, many capital results he found remain some-
how hidden. In his later works, some changes are made with regard to this:
from the treatment of molecular interactions it immediately becomes clear
that the components of lists like P1 have the meaning of internal actions and
that the equations obtained are actually local balance equations. Indeed, Piola
remarked that

The general equations of motion of any point (x, y, z) of the body are
Eqs. (56) [coinciding with Eq. (18)] where L1, L2, etc. [the components
of P1] […] are reduced to depending […] only on the unknown ψ(S) cor-
responding to the molecular action. It is quite true that […] the equa-
tions found are related to those for the composition of the x, y, z in
terms of a, b, c which is unknown and not assignable. But let us pass
to see how, keeping fixed the advantage of equations rigorously ob-
tained, we can pass over the cited difficulty with respect to the
effects […].83

That is, Piola introduced a virtual ideal state and felt compelled to push his
equations forward to the present configuration, which he considered to be the
only true one. It is remarkable how in the Nuova analisi Piola introduced an
intermediate configuration, which is the one assumed by the body at the initial
time. But, rather than generalising his results to this reference configuration,
he focussed his attention on the present one and derived local balance equa-
tions in Cauchy’s form in terms of quantities (the components of P2) which
are expressions of molecular forces. The expressions he provided, which are
summarised in Eq. (20), are those which are commonly accepted in modern
continuum mechanics.84 Moreover, the interpretation of the components of P1
in terms of contact actions is the one which is currently accepted. It was clear in
Piola’s mind that these results match those of Cauchy on surface and internal
actions.

It is interesting to remark that the local rigidity equations of condition can-
not in principle be used to derive balance equations for deformable bodies,
for which constraint equations do not exist, unless one invokes the princile of
solidification. Piola did not use condition equations directly, though, but used
their first-order variation. These would be nowadays interpreted as describing a
virtual strain velocity, and expressions such as Eq. (21) would be read as follows:
the total mechanical power spent on a virtual rigid velocity field vanishes. While
in his work of 1833 Piola wrote with some imprecision, as he himself admitted
later, in other articles, especially in those of 1848 and 1856, his treatment was

83 Le equazioni generali del moto di un punto qualunque (x, y, z) del corpo sono le (56) ove le L1,
L2, ec. […] si riducono a dipendere […] [dal]la sola incognita ψ(S) relativa all’azione molecolare.
Ben è vero, che […] le trovate equazioni si rapportano a quella composizione delle x, y, z in a, b, c
che è ignota anzi inassegnabile; ma passiamo ora a vedere in qual modo, fermato il vantaggio di
formole ottenute rigorosamente, si sormonta in quanto agli effetti l’accennata difficoltà […] (Piola
1836, p. 202).
84 (Truesdell and Toupin 1960), pp. 553–554; (Truesdell and Noll 1965), pp. 124–125; (Malvern
1969), pp. 224–225; (Gurtin 1981), pp. 178–180.
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acute and he was sure that this approach was original. And, indeed, this is a
rather modern view, and at the beginning of the twentieth century credit is given
to Piola for this formulation,85 which is called Piola’s theorem in well known
monographs on continuum mechanics.86 In short, credit is given to Piola to have
proven balance equations via only the description of the present configuration,
the principle of solidification and the well accepted principle of the vanishing
of virtual power spent on a rigid body motion. In particular, Hellinger high-
lighted the fact that Piola’s approach requires only the knowledge of external
forces, without compromising on the nature of inner actions, which are simply
Lagrange multipliers:

[…there is] another formulation of the Principle of virtual displacements
that from the start considers only the proper forces, mass forces X, Y, Z
and surface forces X̄, Ȳ, Z̄ as given; it is the following simple position of
the formulation by G. Piola: for equilibrium it is necessary that the virtual
work of the acting forces

∫ ∫

(V)

∫
(Xδx + Yδy + Zδz)dV +

∫

(S)

∫
(X̄δx + Ȳδy + Z̄δz)dS

vanishes for every [rigid motion] of the entire domain V […so that] the
components of the tension dyad appear as Lagrange’s factors of certain
rigidity conditions.87

The treatment in the paper of 1856, moreover, is basically more modern,
since Piola started to introduce the idea of generalized deformations of con-
tinua, regardless of the dimension of their geometrical support. From the study
of this posthumous paper, it seems that Piola could have anticipated some later
developments of continuum mechanics; yet his provincialism made his work
almost unknown outside Italy. Indeed, in the references to Piola’s work in the
twentieth century, no mention was made to Di un principio controverso, and
many Italian scientists did not quote Piola at all when dealing with continuum
mechanics.

85 (Müller and Timpe 1906), pp. 23–24; (Hellinger 1914), p. 620.
86 (Truesdell and Toupin 1960), pp. 596–597; (Malvern 1969), pp. 246–248; (Truesdell 1991), p. 185.
87 […es gibt] eine andere Auffassung des Prinzipes der virtuellen Verrückungen, die von vorn-
herein nur die eigentlichen Kräfte, die Massenkräfte X, Y, Z und die Flachenkräfte X̄, Ȳ, Z̄ als
gegeben betrachtet; es ist die folgende leichte Fortbildung der Formulierung von G. Piola: Für das
Gleichgewicht ist notwendig, dass die virtuelle Arbeit der angeführten Kräfte

∫ ∫

(V)

∫
(Xδx + Yδy + Zδz)dV +

∫

(S)

∫
(X̄δx + Ȳδy + Z̄δz)dS

verschwindet für alle [starren Bewegungen] des ganzen Bereiches V […so dass] die Komponenten
der Spannungsdyade als Lagrangesche Faktoren gewisser Starrheitsbedingungen erweisen (Hellinger
1914, p. 620).



336 D. Capecchi, G. C. Ruta

4.2 The Piola–Kirchhoff stress tensors

The introduction of Piola’s name to qualify the stress tensors pulled back to the
reference configuration is in (Truesdell and Toupin 1960): from the preceding
sections it is clear why, and Truesdell and Toupin often refer to the works we
have examined in this paper. Frequently, Kirchhoff is mentioned in the same
breath as Piola, and this attribution is also due to Truesdell and Toupin; we
shall highlight why. Even though the present paper is focused on Piola’s contri-
butions, it also summarises Kirchhoff’s contribution for a more complete study
of the subject. In fact, unlike Piola, Kirchhoff was conscious of introducing a
new idea, the stress pulled back in the reference state to study finite defor-
mations. Unfortunately, Kirchhoff’s mathematical treatment is not as good as
Piola’s: so the complementarity of understanding and misunderstanding of
mathematical and physical concepts by the two scientists justifies Truesdell’s
lexical juxtaposition.

In 1852, Kirchhoff published a paper88 in which he studied the problem of
elastic equilibrium in presence of finite displacements. Kirchhoff maintained
that he was inspired by Saint-Venant,89 who had formulated a clear definition
of a finite measure of strain (which is now indeed called Green–Saint-Venant
strain tensor) and had given some hints about how to obtain balance equations
for non-infinitesimal displacements, claiming that

[…] when pressures are taken over planes slightly inclined to those into
which the three material planes are transformed that initially were rect-
angular and parallel to the coordinates, we have, for the six components,
the same expressions, as functions of dilatations and distortions [the com-
ponents of the Green–Saint-Venant strain tensor], as we have when the
displacements are very small […].90

The conclusion drawn by Saint-Venant in this passage does not seem so clear
to a modern reader, and is probably the cause of Kirchhoff’s uncertainties in
the considered paper. Quite surprisingly, in fact, Kirchhoff’s article is somewhat
obscure and presents incorrect expressions according to modern standards. It
is not clear from the text whether Kirchhoff intended to follow an approximate
reasoning, or if he made genuine errors. According to Todhunter and Pearson,91

Kirchhoff himself later realised the weakness of this paper and did not want to
re-publish it in his Gesammelte Abhandlungen.

These are Kirchhoff’s words on how he claimed to derive local balance equa-
tions in the case of finite displacements:

88 (Kirchhoff 1852).
89 (Saint-Venant 1847).
90 […] lorsque les pressions sont prises sur les planes légèrement obliques dans lesquels se sont
changés les trois plans matériels primitivement rectangulaires et parallèles aux coordonnées, on a,
pour les six composantes, les mêmes expressions, en fonction des dilatations et des glissements, que
lorsque les déplacements sont très petits […] (Saint-Venant 1847, p. 261).
91 (Todhunter and Pearson 1893), art. 1244, p. 50.
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I will call ξ , η, ζ the coordinates of a point after deformation, x, y, z the
coordinate of the same point before the same [deformation]. In the nat-
ural state of the body I think of three planes, parallel to the coordinate
planes, through the point (x, y, z); the parts of these planes, which lie infi-
nitely close to the named point, are transformed by the deformation into
planes that are skew to the coordinate planes and meet them at finite
angles, but meet each other at angles that differ infinitely little from 90o.
The pressure that these planes endure after the deformation I think of as
broken up into components on the coordinate axes, and I call these com-
ponents: Xx, Yx, Zx, Xy, Yy, Zy, Xz, Yz, Zz, in such a way that e.g. Yx is the
component along y of the pressure that the plane which was orthogonal
to the x axis before the deformation endures. These nine pressures are in
general skew to the planes on which they work, and there are not three
equal to other three, as in the case with infinitely small displacement. If
one writes down the conditions that one part of the body that before the
deformation is an infinitely small parallelepipodon with edges parallel to
the coordinate axes and of length dx, dy, dz is in equilibrium, then one gets
the equations:

ρX = ∂Xx

∂x
+ ∂Xy

∂y
+ ∂Xz

∂z

ρY = ∂Yx

∂x
+ ∂Yy

∂y
+ ∂Yz

∂z

ρZ = ∂Zx

∂x
+ ∂Zy

∂y
+ ∂Zz

∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
. . . 1)

when one denotes by ρ the density of the body and by X, Y , Z the compo-
nents of the accelerating force that acts on the body at the point (ξ , η, ζ ).
One comes to these equations by considering that the edges and the an-
gles of the parallelepipodon have altered infinitely little, however on the
other hand one uses the same considerations by which these equations are
proved in the case of infinitely small displacements.92

92 Ich werde die Coordinaten eines Punktes nach der Formänderung ξ , η, ζ nennen, die Coordina-
ten desselben Punktes vor derselben, x, y, z. Im natürlichen Zustande des Körpers denke ich mich
durch den Punkt (x, y, z) drei Ebenen gelegt, parallel den Coordinaten-Ebenen; die Theile dieser
Ebenen, welche unendlich nahe an den genannten Punkte liegen, gehen bei der Formänderung in
Ebenen über, die mit den Coordinaten-Ebenen schiefe, endliche Winkel bilden, mit einander aber
Winkel, die unendlich wenig von 90o verschieden sind. Die Drucke, die diese Ebenen nach der
Formänderung auszuhalten haben, denke ich mich in Componenten nach den Coordinaten-Axen
zerlegt, und nenne diese Componenten: Xx, Yx, Zx, Xy, Yy, Zy, Xz, Yz, Zz, in der Art, dass z. B. Yx
die y Componente des Druckes ist, den die Ebene auszuhalten hat, die von der Formänderung
senkrecht zur x Axe war. Diese neun Drucke sind im Allgemeinem schief gegen die Ebenen gerich-
tet, gegen die sie wirken, und es sind nicht drei von ihnen drei anderen gleich, wie es bei unendlich
kleinen Verschiebung der Fall ist. Stellt man die Bedingungen dafür auf, dass ein Theil des Körpers
sich im Gleichgewichte befindet, der vor der Formänderung ein unendlich kleines Parallelepipe-
dum ist, dessen Kanten parallel den Coordinaten-Axen sind, und die Längen dx, dy, dz haben,so
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Thus, Kirchhoff focused on three infinitesimal faces which are parallel to
fixed co-ordinate planes and pass through a generic point which undergoes a
finite displacement. He then projected the stresses arising after the deforma-
tion on those faces onto the fixed co-ordinate axes and wrote the local balance
equations with respect to the same axes. Kirchhoff’s Eqs. 1) above seem incon-
sistent when what has been said in the previous section is considered. Indeed,
although they have a similar form to that of our Eqs. (15) and (18), they do
not coincide with them for two reasons: (i) it is not clear how the components
Xx, Yx, . . . may coincide with those of the first Piola stress tensor. Indeed, no
information is provided either on how the area affected by the stress changes
during deformation, or on the change of metric between the present and the
reference configuration; and (ii) it is not clear where ρ is measured. If ρ is the
mass per unit volume in the present configuration, as seems to be implied by
Kirchhoff’s words, this is again inconsistent with our Eq. (15), since the mass
density is required to be measured in the reference configuration.

It is strange that a sharp expert in physics and a well-educated mathemati-
cian like Kirchhoff wrote such inconsistencies. This may perhaps be explained
by the fact that Kirchhoff was studying a problem of finite displacements with
infinitesimal strain, as explicitly stated on p. 762 and quoted above, and as
conjectured by Saint-Venant:

[…] mutual distances of points very close together vary only in a small
ratio […].93

One may then suppose that Kirchhoff considered the body as almost undis-
torted so that areas and volumes do not vary. In this case, it is still possible
to derive local balance equations for the stress components in the present
configuration, projected on the fixed co-ordinated axes, by means of standard
procedures. This should be represented by Kirchhoff’s equations (1), if ρ is
taken as the density in the reference configuration.

(Footnote 92 continued)
kommt man zu den Gleichungen:

ρX = ∂Xx

∂x
+ ∂Xy

∂y
+ ∂Xz

∂z

ρY = ∂Yx

∂x
+ ∂Yy

∂y
+ ∂Yz

∂z

ρZ = ∂Zx

∂x
+ ∂Zy

∂y
+ ∂Zz

∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
. . . 1)

wenn man mit ρ die Dichtigkeit des Körpers, mit X, Y , Z die Componenten der beschleunigenden
Kraft bezeichnet, die auf den Körper im Punkte (ξ , η, ζ )wirkt. Man kommt zu diesen Gleichungen,
indem man benützt, dass die Winkel und die Kanten des Parallelepipedums sich nur unendlich
wenig geändert haben, übrigens aber dieselben Betrachtungen anstellt, durch die man bei unend-
lich kleinen Verschiebungen diese Gleichungen beweist (Kirchhoff 1852, pp. 762–763; some evident
typographical errors have been amended).
93 […] les distances mutuelles de points très-rapprochées ne varient que dans une petite proportion
[…] (Saint-Venant 1847, p. 261).
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It is remarkable how the developments by Piola and Kirchhoff are somehow
specular images. In the second derivation of the local balance equations which
Piola presented in the Meccanica de’ corpi naturalmente estesi, he first intro-
duced what we now call Piola’s second stress tensor: its components are the
Lagrange multipliers of his variational problem. Then, he introduces what we
now call Piola’s first stress tensor simply as a mathematical stratagem with which
to write the local balance equations in the present configuration; no mechanical
meaning is given to its components. On the other hand, Kirchhoff began by
considering from a physical point of view the quantities that we now call the
components of Piola’s first stress tensor. Later, he introduced the components
of what we now call Piola’s second stress tensor only to obtain a constitutive
relation for the components of the first.

5 Conclusions

Even in Italy Piola’s work seems to have fallen into oblivion soon after his death,
as he is not referred to in the papers and textbooks of the most famous Italian
mechanicians. Piola’s name is not found in (Cesàro 1894), (Marcolongo 1905),
(Signorini 1930a,b), (Grioli 1960); the local balance equations pulled back in
the reference configuration are labelled as Kirchhoff’s equations in (Signorini
1952), (Signorini 1960). The same equations are attributed to Boussinesq in
(Signorini 1930b), (Brillouin 1960) and also in (Truesdell and Toupin 1960).
The paper in question is (Boussinesq 1872), in which the equations of motion
are obtained for continua in terms of the reference configuration in order to
study the periodic waves in a liquid infinite domain.94

Nor is credit given to Piola is given in the well-known monograph by Love.95

As we have already said, perhaps the first to have attributed Piola’s name to the
description of stress in the reference configuration and the “lagrangean” way
to derive the local balance equations was Truesdell in (Truesdell and Toupin
1960). Most likely, Truesdell came in contact with Piola’s works via Walter Noll
and the German school of mechanics, which produced both (Müller and Timpe
1906) and (Hellinger 1914). The Germans knew Piola probably due to the well
established links between the German and the Italian school of mechanics and
applied mathematics. Indeed, the fact that in (Müller and Timpe 1906) among
the basic references works by Castigliano,96 Cesàro and Marcolongo are found
is certainly of importance. However, it seems that the posthumous paper of
1856 was not well known to the scientific community, if indeed it was known at
all; no reference is made to it in either (Müller and Timpe 1906) or (Hellinger
1914) or (Truesdell and Toupin 1960), in spite of the tremendous amount of
literature cited and consulted especially in the last mentioned one.

What we can be certain of is Piola’s strong abilities as a mechanician and skills
as a mathematician, and the fact that he had some powerful intuitions, some of

94 (Boussinesq 1872), eqs. (3) and (3bis) in §I, pp. 513–517.
95 (Love 1944).
96 (Castigliano 1879).
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which he did not develop, others among which he developed in a very modern
manner. In many ways he belonged to the Italian isolated cultural environ-
ment, and we can almost certainly attribute much of his uncompleted work to
the lack of confrontation with the international scientific community. However,
a bright intuition and a powerful tool to study mechanics are found through-
out his writings, which thoroughly deserve the attention of mechanicians and
historians.
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