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Taking Latitude with Ptolemy:
Jamsh̄ıd al-Kāsh̄ı’s Novel Geometric Model

of the Motions of the Inferior Planets

Glen Van Brummelen

Communicated by L. Berggren

The Almagest model of the motions of the planets is one of the monumental achieve-
ments in the history of science. Its ability to predict the locations of some planets to within
a couple of degrees of their true positions centuries into the future would give even mod-
ern scientists pause; it reigned as the planetary paradigm for well over a millennium.
Nevertheless a number of Muslim astronomers revised or even replaced it with various
alternatives, designed not to improve its predictive success, but rather to correspond
better to the requirement of uniform circular motion. Although Jamsh̄ıd al-Kāsh̄ı came
after many of these reformers, he did not follow them. Rather than overturning Ptolemy,
he revised the planetary model and applied his prodigious mathematical skills to help it
conform more closely to his conception of Ptolemy’s wishes.

The most characteristic feature of a planet’s motion is its regular retrograde arcs,
illustrated in Fig. 1 (the motion of Mars from May to December 2003). Ptolemy’s
epicyclic model of Fig. 2 does a remarkable job of predicting the planet’s longitude,
its position projected onto the ecliptic.1 However, as Fig. 1 makes clear, planets exhibit
considerable motions above and below the ecliptic. A complete planetary theory must
also incorporate these movements; thus, it must handle the planet’s latitude. Ptolemy
attempted this in Book XIII, the last book of the Almagest, by tilting the deferent and
epicycle out of the plane of the ecliptic, and setting them in back and forth motions in
ways that he considered best suited to reproduce the phenomena (see Fig. 3). For the
inferior planets Venus and Mercury he defined three effects. (i) The deferent circle is set
in a bobbing motion, starting flat on the ecliptic when the epicycle is at points A and C,
and reaching its maximum inclination when the epicycle is at B and D. The epicycle is
itself tilted with respect to the plane of the deferent as follows: (ii) the first diameter,2

in the line of sight as seen from Earth, has zero tilt when the center of the epicycle is

1 This model is described in any number of places; see for instance [Pedersen 1974]
or [Evans 1998].

2 Ptolemy used most of these terms except for “first diameter” and “second diameter”, which
were used by Muslim astronomers.
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Figure 1

at B and D and reaches its maximum deviation (al-mayl)3 when at A and C; and (iii)
the second diameter, perpendicular to the first, is parallel to the ecliptic plane when the
epicycle center is at A and C, and has maximum slant (al-inh. irāf) when at B and D.

Although Ptolemy later published a simpler latitude theory in the Handy Tables
and the Planetary Hypotheses, Muslim astronomers in the Ptolemaic tradition generally
followed the Almagest. Among those who composed zı̄jes (astronomical compendia
that gave numerical tables for use in predictive astronomy), only a few varied from the
geometric model, or the tabular setup, laid out in the Almagest.4 In many cases a z̄ı j
author would not only adopt Ptolemy’s structures, but simply borrow Ptolemy’s tables
outright in his own work.

Almost the only astronomer who attempted to improve on the Almagest with re-
spect to determining latitudes was the early 15th-century Persian mathematician and
astronomer Jamsh̄ıd al-Kāsh̄ı. Eventually a member of Ulugh Beg’s scientific court in
Samarkand and contributor to the great Sult. ān̄ı Z̄ıj, al-Kāsh̄ı was exceptionally mathe-
matical in his astronomical work. His reputation as a computational genius is already

3 Al-Kāsh̄ı’s terms for the deviation and slant are identical to those used by Nas.̄ır al-D̄ın al-
T. ūs̄ı, author of the Īlkhān̄ı Z̄ıj which al-Kāsh̄ı sets out to improve in the Khāqān̄ı Z̄ıj (see [Ragep
1993, vol. 2, 424, 449].) In fact, they were used already in the Ish. āq-Thābit translation of the
Almagest ([Sabra 1979, 389]).

4 Variants included the use of a scheme taken from the Handy Tables or from Indian methods,
as well as several alterations to the tables designed to ease the computations. See the valuable
summary of Islamic planetary latitude tables in [Van Dalen 1999].
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well established: his methods for computing π to the equivalent of 16 decimal places
and sin 1◦ to about the same accuracy (see [Luckey 1953] for the former, [Aaboe 1954]
for the latter, and [Van Brummelen 1998b] for a popular account of both) are his most
recognized achievements. His contributions to mathematical astronomy go much fur-
ther. Among them are a number of instruments to compute the positions of the Sun,
Moon, and planets, including an ingenious device that could find planetary latitudes
(see [Kennedy 1950] and especially [Kennedy 1951]). This “plate of zones” (t.abaq
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al-manāt. iq), however, relied on Ptolemy’s methods and contains none of the innova-
tions found here.

The Khāqān̄ı Z̄ıj, written as an improvement to Nas.̄ır al-D̄ın al-T. ūs̄ı’s Īlkhān̄ı Z̄ıj
before al-Kāsh̄ı joined the scientific court of Ulugh Beg, is exceptional in its inclusion
of extensive and sophisticated mathematical arguments to support the astronomy. Several
studies of parts of the z̄ı j have appeared in recent years, most notably [Kennedy 1998],
a section-by-section survey of the entire z̄ı j and our understanding of its contents thus
far. Among the innovations in the material on planetary latitudes was the only major
revision ever made to the single-argument tables for Mercury, which we shall publish
shortly. The subject of this paper is one of the most complex sections of the Khāqān̄ı Z̄ıj,
which contains a detailed description of an alternate geometric model for the motions
of the inferior planets. It is intended neither to improve upon the fit with the planetary
phenomena, nor to replace Ptolemy’s model with a superior one. Rather, its purpose is
to provide a better mathematical path from the basic description of the planets’ motions
in the Almagest to their predictions.

Al-Kāsh̄ı is dissatisfied with Book XIII primarily on mathematical grounds. Ptolemy’s
mathematical approach to latitudes is uncharacteristically crude and relies on a series
of approximations and simplifying assumptions, some justified, some not. In his tab-
ulations for Mercury, al-Kāsh̄ı replaces Ptolemy’s correction to his earlier assumption
that the Earth is at the center of the deferent with a better one.5 Al-Kāsh̄ı’s adjusted
tabulation is still an approximation, but it improves the fit between geometry and com-
putation by up to 1/4◦ on latitudes whose magnitudes reach a maximum of only just
over 4◦. However, al-Kāsh̄ı is also concerned with the entire Ptolemaic approach, which
considers the three latitude effects (inclination, deviation, and slant) to be independent
of each other. In fact, the particular value of (say) the deviation at a given moment has
a small effect on the value of the slant. Al-Kāsh̄ı proposes an entirely different line of
attack which requires virtually no approximations, thereby repairing what is among the
least satisfactory mathematical topics in the Almagest.

The key to al-Kāsh̄ı’s method is to exploit the sphere within which the epicycle may
be enclosed. Ptolemy dealt with the various inclined circles using ordinary trigonometry
in three dimensions, rendering the interactions between the latitude effects nearly inac-
cessible. By using the epicyclic sphere, al-Kāsh̄ı accounts for two of the three latitude
effects simply by setting certain great circles in motion (see Fig. 4). The circle of devia-
tion wobbles regularly about the epicyclic equator (the intersection of the deferent with
the epicyclic sphere); the circle of slant wobbles similarly about the circle of deviation.
The planet is carried on the circle of slant, which in a sense represents the sum of all
three latitude effects. In order to locate a planet at a given time, al-Kāsh̄ı needs only to
apply spherical trigonometry to these great circles and transfer the results to the context
of the complete model.

The idea that the circles in planetary models are actually great circles on spheres
was not new; Ptolemy himself had mentioned these spheres occasionally in the Almagest
and in his cosmological work, the Planetary Hypotheses (although they did not play a

5 Ptolemy’s correction is described in [Toomer 1984, 630, 635].
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role in his mathematical models of the planets).6 In medieval Islam the idea was given
concrete realization first by Ibn al-Haytham, whose Maqāla f̄ı h. arakat al-iltafāf proposed
to produce Ptolemy’s latitudinal effects while dealing effectively with philosophical
objections to the physical model.7 Ptolemy had attached the epicycle to two small circles
to cause the epicycle to move appropriately;8 Ibn al-Haytham proposed instead a model
that uses a pair of epicyclic spheres, with a design reminiscent of Eudoxus’s nested
spheres. Nas.̄ır al-D̄ın al-T. ūs̄ı improved on Ibn al-Haytham’s design with a spherical
version of his famous “T. ūs̄ı couple”, intended to produce an oscillation of a point along
a given spherical arc.9 Such a couple could be attached to the epicycle, generating the
correct motion without the objections to Ptolemy’s model.10

Al-Kāsh̄ı may well have been inspired by this; the Khāqān̄ı Z̄ıj repeatedly refers
to al-T. ūs̄ı’s work. In fact it seems entirely possible, perhaps almost inevitable, that
he received the inspiration for the curvilinear oscillation that drives his model from
al-T. ūs̄ı. However, what al-Kāsh̄ı was trying to accomplish was quite different. Both
Ibn al-Haytham and al-T. ūs̄ı wanted to find philosophically acceptable physical models

6 For discussions of the spherical models in the Planetary Hypotheses and their reality in
Ptolemy’s thinking see, for instance, [Pedersen 1974, 391–397] or [Murschel 1995]. For a trans-
lation of the Arabic version of part of the Planetary Hypotheses, see [Goldstein 1967].

7 See [Sabra 1979] for an edition and translation of one of al-Haytham’s related works (the
original treatise is lost), and [Ragep 2004] for an edition and translation of a passage by al-T. ūs̄ı
on the same topic.

8 See [Riddell 1978] for a discussion of these circles in the Almagest.
9 See [Ragep 1993, 216–22] for al-T. ūs̄ı’s description of his curvilinear couple. [Ragep 1993,

454–456] is a discussion and analysis that shows that the point actually deviates from the arc by
a small amount. For further information on the T. ūs̄ı couple, see also [Ragep 1987] and [Kennedy
and Saliba 1991].

10 It is also worth mentioning in passing al-Bit.rūj̄ı’s 12th-century work On the Principles of
Astronomy (see the edition in [Goldstein 1971]), in which the entire planetary model exists on the
surface of a sphere with the Earth at its center. This was also motivated by philosophic rather than
technical reasons, in order to reconcile astronomy with Aristotle’s cosmology.



358 G. Van Brummelen

capable of reproducing the motions of the planets. Al-Kāsh̄ı, literally, picks up where
they left off. There are no nested Eudoxan spheres or T. ūs̄ı couples. The wobbles that give
rise to the deviation and the slant are assumed to be sinusoidal, and no physical model
is postulated. Rather, al-Kāsh̄ı takes the motions as axiomatic, presumably leaving to
others the task of finding the right combination of spheres that produces these motions,
and he builds a geometry that leads to a method for determining the planet’s position.

This attitude is appropriate to z̄ıjes, which generally emphasized computational re-
sults, although some dealt also with theoretical matters. Z̄ıjes often attempted to improve
upon the Ptolemaic schema for calculating planetary positions without altering the un-
derlying model; the extent of their relation to the cosmological literature is an intriguing,
insufficiently explored issue. Although the Khāqān̄ı Z̄ıj is exceptionally theoretical and
the subject treated in this paper is extraordinary for a z̄ıj, al-Kāsh̄ı nevertheless uses his
invention here for an entirely computational purpose: to determine the position of Venus
at a given time. Even so, one wonders whether this work might have been a source for
the discussions of improvements to Ptolemy’s models that George Saliba has recently
demonstrated took place later at Ulugh Beg’s court.11

In terms of complexity, planetary latitudes are the culmination of Ptolemy’s mathe-
matical astronomy. Al-Kāsh̄ı’s remarkable system removes its mathematical flaws, and
demonstrates that Muslim astronomers not only mastered this apex of Ptolemaic astron-
omy, but also perfected its mathematics.

The remainder of this paper is devoted first to a brief description of the mathematics
of Ptolemy’s latitude model, and then to a technical account of the part of the Khāqān̄ı
Z̄ıj devoted to al-Kāsh̄ı’s spherical approach. Al-Kāsh̄ı’s text falls roughly into three
sections: a geometrical description of the spherical model, a mathematical discussion of
how one might generate planetary positions from it, and a sample calculation for Venus.
A translation by Sergei Tourkin of the passage in which al-Kāsh̄ı describes the geometric
structure of his model may be found in an appendix.

Ptolemy’s model for the latitudes of the inferior planets

The latitudes of the inferior planets are more complicated than those of the superior
planets; we shall ignore the latter, since the Khāqān̄ı Z̄ıj is not as original with respect
to them. We shall follow the notation established in [Pedersen 1974, 261–294 and 355–
386]. Since part of the theory of longitudes (which is the same for all planets) is needed,
we describe it briefly.

The center of the epicycle revolves around the deferent at a constant rate with respect
to the equant point Q (see Fig. 2). Thus the mean centrum cm = � AQG changes
linearly with time and may be found easily using a mean motion table. The true centrum
c = � AEG is the position of the center of the epicycle seen from the Earth; it may be
found by either adding or subtracting the equation of center, q = � QGE, depending

11 In addition to Ulugh Beg himself, participants in this discussion included al-Qushj̄ı, who
devised a reform of the Ptolemaic model for Mercury [Saliba 1993], and al-Shirwān̄ı in a com-
mentary to al-T. ūs̄ı’s Tadhkira [Saliba 2004]. Saliba’s latter paper contains accounts of several
fascinating episodes in the daily academic life of the court.
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on whether the center of the epicycle is to the right or left of line AQE. The planet’s
position on the epicycle is measured by the mean anomaly am = � AmGP (taken from
the epicycle’s apogee seen from the equant point), which changes linearly with time; it
is similarly corrected to the true anomaly av = � AvGP (where the apogee is now seen
from the Earth) by adding or subtracting the equation of center. The angular displacement
of the planet from the center of the epicycle, as seen from the Earth, is the equation of
anomaly p = � GEP , a function of both av and cm. Finally, the planet’s longitude λ

may be found by adding the appropriate quantities to the longitude of the apogee of the
deferent λA:

λ = λA + c ± p. (1)

The model for Mercury varies from this; the interested reader is referred to [Pedersen
1974, pp. 309–328]. See also [Van Brummelen 1998a] and [Duke 2004] for computer
animations of each model.

For the inferior planets’ latitudes, Ptolemy assumes that the three motions (inclina-
tion, deviation, and slant) are independent of each other. We begin with the inclination,
which is a tilt of the deferent, and which reaches its maximum when the center of the
epicycle is at the deferent’s apogee B and perigee D, and zero at the nodes A and C

(Fig. 3). For Venus the deferent’s tilt is northward to the right when the epicycle is on
the right of Fig. 3, and northward to the left when the epicycle is on the left, changing
sinusoidally throughout.12 The position of the epicycle is measured by the true centrum
c, taken counterclockwise from node A. Note that the Earth, not the center of the def-
erent, is fixed in place; thus the deferent is not cut perfectly in half by the plane of the
ecliptic, which passes through the center of the Earth. The maximum inclinations for
both planets are small: imax = 0; 10◦ for Venus, and imax = 0; 45◦ for Mercury.13

Ptolemy begins his computation of the first latitude β1 (the latitude caused by the
effect of the inclination) by finding the altitude of the apogee of the deferent when the
center of the epicycle is at position c:

i = imax cos c.14 (2)

The correct formula is

sin i = sin imax cos c, (3)

but since i and imax are very small, the approximation is reasonable. Then the first latitude
is found by moving from the apogee to the planet’s current position:

β1 = i cos c = imax cos2 c. (4)

12 The motions of Mercury are in the reverse direction to those of Venus; to avoid confusion
we will stick with Venus.

13 We use the standard notation for representing numbers in sexagesimal format: for instance,
1, 23; 45, 6, 7 = 1 · 60 + 23 + 45

60 + 6
602 + 7

603 . Thus, for Venus, imax = 1/6◦.
14 To be precise, Ptolemy uses the chord function rather than sines and cosines, and uses a

circle of radius 60 for his trigonometry rather than the unit circle.
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Again, the correct formula should be

sin β1 = sin i cos c, (5)

but only an astronomer with an obsession for precision would complain about this slight
difference.

The determination of the second latitude β2, caused by the deviation (the tilt of the
epicycle’s first diameter), begins similarly. The first diameter is attached to a small circle
placed at right angles to the deferent circle at the perigee of the first diameter; as the small
circle rotates it causes the first diameter to wobble so that it reaches its maximum and
minimum displacement from the plane of the deferent when the center of the epicycle
is at the nodes A and C, and returns to zero at the deferent’s apogee B and perigee D.
Thus the deviation j is

sin j = sin jmax sin c, (6)

which Ptolemy simplifies to the sinusoidal motion

j = jmax sin c, (7)

where jmax = 2; 30◦ for Venus (al-Kāsh̄ı uses jmax = 3; 30◦, the same as the value in
Ptolemy’s Planetary Hypotheses) and jmax = 6; 15◦ for Mercury (al-Kāsh̄ı uses 7◦).
The computation of β2 from j is a complicated function of both c and av , which we
omit here since it is not necessary to our discussion. The interested reader is referred to
[Pedersen 1974, 377–379].

Finally, the third latitude β3, caused by the slant (the tilt of the epicycle’s second
diameter), uses the same structure as that for the second latitude, although the second
diameter is parallel to the ecliptic when the center of the epicycle is at the nodes A

and C, not at the apogee B and perigee D. When the center of the epicycle reaches
the apogee, the second diameter reaches its maximum slant kmax (with the leading edge
tilting northward); at the deferent’s perigee the slant is in the other direction. Thus the
slant k is

sin k = sin kmax cos c, (8)

which Ptolemy simplifies to

k = kmax cos c, (9)

where kmax = 3; 30◦ for Venus and 7◦ for Mercury. Ptolemy estimates β3 by combining
the effect of the slant with an appropriate scaling of the equation of anomaly for cm =
c0
m ≈ 90◦:15

15 The value c0
m is chosen so that the distance ρ from the Earth to the center of the epicycle

is exactly 60; this occurs when cm is slightly greater than 90◦. In practice c0
m does not have to be

computed; one simply needs to know that ρ = 60.
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β3 ≈ k cos c · p(av, c
0
m). (10)

At this stage, in the case of Mercury, Ptolemy decides that the varying distance of the
epicycle center from the Earth must be taken into account. If the epicycle is on the
apogee side of the deferent then the planet is further from the Earth than the calculations
assume; he therefore instructs that β3 is to be decreased by a factor of 1

10 . Similarly, if
the epicycle is on the perigee side, then β3 is to be increased by a factor of 1

10 .16 The
Khāqān̄ı Z̄ıj innovation in the tabulation of Mercury’s latitudes to which we referred
earlier is equivalent to allowing the 9

10/ 11
10 factor to change continuously as the epicycle

traverses the deferent.
This theory is subject to many criticisms, not least of which is the quality of its fit to

the phenomena. However, this was not al-Kāsh̄ı’s, or in fact other Muslim astronomers’,
concern. The complexity was not an issue either: although Ptolemy himself simplified
the model considerably and composed simpler latitude tables in his Handy Tables (see
[Stahlman 1960, pp. 143–155, 325–334]), most Muslim astronomers adhered closely
to the Almagest model. Al-Kāsh̄ı’s complaint about the Almagest is rather that Ptolemy
does not stick closely enough to his own geometry when he turns to the mathematics.
For instance, in formulas involving the sines of small arcs, Ptolemy often replaces the
sine with the arc itself, such as the use of (4) rather than (5). The errors in Ptolemy’s
approximations for the effect of slant are particularly egregious: the varying distance
from the Earth to the center of the epicycle is handled crudely for Mercury, and ignored
entirely for Venus (albeit with some computations to justify the claim that its effect is
negligible). Finally, Ptolemy assumes that the three latitude effects work independently
of each other. He does not attempt to measure the interdependence of the inclination,
deviation and slant; indeed, using plane trigonometry in three dimensions, this would
be a huge undertaking.

Al-Kāshı̄’s latitude model

The third treatise of the Khāqān̄ı Z̄ıj deals with the determinations of the positions
of the planets and is divided into two chapters, the first describing the use of the tables
located at the end of the treatise, and the second containing geometric proofs of the oper-
ations. This account is based on Sect. 8 of the second chapter. The following manuscripts
were consulted:

• India Office (London), MS 430 (Ethé 2232), f. 104v–108v
• Dār al-Kutub (Cairo), MS TR 149, pp. 180–187
• Aya Sofia (Istanbul), MS 2692, f. 73r–77r

There are very few differences between the India Office and Cairo manuscripts, but some
text is missing from the Aya Sofia manuscript, especially in the geometric description of

16 One of the few Muslim innovations in tables for planetary latitudes was to tabulate 9
10 β3

and 11
10 β3 rather than tabulating just β3 itself and asking the reader to perform the multiplication

(see [Van Dalen 1999]).
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the model. The India Office manuscript, the basis of most modern studies, was composed
aboutAD 1500.All folio numbers given in this paper refer to the India Office manuscript.

After describing the model and mathematics for the superior planets in a conventional
fashion, al-Kāsh̄ı begins his discussion of the inferior planets by detailing the geometric
model. The Appendix contains a translation of this passage; we follow roughly its order
of presentation here.

Al-Kāsh̄ı’s treatment of the inclination works identically to Ptolemy’s (see Fig. 3)
and he does not discuss it here. The deferent wobbles above and below the parecliptic
plane (the plane containing the ecliptic). For Venus, the deferent has no tilt when the
center of the epicycle is at nodes A and C, reaches its maximum northward tilt to the
right when it is at B, and reaches its maximum northward tilt to the left when it is at D.
Note that this keeps the center of the epicycle on or above the parecliptic plane at all
times.

At this stage the epicycle is enclosed in a sphere, as in Figs. 4 and 5. The epicyclic
equator17 is the intersection of the epicyclic sphere with the plane of the deferent. The
circle of deviation wobbles with respect to the epicyclic equator, moving the apparent
apogee and perigee above and below it. The axis of this motion is the diameter parallel to
the parecliptic plane, at right angles to the line joining the apogee and perigee. (Al-Kāsh̄ı
describes this axis as perpendicular to the “plane of latitude of the epicycle center”, a
vertical plane through the Earth and the epicycle center in Fig. 4.) The motion itself fol-
lows Ptolemy’s prescription: the circle of deviation coincides with the epicyclic equator
when the epicycle’s center is at either of the points B and D of Fig. 3, and reaches its
maximum deviation from the epicyclic equator when it is at either of the nodes A and
C. Figure 5 illustrates a typical situation, the deviation being arc j .

The circle of slant18 moves with respect to the circle of deviation, around an axis
that is the diameter through the apogee and perigee. Again the motion follows Ptolemy’s
instructions: when the epicycle center is at either of the nodes A and C of Fig. 3, the
circle of slant coincides with the circle of deviation. When the epicycle is at either of
points B and D, the slant (labeled arc k on Fig. 5) is at its maximum. The planet is
carried along the circle of slant.

Next al-Kāsh̄ı gives the maximum values of the deviation and the slant; for Venus
we have jmax = kmax = 3; 30, and for Mercury we have jmax = kmax = 7; 0. To find
the deviation j and slant k from the planet’s true centrum al-Kāsh̄ı uses the formulas

Sin 90◦

Sin jmax
= Sin c

Sin j
and

Sin 90◦

Sin kmax
= Cos c

Sin k
, (11)

equivalent to (6) and (8) above, eschewing Ptolemy’s approximations (7) and (9). (The
notation “Sin” refers to the medieval sine function, which is R (=60) times the modern
sine; similarly for the other trigonometric functions.)

The model itself is now completely specified, but the procedure to determine the
planet’s position requires the definition of an extra circle. The planet’s position is known

17 This term is not found in our passage, and is used here for convenience.
18 Again, al-Kāsh̄ı uses the same term for slant (al-inh. irāf) as al-T. ūs̄ı; see [Ragep 1993, vol.

2, 449].
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by moving from the apogee along the circle of slant by an arc equal to the true anomaly
av . The incidental circle is then drawn to pass through the endpoints of the axis of
rotation of the circle of deviation (see Fig. 5) and the planet. As we shall see, al-Kāsh̄ı
converts the true anomaly, measured along the circle of slant from its apogee, to an
incidental anomaly a, measured along the incidental circle from its apogee.

Mathematical discussion for determining the positions of the planets

This conversion is a problem in spherical trigonometry, a subject with which
al-Kāsh̄ı was more than familiar. In the fourth of the six treatises in the Khāqān̄ı Z̄ıj,
al-Kāsh̄ı gives trigonometric solutions to the standard problems of spherical astron-
omy.19 Of the twenty-six problems solved in that section, twenty-three apply the Rule
of Four Quantities (hereafter called R4Q), the “workhorse of his trigonometric stable”
[Kennedy 1985, p. 3]. This rule asserts that, for two right spherical triangles sharing an
acute angle, the ratios of the sines of the adjacent sides to the sines of the hypotenuses
are equal; i.e., in Fig. 6,

19 See [Kennedy 1985] for an analysis.



364 G. Van Brummelen

A
B

C

D

E

Figure 6

A

T

E

G

H

Z

B D

Y

Figure 7

Sin
�

BE

Sin
�

AE

= Sin
�

CD

Sin
�

AD

.
(12)

Moreover, in all but one of al-Kāsh̄ı’s uses of R4Q in the fourth treatise, he applies it to

figures for which
�

AC and
�

AD are quadrants. The same holds here: R4Q is the principal
tool of all his inquiries, and he applies it almost always with this restriction.

In Fig. 7 (f. 106v),20 ABGD is the circle of deviation, broken into quadrants by the
four named points; A and G are the epicyclic apogee and perigee respectively. We shall

20 Starting with Fig. 7, each diagram in this paper is a copy of one in the manuscripts (other
than the lower part of Fig. 8). We use [Kennedy 1991/92] to transliterate the letters in the diagrams.
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refer to great circle AEG, where E is the pole of the circle of deviation, as the epicyclic
meridian (although al-Kāsh̄ı does not name it). Great circle AZG is the circle of slant,

with Z elevated above B by arc
�

BZ = k. The planet’s current position H is determined

by moving an amount
�

AH = av along the circle of slant from A. The incidental circle
is the great circle through B, the planet H , and D; and the incidental anomaly a is
measured from its apogee T (the intersection of the incidental circle with the epicyclic
meridian) to the planet H .

Our first step is to determine the inclination of the incidental circle. Join E to H ,

and extend that arc to point Y on the circle of deviation. Arcs
�

AH = av and
�

BZ = k

are known from the usual planetary longitude calculations and (11). Applying R4Q to
figure AYBZH gives
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Sin 90◦

Sin
�

BZ

= Sin
�

AH

Sin
�

HY

, (13)

which determines
�

HY . Next, apply R4Q to EZBYH (since the angles at B and Z are
right), giving

Cos
�

HY

Cos
�

AH

= Sin 90◦

Cos
�

AY

. (14)

(The cosines arise as the sines of the complements of arcs.) Thus
�

AY is known, and

the original arc av =
�

AH has been converted to “coordinates” with respect to the circle

of deviation. To measure the anomaly a =
�

T H measured along the incidental circle,
apply R4Q to ET AYH :

Sin 90◦

Sin
�

AY

= Cos
�

HY

Sin
�

T H

; (15)

this gives a =
�

T H . Finally al-Kāsh̄ı calculates
�

AT , the inclination of the incidental
circle to the circle of deviation, by applying R4Q to BYAT H :

Cos
�

T H

Sin
�

HY

= Sin 90◦

Sin
�

AT

. (16)

We now turn to the diagram of Fig. 8,21, similar to one in the Almagest. The points
in this figure are in two layers. In the surface of the paper DHEZ is the epicycle22 and
Y is the projection of the planet, T , onto the first diameter of the epicycle. Points A, B,
and L are the same distance above the surface. A, the Earth, should actually appear on
the page on the extension of line DGE; al-Kāsh̄ı moves A to the left so that the reader
can see triangles GKY and AYB. Thus Fig. 8b represents the plane perpendicular to the
page through DGE. Segments BY and LT are perpendicular to the plane of the paper;
points B and L are projections of Y and T respectively onto the parecliptic plane, in

which triangle ALB lies. The planet T is displaced from the apogee by a =
�

DT . K is
the perpendicular projection of Y onto AG.

Al-Kāsh̄ı asserts that we may determine � YAK using a plane trigonometric argument
borrowed from the corresponding passage on the superior planets. We follow al-Kāsh̄ı
by not repeating it here; the interested reader will find the details in the upcoming sample
calculation for Venus. Since

21 Fig. 8 is actually a representation of the diagram on f. 108r, a few pages later in the text. It
is almost identical to the diagram on f. 105r, to which al-Kāsh̄ı refers here. The only differences
are that the epicycles are in different quadrants in the two figures, and that the diagram on f. 105r
does not connect one line segment and labels one extra point, none of which affect us here.

22 Both here and in the sample calculation for Venus, when al-Kāsh̄ı moves from the spherical
epicycle diagram to the planar one, the incidental circle takes on the role of the epicycle.
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Sin 90◦

Sin(90◦ − c)
= Sin imax

Sin i
= Sin i

Sin β1
,23 (17)

knowledge of c allows the calculation of β1 = � GAB. Then � BAY , the latitude of the
projection of the planet onto the first diameter of the epicycle, may be found by adding or
subtracting � YAK and β1, depending on the northward or southward direction of these
two angles. One final step is needed to convert from � BAY to the latitude β = � T AL,
but al-Kāsh̄ı does not comment on it here, leaving it to the sample calculation for Venus.

The sample calculation for Venus

To demonstrate his new method al-Kāsh̄ı works his way through a sample computa-
tion of the position of Venus for a given moment, using none of the approximations used
in tabular methods. Almost all his calculations are correct to within one or (occasionally)
several units in the last sexagesimal place; virtually none are in error by as much as ten
units. Al-Kāsh̄ı begins by extracting the values of the following three parameters for a
certain (unstated) moment, presumably obtained from mean motion tables:

cm = 86; 52, 41◦,

am = 129; 55, 18◦, and (18)

λA = 80; 15, 6◦,

where cm is the mean centrum, am the mean anomaly, and λA the longitude of the
apogee.24

The first few steps are typical of a Ptolemaic procedure and have as their goal the
determination of the basic quantities associated with longitude, including those needed
to enter the epicyclic sphere, namely the true centrum c = � AEB and the true anomaly

av =
�

YKL in Fig. 9 (f. 107r). ABG is the deferent of Venus with center D, B is the
center of the epicycle, YKL is the epicycle, L is Venus, and Z is the equant point; hence
� AZB = cm = 86; 52, 41◦. Draw BD (the radius of the deferent, assumed to be 60 units
long), EBY , and KBZ. Drop perpendiculars ET and DH onto the extension of BZ.

From cm, we know that DH
DZ

·R = Sin(86; 52, 41◦) = 59; 54, 39, 26 and HZ
DZ

·R =
Cos(86; 52, 41◦) = 3; 16, 3, 39. But DZ is the eccentricity of Venus, which for
al-Kāsh̄ı is e = 1; 3, 4, 30;25 hence DH = 1; 2, 58, 53 and HZ = 0; 3, 26, 7. By
the Pythagorean Theorem,

23 This is equivalent to the precise versions (3) and (5) of Ptolemy’s (2) and (4) respectively;
al-Kāsh̄ı derives these equalities in the previous Sect. II.7.

24 These angles are given first in terms of numbers of signs (units of 30◦); we have converted
to pure degree measurements throughout.

25 This number is taken to be half the value of al-Kāsh̄ı’s solar eccentricity, e = 2; 6, 9.
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BH 2 = BD2 − DH 2

= 602 − (1; 6, 6, 39, 19, 49)2

= 59, 58; 53, 53, 20, 40, 11,26 (19)

and so

BH = 59; 59, 26, 56.

Now HT = HZ (since ED = DZ = e and DH is parallel to ET ), so BT =
BH +HZ = 60; 2, 53, 3. 27 Therefore BT 2 = 1, 0, 5; 46, 14, 19, 6, 18, 9, and ET 2 =
(2DH)2 = 4; 24, 26, 37, 16, 59, 16, so BE2 = BT 2 + ET 2 = 1, 0, 10; 10, 40, 56,
23, 17, 25. So the distance from the Earth to the center of the epicycle is

ρ = BE = 60; 5, 5, 7. (20)

We now have the information needed to find the equation of center q = � EBT :
Sin q = Sin ET

BE
= 2(1;2,58,53)

60;5,5,7 = 2; 5, 47, 6, so q = arcSin(2; 5, 47, 6) = 2; 0, 8, 24.

26 All three manuscripts have a spurious digit near the end of the value for BH 2 : . . . , 20,

40, 45, 11.
27 Here and occasionally elsewhere, al-Kāsh̄ı writes sixty as 60 rather than 1,0.
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Therefore the true centrum is c = � AEB = cm − q = 84; 52, 32, 36, and the true

anomaly is av =
�

YKL = am + q = 131; 55, 26, 24.
With the true centrum in hand, we are in a position to find the first latitude β1. We have

Sin c = 59; 45, 36, 41, Cos c = 5; 21, 32, 18, and Sin imax = Sin 10′ = 0; 10, 28, 19.
Therefore, by (17),

Sin i = Cos c · Sin imax

R
= 0; 0, 56, 7, (21)

and again by (17),

Sin β1 = Cos c · Sin i

R
= 0; 0, 5, 1, (22)

which gives β1 = 0; 0, 4, 47 in the northerly direction.
Before entering the epicyclic sphere we must first determine j and k, the angles of

inclination of the circles of deviation and slant respectively. Since (for Venus) Sin jmax =
Sin kmax = Sin (3; 30) = 3; 39, 46, 30, by (6),

Sin j = Sin c · Sin jmax

R
= 3; 38, 53, 48; (23)

therefore j = 3; 29, 9, 33. Also, by (8),

Sin k = Sin kmax · Cos c

R
= 0; 19, 37, 46, (24)

so k = 0; 18, 44, 40.
We now possess the quantities needed to begin calculations on the epicyclic sphere.

In Fig. 10 (f. 107v), we have the following:

ABGD = the epicyclic equator;
ZBHD = the circle of deviation, with pole E and inclined to the epicyclic equator by

the amount j =
�

GH ;
AEGH = the epicyclic meridian, the intersection of the epicyclic sphere with the

vertical plane through the Earth and the center of the epicycle;
BED = the great circle through points B, E, and D, at right angles to the circle of

deviation;

ZT H = the circle of slant, inclined to the circle of deviation by the amount k =
�

BT

(where T is the intersection of the circle of slant with BED);
K = the planet Venus, its position on the circle of slant determined by moving

an amount av =
�

ZT K along the circle of slant from the epicyclic apogee Z;
BKMD = the incidental circle, the great circle through B, K , and D; and

EKL = the arc through E and K , extended to point L on the circle of deviation.

The goal in what follows is to transfer knowledge of the adjusted anomaly av on the
circle of slant to the incidental anomaly a on the incidental circle. The information is
transferred in two stages, first to the circle of deviation, and then to the incidental circle,
following the procedure previously outlined in Eqs. (13) through (16).
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We begin by noting that
�

HK = 180◦ −
�

ZT K = 180◦ − av = 48; 4, 33, 36, so

Sin
�

HK = 44; 38, 30, 52. From (24) we already have Sin
�

T B = Sin k = 0; 19, 37, 46.
Thus, applying R4Q to HLBT K , we get

Sin
�

KL

Sin
�

KH

= Sin
�

T B

R
, (25)

which gives Sin
�

KL = 0; 14, 36, 18, so
�

KL = 0; 13, 56, 49. Therefore
�

EK , its com-

plement, is 89; 46, 3, 11. Now
�

T K(= av − 90◦) = 41; 55, 26, 24. Therefore, applying
R4Q to ET BLK , we have

Sin
�

BL

R
= Sin

�

T K

Sin
�

EK

, (26)

so that

Sin
�

BL = R · Sin
�

T K

Sin
�

EK

= R · 40; 5, 15, 9

59; 59, 58, 14
= 40; 5, 20, 20 (27)

and hence
�

BL = 41; 55, 27, 55. Since
�

BL is 90◦ less than
�

ZBL, the arc on the circle
of deviation corresponding to av , the first half of the determination of a is complete.
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Next we transfer the anomaly from the circle of deviation to the incidental circle.
�

HL, the complement of
�

BL, is 48;4,32,5. Thus, applying R4Q to the figure EMHLK ,

Sin
�

MK

Sin
�

EK

= Sin
�

HL

R
, (28)

so

Sin
�

MK = Sin
�

EK · Sin
�

HL

R

= (59; 59, 58, 14) · (44; 38, 29, 48)

R
= 44; 38, 28, 29, (29)

which gives
�

MK = 48; 4, 30, 12. But
�

MK is the supplement of the incidental anomaly,

so a = 180◦ −
�

MK is known. Finally,
�

BK = 90◦ −
�

MK = 41; 55, 29, 48.
Before returning to more familiar Ptolemaic ground, al-Kāsh̄ı must determine the

amount by which the incidental circle is inclined to the epicyclic equator, i.e.,
�

GM .
Apply R4Q to BLHMK:

Sin
�

HM

R
= Sin

�

KL

Sin
�

BK

, (30)

so

Sin
�

HM = R · Sin
�

KL

Sin
�

BK

= R · 0; 14, 36, 18

40; 5, 21, 48
= 0; 21, 51, 31. (31)

Hence
�

HM , the amount by which the incidental circle is inclined to the circle of devia-

tion, is 0; 20, 52, 25. From (23) above we know that
�

GH = j = 3; 29, 9, 33; therefore
�

GM , the southward inclination of the perigee of the incidental circle from the epicyclic

equator, is
�

GH −
�

HM = 3; 8, 17, 8.
The remaining calculations take place on Fig. 8 (f. 108r). In this figure, as we said

above, A is the Earth, DHEZ is the epicycle,28 T is Venus, Y is the projection of T onto
the first diameter of the epicycle, and B and L are projections of Y and T respectively
onto the parecliptic plane. GT , the radius of the epicycle, is taken to be Ptolemy’s value
43;10.

The immediate goal is to determine � BAY , the latitude of the projection of Venus
onto the first diameter of the epicycle. Note that a = � DGT = 180◦ − � T GY . So,
from �GYT ,

T Y = GT · Sin a

R
= (43; 10) · (44; 38, 28, 29)

R
= 32; 7, 0, 50 (32)

and

28 i.e., the incidental circle of the epicyclic sphere. See also note 22.
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GY = GT · Cos a

R
= (43; 10) · (40; 5, 21, 48)

R
= 28; 50, 31, 31. (33)

Let K be the projection of Y onto AG . Then � YGK , the tilt of the epicycle to the south,
is 3;8,17,8 (as determined above). Therefore, in �YGK ,

YK = GY · Sin � YGK

R
= (28; 50, 31, 31) · (3; 17, 4, 26)

R
= 1; 34, 43, 129 (34)

and

GK = GY · Cos� YGK

R
= (28; 50, 31, 31) · (59; 54, 36, 6)

R
= 28; 47, 55, 50. (35)

From (20) we know that AG, the distance from the Earth to the center of the epicycle,
is 60; 5, 5, 7. Therefore AK = AG − GK = 31; 17, 8, 17;30 thus

AY 2 = AK2 + YK2

= 16, 18; 47, 27, 16, 46, 36, 49 + 2; 29, 31, 17, 58, 26, 1

= 16, 21; 16, 58, 34, 45, 2, 50, (36)

and so AY = 31; 19, 31, 36. Hence

� YAK = arcSin(YK/AY) = arcSin(3; 1, 25, 7) = 2; 53, 18, 55 (37)

in the southerly direction. Now from (22) � GAB = β1, the latitude of the epicycle’s
center, is 0; 0, 4, 47 in a northerly direction. Therefore the latitude of the projection
of Venus onto the first diameter of the epicycle is � BAY(= � YAK − � GAB) =
2; 53, 14, 8 to the south.31

Next we must determine AL and BL, from which the equation of anomaly may be
found. Since �BAY is right,

BY = AY · Sin � BAY

R
= (31; 19, 31, 36) · (3; 1, 20, 6)

R
= 1; 34, 40, 24. (38)

Therefore

AB2 = AY 2 − BY 2

= 16, 21; 16, 58, 34, 45, 2, 50 − 2; 29, 23, 2, 24, 9, 36

= 16, 18; 47, 35, 32, 20, 53, 14. (39)

29 The correct value is 1;34, 44,1, but the calculations after this confirm that al-Kāsh̄ı uses
1;34, 43,1. All three manuscripts have a 10 instead of a 1 in the last digit.

30 The correct value is 31;17, 9,17, but all three manuscripts and the following calculations
support the use of 31;17, 8,17.

31 The India Office manuscript gives the last two places of this number as 18,55, presumably
copied accidentally from the value for � YAK in the preceding line. The other two manuscripts
have the correct value.
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And since BL(= T Y ) = 32; 7, 0, 50,

AL2 = AB2 + BL2

= 16, 18; 47, 35, 32, 20, 53, 14 + 17, 11; 29, 42, 31, 40, 41, 40

= 33, 30; 17, 18, 4, 1, 34, 54, (40)

so AL = 44; 50, 10, 28. Hence

Sin p = R · BL

AL
= 42; 58, 44, 10 (41)

where p = � BAL is the equation of anomaly, and so p = 45; 45, 4, 2.32

For the final computation of the longitude al-Kāsh̄ı revisits the true centrum c =
84; 52, 32, 36, deeming it necessary to correct its value very slightly to account for the
inclination of the deferent. From

Sin ĉ = R · Sin c

Cos β1
= R · 59; 45, 36, 41

59; 59, 59, 59, 56
= 59; 45, 36, 41, (42)

he arrives at ĉ = 84; 52, 32, 36, 43,33 which he rounds up to 84;52,32,37. Al-Kāsh̄ı is
certainly pressing a point in accounting for the difference between c and ĉ, especially
considering that his values for Sin ĉ and Sin c are identical! Finally, the longitude of
Venus is

λ = ĉ + p + λA = 210; 52, 42, 41, (43)

where λA = 80; 15, 6 is the longitude of the apogee.
The final latitude computation proceeds as follows:

AT 2 = AL2 + T L2 = AL2 + BY 2

= 33, 32; 46, 41, 6, 25, 44, (44)

so the distance from the Earth to Venus is AT = 44; 51, 50, 23. Therefore

Sin β = R · T L

AT
= 2; 6, 36, 50, (45)

and β = 2; 0, 55, 56 in the southerly direction.

32 Al-Kāsh̄ı could have avoided calculating AL by using BL, AB, and an arctangent to calculate
p, but chose not to. Perhaps he trusted using an arcsine more than an arctangent for accuracy, or
he wished to stay close to Almagest procedures (with only a chord table, Ptolemy had not been
able to use the equivalent of an arctangent).

33 The value Sin(84; 52, 32, 36) = 59; 45, 36, 41 is obtained by linear interpolation from al-
Kāsh̄ı’s sine table earlier in the z̄ıj. The arc Sine appears to have been generated by the reverse
process and some creative rounding.
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Al-Kāsh̄ı concludes by remarking that he is the first person ever to compute lon-
gitudes and latitudes by this method. Although his longitude calculations are hardly
distinct from standard Ptolemaic methods, his latitude calculations are entirely unique,
and are easily the most precise mathematical approach designed within the Ptolemaic
system of planetary astronomy.
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Appendix: Translation of the geometric description of the model

by Sergei Tourkin, Institute of Oriental Studies, St. Petersburg, Russian Academy of
Sciences

[f. 105v:16] The inferior planets
Several introductory statements need to be explained. We say that [there is] a great

circle in the sphere of the epicycle that passes through the apparent apogee and perigee
and [through] the two sides of the diameter that is parallel to the parecliptic plane if
the epicycle center is not in the parecliptic plane, except when that diameter is in the
parecliptic plane. That diameter will be perpendicular to the plane of the latitude circle
of the epicycle center. We call this the circle of deviation of the epicycle, and that [circle]
is always perpendicular to the plane of the circle of latitude of the center of the epicycle.
And when the center of the epicycle is in the middle between the two nodes, then this
circle will coincide with a plane that passes through the center of the universe and the
epicycle center, and which will be at right angles to the plane of the latitude circle of the
epicycle center. Otherwise, two points (mawdi‘) will deviate from that plane. The axis
of this motion will be a diameter that is perpendicular to the plane of the latitude circle
of the epicycle center and parallel to the ecliptic plane, because the apparent apogee and
perigee are always [f. 106r] in the plane of the latitude circle of the epicycle center. Then
if there was no slant movement, the plane of the circle of the epicycle would always be
in the plane of this circle, as it is in the case of the superior planets. However, in the case
of the inferior planets, a diameter which passes through the two mean distances slants
(munharif mishavad) from the diameter that is parallel to the parecliptic plane and that is
perpendicular to the latitude [circle] of the epicycle center. And we call the [great] circle
that passes through the two sides of this diameter and through the apparent apogee and
perigee the circle of slant. The plane of the circle of the epicycle is in the plane of this
circle and when the epicycle center is in one of the two nodes the plane of this circle will
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coincide with the plane of the circle of deviation of the epicycle. Otherwise, two points
(mawdi‘) would slant from that plane, and the axis of this motion is a diameter that
passes through the apparent apogee and perigee. Otherwise [when the epicycle center
is at a node], the two nodes and the two extreme points of the circle of deviation of the
epicycle would intersect with the plane that passes through the center of the universe and
the epicycle center and that is perpendicular to the [latitude] circle of the epicycle center
at the epicycle center. And the common section between the two will be the diameter of
the epicycle that is parallel to the ecliptic plane and perpendicular to the above-mentioned
plane of the latitude [circle]. And the circle of slant, or rather, the circle of the epicycle,
intersects the plane of the circle of deviation of the epicycle at the epicycle center, and
the common section is a diameter that passes through the apogee and perigee. And the
extreme of both deviation and slant, according to the new/recent observations and the
opinion of the recent scholars, has been found to be 3;30 for Venus and 7;0 for Mercury,
as we have mentioned before. Then by the sine theorem and according to the motions
which have been proved, the ratio of the largest sine to the sine of both the extreme of
the deviation and the extreme of the slant is equal to the ratio of both the sine of the
adjusted center and its cosine at all times, to both the sine of the deviation and the sine of
the slant at that time respectively. Then both the deviation and the slant become known
at each time. If we imagine a [great] circle that passes through the planet and through the
two sides of the diameter that is perpendicular to the plane of the circle of latitude of the
epicycle center, that is, the axis of the motion of the deviation, we call it the incidental
circle of the epicycle. This circle intersects the plane that passes through the center of the
universe and through the epicycle center, and is perpendicular to the plane of the circle
of latitude of the epicycle center.34 The common section between these two is the same
common section between the circle of deviation and the above-mentioned plane, that is,
the diameter that is perpendicular to the plane of the circle of latitude of the epicycle
center. And this circle is always also perpendicular to the above-mentioned latitudinal
plane. Then we can know the deviation of this circle from the above-mentioned plane,
that is, the angle of intersection of the diameter of this circle that is the common section
between the plane of this circle and the above-mentioned latitudinal plane, and the line
that passes through the center of the universe and the epicycle center. And we [f. 106v]
call it the deviation of the incidental circle. And likewise, we can know the arc of this
circle that is located between the planet and its intersection with the above-mentioned
latitude circle on the further side. And we call it the incidental anomaly. [f. 106v:2]
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of the Sun and Moon in Longitude, Isis 41 (1950), 180–183.

Kennedy, E. S. An Islamic Computer for Planetary Latitudes, Journal of the American Oriental
Society 71 (1951), 13–21.
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