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Introduction

The planetary models of ancient Indian mathematical astronomy are described in
several texts.1 These texts invariably give algorithms for computing mean and true lon-
gitudes of the planets, but are completely devoid of any material that would inform us of
the origin of the models. One way to approach the problem is to compare the predictions
of the Indian models with the predictions from other models that do have, at least in
part, a known historical background. Since the Indian models compute true longitudes
by adding corrections to mean longitudes, the obvious choices for these latter models
are those from the Greco-Roman world. In order to investigate if there is any connec-
tion between Greek and Indian models, we should therefore focus on the oldest Indian
texts that contain fully described, and therefore securely computable, models. We shall
see that the mathematical basis of the Indian models is the equant model found in the
Almagest, and furthermore, that analysis of the level of development of Indian astron-
omy contemporary to their planetary schemes strongly suggests, but does not rigorously
prove, that the planetary bisected equant model is pre-Ptolemaic.

The Indian models

The earliest fully described Indian planetary models are two sets from the writer
Aryabhata, both of which probably date from the early 6th century A.D. One model,
called the sunrise system after its epoch date of sunrise on 18 February –3101, is con-
ventionally attributed to a line of development called the Aryapaksa, and first appears
in Aryabhata’s Aryabhatiya, although our complete understanding of the model is not
established until the commentaries of Bhaskara, which date from about 628.2 The second,
called the midnight system after its epoch date of midnight on 17/18 February –3101, is

1 D. Pingree, “History of Mathematical astronomy in India‘’, Dictionary of Scientific Biog-
raphy, 15 (1978), 533–633.

2 K. S. Shukla, Aryabhatiya of Aryabhata (1976); K. S. Shukla, Mahabhaskariya of Bhaskara
I (1960).
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564 D. Duke

conventionally attributed to a line of development called the Ardharatrikapaksa, and first
appears for us in Latadeva’s Suryasiddhanta included in Varahamahira’s Pancasiddhan-
tika, which appeared in the second half of the 6th century, and then later in more detail
in Brahmagupta’s commentary of 665.3 Both systems set their local meridian to Lanka,
longitude about 76◦ east, latitude 0◦.

For the five planets, the models recognize both the zodiacal and solar anomalies.
The zodiacal, or manda, correction is computed using

q(α) = sin−1(−2e sin α).

Here α = λ̄P − λA, λ̄P is the mean longitude of the planet, λA is the longitude of the
apogee, and the anomaly scale is given as 2e in anticipation of the equant. The solar, or
sighra, correction is computed from

p(γ ) = tan−1
(

r sin γ

1 + r cos γ

)
,

where r gives the scale of the correction, and γ is the argument of the sighra anomaly.
For the outer planets, the Indian models specify directly the mean motions in sidereal
longitude of the planet, and like the Greek models, the longitude of the epicycle radius
with respect to Aries 0◦ is the mean longitude of the Sun. Thus if λ̄P is the mean longi-
tude of the planet and λ̄S is the mean longitude of the sun, then for an outer planet the
sighra argument is

γ = λ̄S − λ̄P .

For the inner planets, the sighra argument uses not the mean longitude of the planet,
which would be just the mean longitude of the Sun, but instead the absolute longitude
λ′

P of the sighra epicycle radius,4 so we have

γ = λ′
P − λ̄S,

while the manda argument is given by

α = λ̄S − λA.

The sunrise system has an additional feature, pulsating correction scales 2e and r, but
for the purposes of this paper these pulsations are irrelevant.

3 O. Neugebauer and D. Pingree, The Pancasiddhantika of Varahamihira (2 vols, Copenhagen,
1970–71); B. Chatterjee, The Khandakhadyaka of Brahmagupta (1972).

4 Thus for both outer and inner planets, the mean motion given is the heliocentric mean motion
of the planet. There is no textual evidence that the Indians knew anything about this, and there is an
overwhelming amount of textual evidence confirming their geocentric point of view. Some com-
mentators, most notably van der Waerden, have however argued in favor of an underlying ancient
Greek heliocentric basis, of which the Indians were unaware. See, e.g. B. L. van der Waerden,
“The heliocentric system in greek, persian, and indian astronomy”, in From deferent to equant: a
volume of studies in the history of science in the ancient and medieval near east in honor of E. S.
Kennedy, Annals of the new york academy of sciences, 500 (1987), 525–546. More recently this
idea is developed in about as much detail as the scant evidence allows in L. Russo, The Forgotten
Revolution (2004).
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The algorithm for combining the manda and sighra corrections to compute the true
longitude is a bit intricate, and slightly different in the two systems. In the following, for
an outer planet let M = λ̄ and S = λ̄S , while for an inner planet M = λ̄S and S = λ′

P .
In the midnight system, the steps in the algorithm are:

(1) with sighra argument γ = S − M and longitude of apogee λA compute ν1 =
λA − 1

2p(γ ).
(2) with manda argument α = M − ν1 compute ν2 = ν1 − 1

2q(α).
(3) with manda argument α = M − ν2 compute ν3 = M + q(α).
(4) with sighra argument γ = S − ν3 compute the true longitude λ = ν3 + p(γ ).

Notice that in the first two steps the corrections are scaled by a factor 1/2 and are applied
with opposite their usual signs.

In the sunrise system, for an outer planet:

(1) with manda argument α = M − λA compute ν1 = M + 1
2q(α).

(2) with sighra argument γ = S − ν1 compute ν2 = ν1 + 1
2p(γ ).

(3) with manda argument α = ν2 − λA compute ν3 = M + q(α).
(4) with sighra argument γ = S − ν3 compute the true longitude λ = ν3 + p(γ ).

For an inner planet one omits the initial manda correction, and the algorithm is:

(1) with sighra argument γ = S − M compute ν1 = λA − 1
2p (γ ).

(2) with manda argument α = ν1 − λA compute ν2 = M + q(α).
(3) with sighra argument γ = S − ν2 compute the true longitude λ = ν2 + p(γ ).

It is clear that while the sunrise and moonrise models are not mathematically equiv-
alent, they are nevertheless closely related. Indeed, Aryabhata appears to have drawn
heavily on sources from an even earlier school, the Brahmapaksa, first documented for
us in the very imperfectly preserved Paitamahasiddhanta,5 believed to originate no ear-
lier than the 5th century A. D., and later, although likely with significant changes to the
models, in Brahmagupta’s Brahmasphutasiddanta, which was written in 628.

The numerical values of the parameters assigned to the scales of the manda and sighra
corrections make it clear that they are analogous to the eccentric and epicycle corrections
found in Greek models. For example, for Jupiter the Almagest gives 2e = 5;30 and r =
11;30, while the midnight system gives 2e = 5;20 and r = 12 (in conventional units with
R = 60). Indeed, since the very earliest investigation of the Indian models by Western
scholars it has been presumed that the models are somehow related to a double epicycle
system, with one epicycle accounting for the zodiacal anomaly, and the other accounting
for the solar anomaly (retrograde motion).6 This perception was no doubt reinforced by
the tendency of some Indian texts to associate the manda and sighra corrections with an
even older Indian tradition of some sort of forceful cords of air tugging at the planet and
causing it to move along a concentric deferent.

5 D. Pingree, “The Paitamahasiddhanta of the Visnudharmottapurana”, Brahmavidya, xxxi–
xxxii (1967–68), 472–510.

6 E. Burgess and W. D. Whitney, “Translation of the Surya Siddhanta”, Journal of the
American Oriental Society, (1858) 141–498.
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Since our goal in this paper is to investigate the nature of any connection with ancient
Greek planetary models, it is only important to accept that the models appear in Indian
texts that clearly pre-date any possible Islamic influences, which could, at least in princi-
ple, have introduced astronomical elements that Islamic astronomers might have derived
from Greek sources.

Comparison of Indian and Greek planetary models

In 1956 Neugebauer presented schematic arguments supporting the idea that the
multi-step Indian algorithms were approximating an underlying Greek geometrical
model, which he thought was an eccentre plus epicycle model.7 In 1961 van der Waerden
showed, on the basis of the first few terms in power series expansions in e/R and r/R, that
the equant model and a model very similar to the sunrise model (the difference being
that the order of the first two steps is interchanged) are closely related, and in particular
that the factor of 1/2 used in the initial steps of the Indian models is directly related to the
bisection of the equant.8 However, van der Waerden published no numerical comparisons
of the Indian models and the bisected equant, and so it was perhaps not entirely clear
whether or not his conclusion was solid. Regardless of the reasons, van der Waerden’s
result appears to have been systematically ignored in the principal Indian9 and western
literature.10 Indeed, apart from a few references in van der Waerden’s own later papers,
the only references to his paper that I can find are two papers which primarily mention
the paper’s existence,11,12 and a paper that usefully discusses van der Waerden’s power
series argument and points out, correctly, that it is not very accurate for Venus.13

7 O. Neugebauer, “The Transmission of planetary theories in ancient and medieval astron-
omy”, Scripta mathematica, 22 (1956), 165–192. Essentially the same argument was presented
again in O. Neugebauer and D. Pingree, ibid. (ref. 3).

8 B. L. van der Waerden, “Ausgleichspunkt, ‘methode der perser’, und indische planetenrech-
nung”, Archive for history of exact sciences, 1 (1961), 107–121.

9 see, e.g. appendix 7 of B. Chatterjee, ibid. (ref.1); S. N. Sen, “Epicyclic Eccentric Plane-
tary Theories in Ancient and Medieval Indian astronomy”, Indian Journal of History of Science, 9
(1974), 107–121; S. N. Sen, “Survey of studies in European languages”, Indian Journal of History
of Science, 20 (1985), 49–121; D. A. Somayaji, “The yuga system and the computation of mean
and true planetary longitudes”, Indian Journal of History of Science, 20 (1985), 145–187.

10 see, e.g., D. Pingree, “On the Greek Origin of the Indian Planetary Model Employing a Dou-
ble Epicycle”, Journal for the history of astronomy, ii (1971), 80–85; D. Pingree, “The Recovery
of Early Greek astronomy from India”, Journal for the history of astronomy, vii (1976), 109–123;
D. Pingree, ibid. (ref. 1).

11 R. Mercier, ‘Astronomical tables in the Twelfth century’, Adelard of Bath, an English Sci-
entist and Arabist of the early Twelfth century, ed. Charles Burnett, (London:Warburg Institute,
1987), 87–118, reproduced in: Studies on the Transmission of Medieval Mathematical Astronomy,
Raymond Mercier. Variorum Collected Studies Series CS787, Ashgate: Aldershot, Hants, 2004.

12 D. Rawlins, “Ancient heliocentrists, Ptolemy, and the equant”, American journal of physics,
55 (1987) 235–9.

13 H. Thurston, “Greek and Indian Planetary Longitudes”, Archive for History of Exact
Sciences, 44 (1992) 191–195.
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Fig. 1. The difference between the longitudes of Jupiter predicted by modern theory and those
predicted by the equant model (solid line) using the Almagest parameters and the sunrise model
(dotted line) using Aryabhata’s parameters

As mentioned earlier, the parameters for the Almagest and Indian models are closely
related but not identical, and if one compares the predictions of the Almagest model for,
say, Jupiter, with the predictions of the sunrise model, using the given parameters for
both, then as shown in Fig. 1 the Almagest model is a superior predictor of Jupiter’s
positions.14

Indeed, since the models are mathematically different, there is no reason to expect
that the optimum parameter values should be the same. However, if the apparent math-
ematical difference is only masking a deeper relationship, then the relevant question to
ask is how the models compare when using the same parameter values.

Figure 2 shows the differences between the longitude of Jupiter computed using
modern theory and the predictions of (a) the sunrise theory, (b) a Greek eccentre plus
epicycle theory, and (c) the Almagest equant, this time using the Almagest parameters
for each ancient theory.15

Figure 2 shows that the sunrise theory and the Almagest equant are, for the Alma-
gest parameters of Jupiter, effectively the same, and indeed, as shown in Fig. 3, the
maximum difference of the two theories never exceeds 0.042◦ (the midnight theory is
virtually identical with both and so is not shown).

For Saturn the agreement is even closer (see Fig. 4), but for Mars the agreement is
not as good, as shown in Fig. 5.

14 In this and the succeeding plots, the y-axis gives the difference in degrees of the planet’s
position computed from modern models and the position computed from an ancient model. Hence
the curve is, for all practical purposes, the error in the prediction of the ancient model.

15 For example, for Mars I use e = 12 for the eccentricity of the eccentre and 2e = 12 for the
total eccentricity of the bisected equant. Using the values that Ptolemy finds at the first iteration of
his equant solutions for the eccentricity of the eccentre, e.g. e = 13;07 for Mars, has no significant
effect on this discussion.
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Fig. 2. The difference between the longitudes of Jupiter predicted by modern theory and those
predicted by the equant model (open circles), the eccentre plus epicycle model (solid circles),
and the sunrise model (solid line), using the Almagest parameters for all three ancient models.
The equant and sunrise models are very nearly coincident in the figure, while the eccentre model
differs significantly from both

The close numerical agreement between the Almagest equant and the Indian models,
when evaluated using the exactly the same parameters, is quite striking,16 and obviously
requires an explanation.

The history of the equant

The first question to ask is why do the Almagest equant and the Indian models agree
so well? Since both models clearly attempt to explain both the zodiacal and solar anom-
alies in planetary motion, it seems extremely likely that both models were originally

16 The reader might also wonder about the pattern of errors of the sunrise and equant models
with respect to the true longitude of the planets. In the case of Jupiter the errors using the Almagest
parameters can be significantly reduced by (1) adjusting the mean longitude to remove the bias
in Ptolemy’s parameters due to the well-known fact that his tropical year is too long, and (2)
making a small adjustment to the period in longitude. These changes reduce the mean error to
essentially zero and reduce the r.m.s error by about a factor of 3, the residual error being due to
the fact that the equant combines the eccentricities of the Sun and Jupiter. For Mars the Almagest
parameters are already much nearer optimal, but when Mars is near the Earth the errors resulting
from combining the eccentricities are greatly magnified: see, e.g. J. R. Voelkel and O. Gingerich,
“Giovanni Antonio Magini’s “Keplerian” tables of 1614 and their implications for the reception of
Keplerian astronomy in the seventeenth century’, Journal for the history of astronomy, 32 (2001),
237–262. The fact that the equant and the sunrise theories agree poorly for Mars is, of course,
simple a result of the fact that r/R � 0.66, and the approximations used to derive the sunrise
model are not very accurate.
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Fig. 3. The difference between the equant and sunrise models using identical Almagest parameters
for Jupiter

Fig. 4. As in Fig. 2 except for Saturn

intending to solve the same astronomical problem. We can then usefully distinguish two
possibilities:

(1) the equant and the Indian models are versions of the same solution to the same
astronomical problem, or

(2) the equant and the Indian models are independent efforts to solve the same astro-
nomical problem.

The principal evidence suggesting that option (1) is the most plausible option is that,
as shown above, for small to moderate values of the parameters e/R and r/R the equant
and Indian models are numerically indistinguishable. Furthermore, it is shown in the
appendix that one can, by means of a sequence of well-defined approximations, in fact
analytically derive the sunrise theory from the equant. While the derivation presented
there is likely to differ from the method used originally, what is important is that it is
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Fig. 5. As in Fig. 2 except for Mars. Note that for Mars the sunrise model now differs noticeably
from the equant, but is an even poorer match to the eccentre

possible to establish a precise mathematical relationship between the two theories, and
that relationship allows us to understand exactly why the approximation is very close
for Jupiter and Saturn and not nearly so close for Mars. Also, it is clear from Figs. 2,
4, and 5 that the sunrise system is much closer to the equant than to the eccentre plus
epicycle model, thus establishing beyond any doubt that the Indian schemes are not
approximations to the eccentre plus epicycle model.

In addition, the derivation very strongly suggests that the sunrise model is derived
from the equant, and not, for example, invented by some sort of iterative tinkering, start-
ing from, say, an eccentre plus epicycle model and trying to create a tinkered version
that (a) decouples the anomalies for computational convenience, and (b) corrects its defi-
ciencies. The reason is that a theory arrived at by such tinkering need not be analytically
derivable starting from the equant, a property that is demonstrably true for the sunrise
theory.

Option (2) basically requires that some inventor first found a theory other than, and
independent of, the equant that explains the data, and then for computational conve-
nience derived what we now know as the Indian models as an approximation to this
alternate theory. It is easy for us to imagine candidate theories: perhaps some variant of
Kepler motion, or one of the approximations to the equant that respect uniform motion
invented by Islamic astronomers. What is difficult to establish is that any such theory is
historically plausible.

So compared to the consequences of option (2), it seems far more plausible to simply
assume option (1), that the equant and Indian models are versions of a single solution
to the same astronomical problem, and that it is furthermore very likely that of the two
models, the equant came first and the Indian models are an approximation to it. The dis-
cussion in the Appendix shows how the Indian models might have been derived, starting
from the equant, and while we can only admire the ingenuity of whoever did it first, we
can be sure of the motivation – trading numerical accuracy for ease of computation by
decoupling the zodiacal and solar anomalies. The same tradeoff is made in the Almagest,
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and the tabular interpolation scheme described by Ptolemy manages to maintain more
accuracy at the cost of significantly more bother in computation.

The crucial question now becomes, which came first – the Almagest, or some other
unknown Greek text that was the ultimate source of the Paitamahasiddhanta and hence
Aryabhata’s models? Unfortunately, our documented knowledge of Greek planetary the-
ory prior to Ptolemy is quite limited. We have Ptolemy’s remarks in Almagest 9.2 that
Hipparchus had shown that the planetary observations available to him were not consis-
tent with the models of the astronomers at that time, and Ptolemy’s further comment that
the planetary models developed in the post-Hipparchan years “. . .by means of eccentric
circles or by circles concentric with the ecliptic, and carrying epicycles, or even by com-
bining both. . ..for these representations have been employed by almost all those who
tried to exhibit the uniform circular motion by means of the so-called ‘Aeon–tables’,
but their attempts were faulty and at the same time lacked proofs; some of them did
not achieve their object at all, the others only to a limited extent”.17 Essentially the
only other primary source materials for planetary models are the remarks by Pliny and
those in PMich. 149, both of which indicate that models were developed that attempted
to explain both the zodiacal and solar anomalies, but do not make any recognizable
reference to the equant.18

This leaves trying to date the equant in astronomical history in terms of the other
elements of mathematical astronomy present in India at the same time as the equant.
The fact that no Indian text gives the slightest hint regarding the origin of their models
or the empirical basis of their model parameters is not helpful, but except for the Alma-
gest, the same is largely true of ancient western astronomical texts.19 Thus we must
take a more circumstantial approach, reasoning under the conventional Western view
that while the astronomy of the Indian texts is thought to be based largely on material
imported from Greco-Roman sources in the 2nd through 5th centuries,20 it is impossible

17 G. J. Toomer, Ptolemy’s Almagest (1984), 420-3. B. L. van der Waerden, ibid., ref (4), sug-
gests that these remarks of Ptolemy are referring explicitly to presumed Greek precursors of the
Indian schemes, but the argument seems tenuous, at best.

18 O. Neugebauer, A history of ancient mathematical astronomy, (1975), 781–833.
19 Even in the case of the Almagest, we know now that few if any of Ptolemy’s parameters

were derived as he describes. See J. P. Britton, Models and Precision: the quality of Ptolemy’s
observations and parameters, (Princeton, 1992), derived from his unpublished 1966Yale PhD the-
sis; C. Wilson, “The Inner Planets and the Keplerian revolution”, Centaurus, 17 (1972) 205–248;
R. R. Newton, The crime of Claudius Ptolemy, (Baltimore, 1977); N. M. Swerdlow, “Ptolemy’s
Theory of the Inferior Planets”, Journal for the history of astronomy, 20 (1989) 29–60; D. Duke,
“Ptolemy’s Treatment of the Outer Planets”, Archive for History of Exact Sciences, 59 (2005)
169–187.

20 The chief proponents of the western view are D. Pingree. ibid. ref. (10), and B. L. van der
Waerden, ibid. ref. (4) and ref. (8), although they differ in opinion on some of the details. The
view of many Indian scholars is that the Indian astronomy of the siddhantic period, including the
planetary schemes, was largely developed in India and was the culmination of many centuries
of pre-siddhantic astronomical investigation. For a survey of this view, see, e.g. S. Kak, “The
development of astronomy from Vedanga Jyotisa to Aryabhata”, in Science and Civilization in
India, Vol. 1, Part 2: Life, Thought and Culture in India, edited by G.C. Pande, (2001), 866–885,
and references therein.
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not to notice that all the sophisticated elements of mathematical astronomy included in
Ptolemy’s Almagest are completely missing in any known Indian astronomy until late
in the first millennium. Examples include

• The equation of time. Throughout the first millennium the Indians used an abbrevi-
ated version which includes only the effect of the zodiacal anomaly of the Sun, and
neglects the effect of the obliquity of the ecliptic.

• Obliquity of the ecliptic. When used in spherical trigonometry, the Indians use either
24◦ or 23; 40◦, both associated with Hipparchus, but never the Eratosthenes/ Almagest
value 23; 51, 20◦.

• The second lunar anomaly. The Indians did not discuss evection until the beginning
of the second millennium, and then in a form different from that used by Ptolemy.

• Accurate discussions of parallax. The Indians were aware of parallax and used it for
computing eclipses, but always used various approximations.

• Decoupling the anomalies. The scheme used by the Indians works well for moderate
eccentricities and epicycle sizes, such as those appropriate to Jupiter, but as we have
noticed it breaks down for larger values, such as those appropriate to Mars. Presum-
ably they would have used Ptolemy’s more accurate tabular interpolation scheme if
they had known about it.

• Trigonometry scales. The Indians used a variety of values for the radius of the refer-
ence circle, and mostly the value R = 3438 in the earliest texts. This is a value used
by Hipparchus but apparently abandoned by the time of Ptolemy.

• Retrograde motion. When mentioned at all in connection with the multi-step models
we are discussing, the Indians quoted specific values of the sighra anomaly that cor-
respond to first and second station. There is no mention of the variation in the size of
retrograde arcs with zodiacal position.

• Model of Mercury. Unlike Ptolemy, who used a complicated crank mechanism to
generate a pair of perigees for Mercury, the Indians used the same model for Mercury
and Venus, which is also often the same or closely related to the model used for the
outer planets. The basis of all of these models is the equant.

• Determination of orbit elements. While the bulk of the Almagest is devoted to explain-
ing how to determine orbit elements from empirical data, it is not at all obvious that
any comparable derivation is even possible in the context of the Indian approximation
schemes.

• Values of orbit elements. The values used in the Indian schemes for e, r, and A are
generally different from the values found in the Almagest. Except for Mercury, the
resulting Indian model predictions for true longitudes are generally inferior to those
in the Almagest.

• Star catalog. The Indian coordinates for star positions are generally inaccurate, and
bear no relation to those found in the Almagest star catalog.

• Zodiacal signs. The Indian texts routinely divide circles such as epicycles into 30◦
segments and refer to them in terms of the zodiacal signs. The only other known use
of this practice is in Hipparchus’ similar description of circles of constant latitude in
the Commentary to Aratus.

The list above is no doubt incomplete, but is already long enough to illustrate the
point that the astronomy surrounding the equant in India is generally far less developed
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than that found in the Almagest. This has led to an essentially universally accepted
(except among some Indian scholars, see ref. 20) view that the astronomy we find in the
Indian texts is pre-Ptolemaic.

How do we reconcile the appearance of planetary theories in India clearly derived
from the equant with this mass of circumstantial evidence? Once again we have two
principal options. Either

(1) the Greek source that introduced the approximation of the equant into India was
influenced by Ptolemy and the Almagest, or

(2) the Greek source pre-dates the Almagest, so there was no such influence, and hence
Ptolemy did not invent the equant.

The circumstantial evidence listed above strongly supports the long prevailing view
that the Greek sources that are the basis of the Indian texts are definitely pre-Ptolemaic,
and there is no compelling reason to overturn that conclusion based only upon the fact
that the equant must pre-date the Almagest. In this case, we have only to conclude that
Ptolemy did not invent the equant.

The simplest alternative would be that while all or most of Indian astronomy is based
on Greek sources that pre-date Ptolemy, somehow the planetary theory that got to India
was based on an approximation to Ptolemy’s equant that was developed after the publi-
cation of the Almagest. The more radical alternative is that the bulk of the Greek material
that reached India is post-Ptolemy.

In either case, however, there must be a significantly different relationship between
the Indian models and ancient Greek astronomy than the one universally accepted until
now.
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Appendix

It is interesting to consider how the Indian schemes might have been derived from
the bisected equant. The discussion below generally follows van der Waerden, but adds
a number of clarifying steps.21 Along the way we will need to quantify the degree of
agreement between the models at various stages of approximation. To this end imagine
a table of 46 rows and 46 columns. To each row corresponds a value of α = λ̄ − λA (in
degrees) from the sequence 0,6,12,. . .,84,90,93,96,. . .,180, and to each column corre-
sponds a value of γ̄ = λS − λ̄ from the same sequence. Then to compare two models A
and B we compute

(λ − λ̄)A − (λ − λ̄)B

21 B. L. van der Waerden, ibid. (ref. 8).
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Fig. 6. The geometry of the sequence of approximations used to derive the sunrise model from
the equant

for each cell in the table and as a figure of merit quote the ‘cpair’ (MAE, XAE), where
MAE and XAE are the mean and maximum of the absolute values of the table entries
(in degrees). For example, using 2e = 6/60 and r = 12/60 and comparing the equant and
the sunrise schemes, one finds the cpair (0.015, 0.042), while comparing an eccentric
model with the sunrise scheme gives (0.189, 0.745).

The task facing the ancient analyst was to efficiently compute the longitude of a
planet using the equant model. In Fig. 6, ED = DT = e, DC = 1, and CP = r. Given the
angles α and γ̄ , one strategy begins as follows:

(1) compute α1 = α + q1 = α − e sin α

(2) compute q � −2e sin α1

The value of q computed in step (2) is indeed an approximation, but comparing the
correctly computed equant with one using this strategy gives the cpair (0.003, 0.006),
thus no larger than the errors caused by the trig tables of the time.

The problem for the analyst occurs in the next step:

(3) compute p = tan−1
(

r sin γ
ρ(e,r)+r cos γ

)
(4) compute λ − λ̄ = q + p

In step (3), ρ(e,r) = TC is a function of both variables e and r, and that is the obstacle to
efficient computation of the equant.

One way to overcome that obstacle is to consider a point Z on the line CT (or its
extension) that is unit distance from point C. Then to first order in e we have
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CT = CZ + ZT = 1 + e cos α1 (A.1)

and we can now compute the angle p′ = CZP as a function only of r:

p′ = tan−1
(

r sin γ

1 + r cos γ

)
.

It remains to compute the angle δ = ZPT and use that to compute p = p′ −δ. It is clear
that δ will under all circumstances be a small angle, and we will incur no noticeable
error by approximating sin δ � δ. Then using the law of sines on triangle PZT we get

δ = e sin p′ cos α1

PT
� e sin p′ cos α1

1 + r cos γ
.

Comparing the correctly computed equant with the approximation

λ = λ̄ − 2e sin α1 + p′ − δ (A.2)

gives the cpair (0.008, 0.041), so this is indeed a very good approximation to the equant
that effectively decouples the two anomalies and enables efficient computation.

The sunrise scheme is, however, even easier to compute, and almost as good an
approximation, since its cpair is (0.015, 0.042). We can see the analytic connection by
evaluating the scheme as follows:

(1) compute α1 = α + −2e sin α
2 = α + q1

(2) compute µ2 = α1 + p(γ̄−q1)
2 = α1 + 1

2p1
(3) compute

µ3 = α − 2e sin(α1 + 1

2
p1)

= α − 2e sin α1 cos
p1

2
− 2e cos α1 sin

p1

2

� α − 2e sin α1 − e cos α1 sin p1

= α + q − δ′ (A.3)

(4) compute λ = λ̄ + q + p(γ̄ + 2e sin α1 + e cos α1 sin p1) − δ′.

In steps (2) and (4) we have, of course, the usual sighra convention, p(γ ) =
tan−1

(
r sin γ

1+r cos γ

)
, and in step (3) we have δ′ = δ(1 + r cos(γ̄ − q1)). To complete

the comparison, at least from our modern perspective, it is straightforward, if tedious,
to show that p′ − δ in equation (A.2) is a very good approximation to p − δ′ in equation
(A.3): their cpair is (0.010, 0.025).

If indeed an ancient analyst followed this path from the equant to the sunrise scheme,
then the important steps seem to be
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(1) the idea to divide the line CT into a unit line and a remainder of approximate length
e cos α1,

(2) realization and use of the fact that the angle δ = p − p′ is always small,
(3) realization that the term e cos α1 sin p1 can be combined with the term 2e sin α1 to

give 2e sin(α1 + p1
2 ), which is constructed in step (2) of the sunrise scheme.

The original derivation by the ancient analyst would no doubt have included a large
amount of trial and error, numerical checks of the approximations at the intermediate
steps, the geometric reasoning would probably have proceeded by decomposing all the
triangles into sums of right triangles, and our sines and cosines would be specific sides of
right triangles, but it seems plausible that an expert analyst – certainly one at the level of
Archimedes or Apollonius – could have constructed the sunrise scheme along the lines
suggested above.
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