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Abstract

The aim of this paper is to examine the work of Tschirnhaus, La Hire and Leib-
niz on the theory of caustics, a subject whose history is closely linked to geometrical
optics. The curves in question were examined by the most eminent mathematicians of
the 17th century such as Huygens, Barrow and Newton and were subsequently studied
analytically from the time of Tschirnhaus until the 19th century.

Leibniz was interested in caustics and the subject probably inspired him in his dis-
covery of the concept of envelopes of lines.

Résumé

Le but de cet papier est celui d’analyser l’oeuvre de Tschirnhaus, La Hire et Leibniz
sur la théorie de les caustiques, dont l’histoire est reliée a l’Optique géométrique. Cettes
courbes furent etudiés par les mathématiciens les plus éminent de le XVIIe siécle comme
Huygens, Barrow et Newton jusqu’a le XIXe siécle. Aussi Leibniz, interlocuteur habitué
de Tschirnhaus, s’occupe de cette théorie et probablement les caustiques lui inspirent le
méthode des enveloppes.

Sommario

In questo lavoro si prendono in esame i contributi di Tschirnhaus, La Hire e
Leibniz alla teoria delle caustiche, la cui storia è strettamente legata all’Ottica geo-
metrica. Considerate dai maggiori matematici del secolo XVI e XVII, come Huygens,
Barrow e Newton, le caustiche furono trattate analiticamente da Tschirnhaus in poi, fino
alla fine del secolo XIX. Leibniz venne probabilmente influenzato dallo studio delle
caustiche a introdurre il metodo dell’inviluppo di linee.

1. Introduction

The theory of caustic curves was studied by many outstanding mathematicians in the
17th century, such as Christiaan Huygens, Isaac Barrow and Isaac Newton, and has been
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continuously studied through the 19th century1. The history of these curves is closely
linked to geometrical optics. One of the most important questions in optics at that time
concerned focusing the sun’s rays in an attempt to control its effects: lighthouses, burning
mirrors, reverberatory furnaces, and so on2. These curves introduced many important
examples of envelopes into the history of mathematics, and the caustic of a circle (cata-
caustic) also became one of the first cases of rectificable curves, as Leibniz had tried to
demonstrate before presenting his Nova methodus in Acta eruditorum in 1684.3

In fact, when caustic curves were discovered, they were determined as the enve-
lope of the secondary light rays, either reflected (catacaustic) by a polished surface, or
refracted (diacaustic) by a given surface. The first geometrical applications of calculus
were in the rectification or the quadrature of each caustic. Furthermore, inverse prob-
lems were studied, such as reconstructing the shape (anticaustic) of a mirror by assigning
both the position of the light source and the caustic itself, and so on. All this was done
towards the end of the 17th century. As a consequence, the subject of caustics (deriving
from the Greek καιζω: to burn) became a matter of interest in all its aspects: exper-
imental, geometrical and algebraic, and the most eminent European mathematicians
dedicated themselves to its study.

Ehrenfried Walter Tschirnhaus (1651–1708) in 1682 published a paper on the cata-
caustic curve. Huygens (1629–1695) showed interest in the same subject in his Traité de
la lumiére, written in 1678, read to the Royal Academy of Sciences in the same year, and
published in 1690. Using his wave theory of light he was able to describe caustic curves
by means of the theory of involutes and evolutes, a theory which he had first presented in
1673 in his Horologium oscillatorium. He discovered that rays are always normal to the
wave front and that they are tangent to the caustic. In this way, he demonstrated that the
caustic is the evolute of the wave front. 4 In the reflection of a plane wave in a spherical
mirror, he found that the caustic was an epicycloid, but he did not determine the curve
for the equivalent case of refraction. He recalled that Barrow, in his Optical Lectures of
1669, which were devoted to the mathematical theory of image location, had determined
the points on this curve. As Jakob Bernoulli later pointed out, Barrow’s investigations
into image location, where oblique pencils of rays were concerned, became a funda-
mental principle in optical theory. Indeed, his image point was nothing other than the
tangent of the reflected or refracted ray to the caustic.

Even though a brief account of Tschirnhaus’s discovery was given by Kracht and
Kreyszig, it seems that the whole subject needs to be examined in more detail, in regard
to its mathematical aspects5. Tschirnhaus’s initial interest in such a question may have
arisen (as Montucla seems to have thought) from his experiments with large burning
mirrors, produced in one of his factories6. If this is the case, we are dealing with a

1 Matthes 1837. See also Shapiro 1990.
2 Tschirnhaus 1691, 519, where he states: “Quoniam ergo vitri hujus ope ... ignis excitatur

qui efficacia sua omnes alios nobis notos antecellit. [Due to this glass ... a fire burns with an
effectiveness that was previously unheard of].”

3 Gerhardt 1971, 493–96.
4 Shapiro 1990, 156–159.
5 Kracht and Kreyszig 1990, 20–22.
6 Montucla 1802, 387–390.
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Fig. 1. The generation of catacaustic C by a mirror reflecting light rays parallel to Oy

mathematical discovery arising from the observation of a physical phenomenon (an
optical one in this case).

It is our aim, therefore, to examine the way in which Tschirnhaus introduced the
concept of catacaustic, his initially erroneous construction of the curve, the subsequent
amendments he himself made, and those made by Johann Bernoulli and Philippe de
La Hire. The latter was one of the members of the Royal Academy of Sciences who,
with Jean Dominique Cassini and Edme Mariotte, was charged with examining Tschirn-
haus’s results. We will also examine Leibniz’s demonstration of the rectificability of the
catacaustic, which he attempted without the help of the newly discovered differential
form of calculus. Indeed, it was only in 1692 and 1694 that Leibniz presented in Acta
eruditorum his general method for calculating the envelopes of a family of curves7.

2. The equation of the catacaustic

It will be useful if we first determine the equation of the catacaustic in respect to a
given curve � in modern form. For the sake of brevity we will treat a pencil of parallel
light rays from an infinitely distant source whose direction will be assumed to be the
y-axis.

Let P be the point (Fig. 1) of the curve �, y = y(x), from which the incident ray i

is reflected into the ray r , and let t and n be the tangent and perpendicular to � at P .
The equation of the reflected ray r is:

Y − yP = tan δ · (X − xP ).

X and Y are the coordinates of any point of r whose slope is

tan δ = 1 − tan2 α

2 tan α
= y′2

P − 1

2y′
P

,

7 Leibniz 1990, 967–969.
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where y′
P = dyP /dxP = tan α. The equation of r thus becomes

2y′
P (Y − yP ) + (X − xP )(1 − y′2

P ) = 0. (1)

Since the catacaustic is the envelope of the reflected rays, its parametric equations can
be obtained by eliminating xP and yP between (1) and its derivative (2) with respect to
xP :

2y′′
P (Y − yP ) − 2y′′

P y′
P (X − xP ) = 1 + y′2

P . (2)

In this way one obtains

X = xP − y′
P

y′′
P

(3)

Y = yP + 1 − y′2
P

2y′′
P

, (4)

namely, the parametric equations of the envelope, where xP is the abscissa of the incident
ray, and yP , y′

P , y′′
P are known functions of xP .

From (3) and (4) one can see that, if the mirror, namely the curve of equation
yP = f (xP ) is given, one will immediately obtain the parametric equations of the
catacaustic. On the contrary, if the equations of the catacaustic are given, we can calcu-
late the shape of the mirror from ( 3) and (4), by integrating a nonlinear second order
differential equation for yP (xP ) (the inverse problem of the caustic).

As for the direct problem, if � is a circle of radius R, centered in the origin of
reference, one has xP = Rcosϕ, yP = Rsinϕ, and so:

y′
P = − 1

tan ϕ
and y′′

P = 1

R sin3 ϕ
, (5)

whence (3) and (4) become

X = R

4
(cos 3ϕ + 3 cos ϕ) (6)

Y = R

4
(sin 3ϕ + 3 sin ϕ) . (7)

To understand what (6) and (7) really mean, it is necessary to remember that if
a circle C (rolling curve) of center 	 and radius r , rolls without slipping on a second
fixed circle ( base curve) C′ of center A and radius (A + r), and if Q is any point of the
first circle, the locus of Q will have the parametric equations

X = (A + r) cos ϕ + r cos

(
A + r

r
ϕ

)
(8)

Y = (A + r) sin ϕ + r sin

(
A + r

r
ϕ

)
, (9)

namely, an epicycloid. In the special case A = R/2 and r = R/4, (6) and (7) will
coincide respectively with (8) and (9), and then the catacaustic of a circular mirror of
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radius R is a bicuspidate epicycloid (nephroid), produced by a peripheral point of the
circle of radius R/4 rolling without slipping on a fixed base-circle having radius R/2.
Its Cartesian equation can be obtained by squaring and adding (8) and ( 9):

X2 + Y 2 = R2

8
(5 + 3 cos ϕ cos 3ϕ + 3 sin ϕ sin 3ϕ)

and finally

[4 · (X2 + Y 2) − R2]3 = 27R4X2,

which is a sixth order curve. However, the curve calculated by Tschirnhaus was wrong,
as he had obtained the quartic:

Y = 1

2

[√
1 − X2 +

√
X − X2

]
.

If the reflecting mirror is the parabola y2
P = 2pxP , with 2p the latus rectum, we obtain

y′
P = p/yP , y′′

P = −p2/y3
P ,

and then (3) and (4) will give

X = 3xP (10)

Y = yP

(
3p2 − y2

P

)
2p2 . (11)

By substituting y2
P = 2pxP in the right hand side of (11) and by using (10), the cata-

caustic curve with respect to a parabolic reflecting mirror is easily found to be

54pY 2 = X · (9p − 2X)2,

or equivalently

Y = ± (9p − 2X)

√
X

54p
.

This is a double-branched curve (see Fig. 2) which was studied by Johann Bernoulli, by
the Marquis de l’Hospital and, after them, by Eugène-Charles Catalan in 18328.

It is called either a Catalan trisettrix or Tschirnhaus cubic.9

8 Of course, if the rays were parallel to Ox, no caustic would be the locus of the reflected rays
because these would degenerate in the focus of the given parabola.

9 Bernoulli 1742, 109–112, 471–472. L’Hospital 1696, 109–112. Teixeira 1971, 353–355.
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Fig. 2. Parabolic mirror reflecting rays parallel to Oy, and the relevant caustic

3. Tschirnhaus and catacaustic curves

The catacaustic of the spherical mirror appeared for the first time in Huygens’s
(1629–1695) Traité de la lumière.10 Tschirnhaus’s first paper describing the same curve
dates back to 1682, but the Traité had been finished in 1678, when the author read it at
the Royal Academy of Sciences. In his preface11 Huygens tells us:

I wrote this Treatise during my sojourn in France twelve years ago, and I communicated
it in the year 1678 to the learned persons who then composed the Royal Academy of
Science, to the membership of which the King had done me the honour of calling me.
Several of that body who are still alive will remember having been present when I read it,
and above the rest those amongst them who applied themselves particularly to the study of
Mathematics; of whom I cannot cite more than the celebrated gentlemen Cassini, Römer,
and de la Hire. And although I have since corrected and changed some parts, the copies
which I had made of it at that time may serve for proof that I have yet added nothing to it
save some conjectures touching the formation of Iceland Crystal, and a novel observation
on the refraction of Rock Crystal.

The drawing of the catacaustic (Fig. 3) can be seen on the last page of his Traité,
and its determination is explained by his wave fronts:

The curve AFE can be seen in smoke, or in flying dust, when a concave mirror is held
opposite the sun. And it should be known that it is none other than that curve which is
described by the point E on the circumference of the circle EB, when that circle is made
to roll within another whose semi-diameter is ED and whose center is D. So that it is a
kind of Cycloid, of which, however, the points can be found geometrically. Its length is
exactly equal to 3

4 of the diameter of the sphere, as can be found and demonstrated by
means of these waves, nearly in the same way as the mensuration of the preceding curve;

10 Shapiro 1973, 263–265.
11 Huygens 1962, page V.
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Fig. 3. Following Huygens, Treatise, p. 127

though it may also be demonstrated in other ways, which I omit as outside the subject.
The area AOBEFA, comprised between the arc of the quarter-circle, the straight line BE,
and the curve EFA, is equal to the fourth part of the quadrant DAB. 12

When Huygens read his Traité publicly at the Academy on May 13, 1678, Tschirn-
haus was travelling in Italy, where he received – we do not know how or when – news
about the Traité.13 In a letter14 to Leibniz, on April 7, 1681, in which Tschirnhaus wrote
about his discovery of the catacaustic of a circle, he asked Leibniz if someone had already
discovered a solution to the problem, perhaps Huygens, whose Dioptrica15 he believed
had appeared not long before: “I wish to know if such things have been discovered by
some mathematician, in particular by Mr. Huygens, whose Dioptrica now happens to be
brought to light.” Whatever the case, it would appear that the catacaustic of a circle was
discovered by Tschirnhaus during his experiments with burning mirrors in his factory.
Moreover, Descartes also referred to it in his Géométrie when dealing with ovals.16

As already mentioned, the first published reference to catacaustics was in a note
outlining Tschirnhaus’s curriculum in Acta eruditorum of 1682, but Tschirnhaus had
dealt with the subject earlier, in a private letter on April 7, 1681 to Leibniz.17

12 Huygens 1962, 127–128.
13 An account of the fate of Huygens’s Traité is given by Shapiro 1973. The Traité attracted

considerable attention from his contemporaries, and it was published 11 years after his initial pre-
sentation in 1679. Philippe de La Hire, who had heard the original presentation wrote to Huygens
(on January 17, 1691) expressing his opinion that “... this part of your treatise seems to be a chef
d’oeuvre both in mathematics and physics...”.

14 Gerhardt 1971, 484.
15 During his life time Huygens’s Dioptrica remained in an unpublished manuscript. It was

bequeathed to the Leiden Library and published in 1703. Shapiro 1984, 408.
16 Adam and Tannery 1897–1913.
17 Tschirnhaus 1682, 364.
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Kracht and Kreyszig gave a short account of Tschirnhaus’s discovery,18 but a bet-
ter interpretation of the subject might be to consider the whole affair as an academic
dogfight between the supporters of Leibniz’s analytical techniques, such as Johann and
Jakob Bernoulli, l’Hospital, Varignon, chargé de la défense des infiniment petits19 and
their opponents.

In Acta eruditorum in 1682, Tschirnhaus reported his discovery of the catacaustic to
the Royal Academy of Sciences in Paris during his admittance speech to the Academy.20

He had, however, previously disclosed it in a letter to Leibniz, written in that strange
language, common in scientific correspondence, which was a mixture of German and
Latin:

I have discovered a new way of manufacturing large mirrors with little effort and more
impressive results than those at the Paris Library. I found that from a spherical surface,
carved in wood, it is possible to obtain glass surfaces of a round or plane shape, and of
such a size that they function as burning glasses. Thanks to my experiments on the subject,
I have succeeded in solving the following problem. If AEC (Fig. 4) is an arc of a circle and
the lines DE signify the sun’s rays and EF the reflected ones, the problem is to determine
the curve FRC resulting from the crossing of the reflected rays.

18 Kracht and Kreyszig 1990. We support Kracht and Kreyszig in rejecting the charge of pla-
giarism against Tschirnhaus raised by Uylenbroek in 1830, (quoted by the Authors). Uylenbroek
implied that Tschirnhaus obtained his results on catacaustics from Huygens, while in Paris, 1678.
This is patently impossible, since Tschirnhaus was travelling in Italy from 1677 to 1679.

19 In a letter to Johann Bernoulli, 6 August 1697, Varignon wrote: “M. le Marquis de l’Hospital
est encore à la campagne de sorte que je me trouve seul ici chargé de la défense des infiniment petits,
dont je sui vray martyr tant j’ay desja soutenat d’assauts pour eux contre certains mathématiciens
du vieux stile ... [The Marquis de l’Hospital stays in the country yet, and I have been left alone
in supporting the new calculus against all the attacks from the old fashioned mathematicians ...]”.
Among the old fashioned mathematicians (“anciens”) there was Michel Rolle, still remembered
for his theorem on derivable functions named after him (presented in his booklet Méthode pour
résoudre les égalités, 1691). He judged infinitesimal calculus to be “a stack of ingenious errors”.

20 Tschirnhaus 1682. Tschirnhaus was born at Kieslingswalde, near Görlitz in 1651, and stud-
ied mathematics, philosophy and medicine at Leiden University. After having taken part in some
military campaigns with the Dutch army, he started to travel around Europe in 1675, visiting
England, where he met, among others, Wallis, Collins, Papin, Boyle and Oldenburg, the secretary
of the Royal Society. Having been provided with some letters of introduction to Huygens and
Leibniz by Oldenburg [Kracht and Kreyszig 1990, 16–35], in the summer of that year he met
both in Paris and co-operated scientifically for more than one year with Leibniz, on algebraic
problems. Between 1677 and 1679 he travelled in Italy, visiting Rome and Milan. Returning to
Paris in 1682, he became a member of the Academy of Sciences and announced his discovery of
catacaustics. In 1687 he published Medicina mentis et corporis (2nd ed. 1695), a book similar
to Nicolas de Malebranche’s Recherche de la Vérité [Montucla 1802, 387–393]. Later in life he
retired to his estate, where he continued his studies and managed his glass factory, which produced
very large burning mirrors and porcelain, whose manufacturing process was kept secret till his
death in Dresden in 1708. See Montucla 1802, 387–393.
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Fig. 4. Following Gerhardt 1971, Fig. 108

In using the word “crossing”, Tschirnhaus did probably not realize that the caustic was
in reality an envelope: he conceived the caustic as a generalization of the focus, some-
thing similar to a locus obtained through the crossing of rays. Later he answered the
question that he himself had raised: “I discovered that this curve is a geometrical one,
as described by Descartes. And so, given the curve of the mirror, one will arrive at the
geometric curve FRC too”.

In the last part of the letter he mentioned a more important and general fact:

Furthermore, I have discovered another approach, much easier than Sluse’s, and it is
impossible to think of another which is easier than mine, consisting as it does of simply
drawing tangents to geometrical and mechanical curves.

This new method, together with the quadrature of algebraic curves, probably weakened
the friendship between Tschirnhaus and Leibniz. According to Kracht and Kreyszig,21

Leibniz, fearing that he would be overtaken in the field of tangent methods, decided
to publish his Nova Methodus in Acta eruditorum in 1684. This coolness can also be
inferred from ChristianWolff’s recollections.As a philosopher and mathematician,Wolff
was a professor at Halle and Marburg universities, and he had interviewed Tschirnhaus
in 1705, three years before Tschirnhaus’s death.22 We read:

For the Easter fair, 1705, I made a journey to Leipzig to speak to Mr.Tschirnhaus. We
discussed some passages from his “Medicina mentis” which I had had some trouble with,
adding how I had succeeded in explaining them. He was very happy about this, but when
I asked him about the nature and establishments of the axioms, he acknowledged that this
was indeed the heart of the matter. As I had eagerly attempted to learn calculus (that time
little known), I then asked him what I could do to improve myself. He did not give any
definite advice, but highlighted that he was basing his advice on some points from Bar-
row’s “Geometrical lectures”, even though this latter only gave a summary of the problem
rather than explain a suitable way of dealing with the method. He himself was planning to
explain the correct approach in a successive tome of his treatise, where the rules explained

21 Kracht and Kreyszig 1990, 16–17.
22 Gerhardt 1971, 422–23.
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Fig. 5. Following Acta eruditorum 1682, Table XIX, Fig. 1

in the first would be applied to mathematics. In a third volume the same rules would be
applied to physical aspects, a feat which would astonish everybody.

Before I left him, Tschirnhaus suggested some books for me to read to improve my
knowledge: the aforementioned Barrow, “Analysis” by Nieuwentijt and “Algebra” by
Ozanam.

Thus, Tschirnhaus, twenty years after the publication of Nova methodus by his friend
Leibniz and after all the discoveries made in the calculus, advised Wolff to study his trea-
tise and some old-fashioned authors such as Nieuwentijt and Ozanam, both opponents
of Leibniz. It should also be noted, however, that Tschirnhaus had also been an opponent
of the new Leibnizian calculus: “The introduction of this language of monstrous signs
was entirely needless and the methods in use before that time would have allowed, after
some improvement, all the problems of higher mathematics to be solved.”23

4. The report of 1682 and Johann Bernoulli’s amendment

Tschirnhaus’s report in Acta of 1682, was taken from a second letter to Leibniz on
May 27, 1682.24 Leibniz’s answer will be examined later. The main idea of the paper
is that the curve given by the crossing of the rays reflected from a concave surface and
struck by a pencil of parallel rays, is tangent to the reflected rays. The curve can easily
be drawn and rectified.

Let NB, OC, PD, ... be the rays reflected from a concave surface struck by the parallel
rays MW , NW , ...., and A , B, C, D , E, F , ... the vertices of the polygon (Fig. 5) having
infinitesimal sides like AB, BC, CD , DE, ...

23 Ibid., 422.
24 Ibid., 487–490.
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Fig. 6. Following Acta eruditorum 1682, Table XIX, Fig. II

If such distances MN , NO, OP , PQ , and so on, are deemed as infinitely small, the
polygon A , B, C, D, E, F, etc., will become a curved line, whose tangents will be the
reflected rays; and the point A will be the focus where the reflected rays will all burn
together inside the cavity.25

Subsequently Tschirnhaus describes the catacaustic more precisely as a line which
touches all the reflected rays, while in the quoted letter of the previous year he incorrectly
considered it as the crossing of the reflected ones. The caustic curve is one of the first
examples of an envelope of a family of curves, even if the general method for calculating
it would only be given in some papers by Leibniz that appeared in Acta eruditorum in
1692 and 1694.26

After having given this qualitative description of the curve, Tschirnhaus provided
a geometrical construction in the case of a spherical reflecting mirror (Fig. 6). Given a
quarter of a circle ACDE, he drew the half-circle AG with diameter AE, and then an
arbitrary straight-line FD, parallel to AC .

He asserted that one point of the caustic would have to be the middle point of DG

and that the burning point would fall a fortiori on the middle of AC, point B. As we
can see, this way of drawing caustics gave rise to the objections of many contemporary
mathematicians, but Tschirnhaus accepted them quite late.27

The problem attracted the attention of Johann Bernoulli, who corrected Tschirn-
haus’s mistake and calculated the principal caustics of mirrors. We do not know whether
this was done under Leibniz’s insistence or not, but, whatever the case, Johann Bernoulli
included28 all his relevant research in his Lectiones mathematicae de methodo integrali-
um of 1691–92 written for G. de l’Hospital. This is a peculiar treatise for many reasons.
First, only a very small part is devoted to integration: indeed in 1692 only rational alge-
braic functions were integrable. Second, the work is full of practical examples, and 11

25 Tschirnhaus 1682, 364.
26 Leibniz 1971, II: 166; III: 967–969.
27 Montucla 1802, 389.
28 Bernoulli 1692, 30.



234 G. Mingari Scarpello and A. Scimone

Fig. 7. Following Bernoulli, Lectio XXVII, Fig. 105

of the 57 lessons are devoted to caustics, a subject with no integration at all. The wealth
of practical applications would have made the book invaluable, had it been published
in 1692. However, it remained in manuscript for 50 years, and when it was finally pub-
lished, it was out of date. Johann’s work was, of course, immediately echoed by his
brother Jakob, who sent the Acta eruditorum three papers on the same subject. 29

Another eminent scholar in this field was the Marquis de l’Hospital, who, in June
1696, anonymously published his Analyse des infiniment petits pour l’intelligence des
lignes courbes. The success of this book, which was to become seminal in the diffusion of
the new calculus, roused Johann Bernoulli’s jealousy. According to Johann Bernoulli,30

Tschirnhaus extended the distinctive character of the caustic’s focus to points which fell
exactly in the middle of AC. Bernoulli argued that Tschirnhaus probably did not realize
that according to his geometrical construction (Fig. 7), every other point of the caustic
could be drawn by taking the semicircle AXB into account. Thus the middle of MX,
point T would be a point of the caustic too. But then, the lower caustic would be ET B,
which is clearly wrong: the right one is BF ′E′, symmetrical to BFE in respect to AB.
Furthermore, Bernoulli demonstrated that the correct caustic could not be drawn by ruler
and compass, because of the presence of irrationals with cubic roots: “and then these
two curves are not only different, but of an entirely different nature.”31

At the end of his paper Tschirnhaus took an arbitrary curve CFE as an example (Fig.
8), “either Geometrical, according to Mr. Descartes, or Mechanical, as the Cycloid, the
Quadratrix, and so on, or even a hand-sketched curve”, and he established that the curve

29 Bernoulli, Jakob 1692a, 1692b, 1693.
30 Bernoulli 1742, 469.
31 Ibid., 469.
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Fig. 8. Following Acta eruditorum 1682, Table XIX, Fig. III

BGE is formed both by rays emanating from the source and by their reflections, as can
be seen in Fig. 8. Finally, he concluded that the portion GE of the curve would be equal
to the sum of both the arc-lengths GF and FD. Therefore, the entire curve BGE would
equal the sum of the arc-lengths CA and AB. This, however, he did not demonstrate.

5. The papers of 1690

For the next eight years, while engaged in his Medicina mentis, Tschirnhaus did not
work on caustics, though he probably did receive several queries about the 1682 paper.
After publishing his Medicina mentis in 1687, however, he returned to the old subject
once more in 1690, publishing another, more compelling paper in the Acta eruditorum32:
“Since many people have asked me many questions about the method briefly exposed
in the Acta of November, 1682, I have decided, despite being very busy, to give a short
account of it.”

The main amendments were as follows:

1. Returning to the subject of 1682, Tschirnhaus describes, rather fleetingly, a general
method for calculating the caustic of any given plane curve. To achieve this aim, given
(Fig. 9) a curve ALM , lines BL, CM , ..., and an incident pencil of parallel light rays,
he calculated the curve AIK as the locus of crossing points of all the reflected rays such
as LF and MG.

Furthermore he evaluated the length of the reflected ray LI = p, considering the two
reflected ones, LB and MC, as being infinitely close to each other; if BL = y, BC = o,
NM = e, BD = b, CE = d , he argued that “using well known analytical procedures
we can neglect the upper powers of the infinitely small o and e quantities”. In this way
the relationship for p will be

p = oyy + 2dey − ddo in yy + bb

dy − by − be in − 2yy − 2ey − 2bd
,

32 Tschirnhaus 1690a, 68–73.
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Fig. 9. Following Methodus, p. 69, Fig. I

or, in modern notation

p =
(
oy2 + 2dey − d2o

) · (y2 + b2)

(dy − by − be) · (−2y2 − 2ey − 2bd)
.

It should be noted that Tschirnhaus calculated the length p of a segment of the reflected
ray. In this way he was able to construct the caustic point by point. This last formula
is obtained using his own method33 of tangents, stemming in some way from Barrow’s
infinitesimals. He did not explain it in any detail, but he did give an example34 where
the ratio o/e for a curve is obtained – rather than p as might be expected - which today
we would say is “implicitly” given by the equation:

y3 + axy − a3 − x2y − x3 − ax2 = 0.

Here, however, he made a mistake by obtaining:

o

e
= 3y2 + ax − x2

3x2 + 2ax − ay

where “+2xy” is missing from the denominator.
2. The author applied his formula when the (meridian) curve of the mirror is a

parabola, a hyperbola and (as in his previous paper) a circle.
When the equation of the parabola is 2rx = y2, where 2r is the latus rectum, the

subnormal will be a constant equal to half of the latus rectum, then d = b = r . Thus

p = oy4 + 2rey3 + 2r3ey − r4o

2rey2 + 2r3e
.

Dividing by e, and o/e = r/y, one gets

y

r
= 2rpy2 + 2pr3 − 2ry3 − 2r3y

y4 − r4 .

33 See the letter to Leibniz on April 7, 1681, footnote 14.
34 Tschirnhaus 1690a, 69–70.
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Fig. 10. Following Tschirnhaus Acta eruditorum, 1690, Fig. 2

Whence, by cross multiplying one obtains

p = y3 + r2y2

2r2 ,

which gives the length of the reflected ray as p, if y is the length of the light ray falling
on the parabola.

Tschirnhaus next described how the caustic of a parabolic mirror can be drawn
(Fig. 10):

Given the parabolic arc ALKR, let the straight line KO which is normal to the parabola
be extended until it meets N on MN, which is parallel to KE; if AE =AM, half of MP is
always equal to KG , which itself touches the curve AIGDS at G, and, with KO, makes the
angle GKO which is the same as OKE . The following consequences hold: 1) The curve
AIG will always equal the sum of the lengths of EK and KG, i. e., of the crossing and
reflected rays. 2) If B is the focus of the parabola, and BC is equal to one half of the latus
rectum, CI will be the maximum height of the curve, and in the same way will equal one
half of the latus rectum. 3) The curve AIGDS, as far as point D, where it is cut by the axis,
[has a length which] is triple CR, passing through the vertex of the curve as explained in
item 1.

When dealing with the equation of a hyperbola, 2rx + x2 = y2, in a similar way,
where the latus rectum is equal to the transverse axis, he found for p the value:

p = 2y3 + rry

2rr
.

3. For the caustic of a circular mirror, Tschirnhaus presented a drawing (Fig. 11)
which was different from that of 1682, and now correct. Based upon the general formula
of p, it showed that the reflected ray segment is equal to one half of the incident ray
segment enclosed in a quarter of the circle, namely, FE = 1

2EC, or p = y/2. We can
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Fig. 11. Following Methodus curvas p. 71, Fig. 3

neither exclude nor affirm that the author knew de la Hire’s work of 1730, which was cer-
tainly written some time after 1687, and in which Tschirnhaus’s erroneous explanation
of 1682 is corrected. Tschirnhaus wrote35:

As far as the circle is concerned, Mr. Bernoulli, a very proficient man in such studies
and well renowned for his researches, has recently highlighted that the curve, formed by
the reflected rays, seems to be of the sixth degree, while I deduced last time it should be
of the fourth one. [...] and here I am amending the mistake, offering a completely new
analytical approach not only for finding the curve, but also for its geometrical drawing,
which – on the contrary – is very difficult to obtain from the sixth degree equation with
all its implicitness.

Bernoulli’s observatio, however, would not appear in Acta eruditorum until two
years later (January 1692). Consequently, Tschirnhaus probably made the amendment
using his own methods.

Whatever the case, at the end of his paper, Tschirnhaus took the general Cartesian
equation of the conic sections:

y2 = rx + rx2 + rx2

q
,

and obtained for p:

p = 4qy3 ± 4ry3 + qr2y

2qr2 .

For the special case of the circle 2rx − x2 = y2 he obtained

p = 4y3 − 4y3 + r2y

2r2 ,

35 Ibid., 71.
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and then, since q + r = 0, p = y/2. Except for the parabolic mirror (and even here with
some obscure and ambiguous notation), Tschirnhaus did not obtain the caustic equation,
but, following both a synthetic and a Cartesian approach, he disregarded Leibnizian
calculus. In his paper one can find neither reference axes, nor coordinates. Furthermore,
it seems that he never mastered analytic geometry. His third paper,36 devoted to the
geometric properties of the circle’s catacaustic (an epicycloidal curve nowadays called
a nephroid) came out in the issue of Acta eruditorum of April 1690, almost immediately
after the second one, with the following motivation:

Nowadays several scholars carefully study the geometric curve called a “cycloid”: never-
theless, the first to show that such a curve describes 37 itself through its own evolution, was
the famous Christiaan Huygens, in his Horologium Oscillatorium. But this characteristic
is so peculiar that the supreme mathematician in the same book asks himself if – beyond
this curve – any other line could have the same property. As a consequence, I deemed
that scholars would not disregard my discovery of the same property in a curve belonging
to the family of the cycloid, but different from it, whose points can be determined geo-
metrically. This curve is generated by the sun’s rays which are reflected by a spherical
mirror. The drawing, which I explained in the last issue of Acta eruditorum in February,
established the theory of the curves formed by such rays. Even if its demonstration is a
bit longer than for other lines, the treatment I am going to give doesn’t require any special
knowledge of algebra from the reader, and I shall be thankful to all friends who compelled
me to issue it.

First of all, he showed (Fig. 12) that, if LN is a chord parallel to the rays, and if point
G belongs to the caustic EGB, then LG will be equal to one half of LP . As a first step
he showed that the arc-length HI is triple that of KL; as a second step those of GL and
IG are in the same ratio as KL to HI ; then, if OP approaches zero,38 LG and GH

will be in the same ratio, and their sum will be LN . LG will then be one-fourth of LN ,
and, as a consequence, one-half of LP . After this Tschirnhaus showed that, given the
caustic INF of the circle ALFD (Fig. 13), its evolute will be the caustic FPM of the
circle MGH , the new cuspidal axis being rotated by 90◦ to the old one.

After having recalled Newton’s investigations into the properties of the cycloid in
Principia,39 he showed that his caustic could be considered an epicycloid generated by
a circle rolling on another one, and with radii in the ratio of 2 : 1. Finally he stated 16

36 Tschirnhaus 1690b, 169–172.
37 Tschirnhaus refers to the fact that Huygens in the treatise of 1673 had shown that the evolute

of a cycloid is a cycloid too, which would be proven analytically by Euler in 1764.
38 The original text of this critical passage is: si concipiantur radii MK & NL indefinite parvo

intervallo distare [if the rays MK and NL are supposed to be distant from each other by an
indefinitely small interval].

39 In Book I, Sect. X, Newton quotes Huygens, and in connection with the acceleration caused
by gravity on the movement of the bodies, he analyzes the main properties of many cycloidal
curves, and evaluates the epicycloidal arclength. See also Book II, Sect. VI.
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Fig. 12. Following Curva Geometrica ..., Acta eruditorum, 1690, Fig. 1, p. 169

Fig. 13. Following Curva geometrica ..., Acta eruditorum, 1690, Fig. 2, p. 170

theorems: “so showing to the cultured reader the path for constructing very easy proofs,
all concerning epicycloid rectification and the value of several relevant areas.” 40 In
November 1691 this paper was followed by a further report41 describing some effects
of burning mirrors, but due to limitations of space we will not discuss it in this article.

40 Tschirnhaus 1690, 171–172.
41 Tschirnhaus 1691, 517–520.
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Fig. 14. Following La Hire, Examen Fig. 2, p. 450

6. La Hire’s counter-arguments

Some time after 1687, La Hire42 reviewed Tschirnhaus’s paper of 1682, but his
report was only to be printed posthumously in 1730. He referred to Tschirnhaus’s first
synthetic geometrical study, not only amending the procedure for drawing the curve, but
also adding some further results which he himself had calculated.

As far as the caustic of the circle was concerned, La Hire demonstrated six new the-
orems. The first one explained that if one draws the tangents (Fig. 14) at points D and G,
and if these tangents meet in I, the bisector of their angle DIG will touch Tschirnhaus’s
curve at the point H.43

The second theorem showed, after a long and convoluted explanation, that (Fig. 14)
IH is the trajectory of a ray reflected by a quarter of a circle, and that, even if IH touches
Tschirnhaus’s curve, point H cannot belong to the envelope of the reflected rays (i. e. ,
to the true reflecting curve) because the absurd situation would follow in which a certain
angle would be simultaneously smaller and greater than the double of another one. 44

As a consequence, Tschirnhaus’s way of drawing the catacaustic is wrong.
It is useful to compare the locus of midpoints H of the segments DG, when F is

moving on AE, with the curve obtained by Tschirnhaus. That curve is a quartic while
the true catacaustic is a sextic; but the curves, Fig. 15, both embedded between the
semicircles in the figure, are practically undistinguishable, and Tschirnhaus’s quartic
dominates, even if only slightly, the true catacaustic for x < 0, 2 only.

42 La Hire’s reputation in geometry is due to his treatises on conic sections issued in 1673,
1679, 1685, where, following his teacher Desargues, he studied the relationship between poles
and polars.

43 La Hire 1730, 451–453.
44 La Hire 1730, 456–457.
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Fig. 15. The true catacaustic (thick line) and Tschirnhaus’s quartic

La Hire asserted that the catacaustic met the segment DF belowH . Moreover, refer-
ring to a passage in Medicina mentis, he claimed that Tschirnhaus did not prove that the
catacaustic could be rectified: 45

There is nobody who can be in doubt that the curves generated by the crossing of the
reflected sun rays, when they are incident onto a curve, shall not be equal to straight-lines
no more than any kind of curve and the circle itself; but the difficulty is in proving that
this straight-line has a length equal to the curve in ratio with some other given straight
line, as well as we succeed in knowing the circumference of the circle in ratio with its
diameter.46

In the third theorem, he demonstrated how the points of the curve formed by the
reflected rays47 could be found: let ML be any ray (Fig. 16) incident on the quadrant
AEC, and MF reflected ray. Project the midpoint N of AM on MF : the point H will
be a point of the caustic.

Since MH = MI , the caustic of the circle can easily be drawn point by point, which
shows Tschirnhaus’s mistake.

La Hire’s fourth theorem proved that the catacaustic is an epicycloid generated by
a point of a circle such as NIMH of a given radius, which rolls without slipping on
another doubled-radius circle. Subsequently (Fig. 17) he put a quarter of the concentric
circle ABD, whose radius AD is equal to one half of the radius AE of the mirror, and
the circle NIMH , with diameter AD, in the quarter circle AEC. When the latter circle

45 This enables us to conclude that La Hire certainly wrote his tract after 1687.
46 La Hire 1730, 459: “Il n’y a personne qui puisse douter que les courbes formées par les

intersections des raı̈ons du Soleil reflechis lorsqu’ils tombent au dedans d’une courbe, ne soient
égales à des lignes droites, non plus que toute autre sorte de courbe & le cercle même; mais la
difficulté est de démontrer quelle est la grandeur de cette ligne droite égale à la courbe par rap-
porte à quelque ligne droite connuë & donnée, comme de connoı̂tre la circonference du cercle par
rapport à son diametre.”

47 Ibid., 461–468.



The Work of Tschirnhaus, La Hire and Leibniz 243

Fig. 16. Following La Hire, Examen, p. 462

Fig. 17. Following La Hire, Examen, p. 467

rolls on the circle ABD, point H which was initially E, will describe the epicycloid
EHB.

In the fifth theorem La Hire listed the main properties of this epicycloidal catacaus-
tic, showing that its arclength, HE, equalled the sum of the segments HM and ML,
emphasizing how Tschirnhaus had not shown this aspect. The rectification of the cata-
caustic of the circle is possible because in the special case studied by La Hire the point
of the rolling curve which generates the epicycloid is exactly at the same distance from
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Fig. 18. Following Gerhardt 1971, Fig. 108

the circular base as the radius of the rolling circle. It is well known, however, that in the
general case this requires (as for the cycloid) elliptic integrals.

Lastly, in the sixth theorem, La Hire showed that the points of the curve drawn
by Tschirnhaus differed significantly from those of the real catacaustic, because each
reflected ray always meets the real catacaustic before Tschirnhaus’s curve.

7. Leibniz’s contribution

As explained earlier, Tschirnhaus referred to the catacaustic in a letter to Leibniz on
April 7, 1681:

Let AEC (Fig. 18) be an arc of a round curve; let the sun’s parallel rays DE be reflected
through EF; we need to know the nature and form of the curve FRC as formed by the
reflected rays which cross each other. I detected that this curve could be a geometric one-in
the sense of Descartes- and even, given a mirror meridian geometric curve, its relevant
caustic is geometric too. I want to know if, till now, this has been obtained by some other
mathematician, especially by Mr. Huygens whose Dioptrics has been published recently.
I have discovered another approach which is easier than Sluse’s (and I don’t believe that
anyone could find another approach which is easier than mine) by which the tangents can
be drawn not only to the geometrical curves, but also to the mechanical ones.

Leibniz, in his answer to Tschirnhaus on May 13, did not display any clear idea
about how the caustic curve could be conceived physically.48

On May 27 Tschirnhaus replied to Leibniz, who had asked him about the contents of
the works presented to the Royal Academy of Sciences in Paris. First of all, he referred
to his discovery of the caustic of the circle, with the (wrong) curve drawn and rectified.
On the basis of this letter Tschirnhaus prepared a short paper which would be published
in the same year in Acta eruditorum. Subsequently, Leibniz realized that when a pencil

48 Gerhardt 1971, 485.



The Work of Tschirnhaus, La Hire and Leibniz 245

Fig. 19. Following Gerhardt 1971 IV, Fig. 115

of parallel rays hits a circle, the locus of the reflected rays is a curve,49 and he provided
Tschirnhaus with a (supposed) demonstration about how the caustic could be rectified.

We write “supposed”, because Leibniz’s demonstration seems to be spoiled by the
initial assumption that on each line segment (Fig. 19) C1L1, C2L2, ... , it is possible to
consider the points V1, V2,... , such that

A1C1 + C1V1 = A1Q

A2C2 + C2V2 = A2Q

................................

After this, he shows that points V1, V2, ..., must necessarily coincide with L1, L2, ... ,
because otherwise the simultaneous equations would be true:

C1G1 = C1V1 − C2V2C1G1 = C1L1 − C2L2

C2G2 = C2V2 − C3V3C2G2 = C2L2 − C3L3

..............................................................

This could happen if and only if points V1, V2, ... , coincide with L1, L2, ... .
It is possible that Tschirnhaus and/or Leibniz quickly recognized the mistake,

because this demonstration was not referred to again. It is surprising that Leibniz, a
much better mathematician than Tschirnhaus, did not find the real locus of the reflected
rays. However, Leibniz studied the false quartic (whose rectificability he believed to
have shown), and not the real one. As far as envelopes were concerned (even though

49 Ibid., 493.
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this word was to be used for the first time by G. Monge in his Application de l’analyse
à la géométrie, 1795), Leibniz had expressed50 his ideas in 168951 and 1692, though
only qualitatively. In 1694, however, his most important paper regarding the treatment
of envelopes using differentials appeared in Acta eruditorum.52

While being extremely cautious about the parameters, he gave the following exam-
ple: to determine a line touching an infinite number of others at a given position. He
took into account the bi-parametric family of circles having center Z(b, 0) (Fig. 20) and
radius c, whose equation is:

x2 + y2 + b2 = 2bx + c2. (12)

Later he defined a functional relationship (aequatio secundaria) between the radius c

and the abscissa b of Z: f (b, c) = 0; e.g., he assumed that f was a parabola with a

being the constant, c2 = ab.
At this point, the family of circles becomes single-parametric, so that knowing the

center, the radius c = √
ab can be found immediately. If b increases, the radius will

increase too (Fig. 21), and by replacing the value of c2 in equation (12), the (single-para-
metric) family of circles is obtained

x2 + y2 + b2 = 2bx + ab,

whose equation, derived with respect to b, gives:

b = x + a

2
,

which, when inserted in (12), gives:

50 At the end of his paper, Leibniz displayed his deep knowledge of the current state of the
art: “Ego inde longius progressus sum... lineas opticas inveniendas, quarum ope radii redderen-
tur ad datum punctum convergentes vel divergentes aut etiam inter se paralleli, quod alia etiam
ratione prestitere Newtonus in Principiis, Hugenius in libro De Lumine....Coeterum ab Hugenio
in tractato De Lumine et Tschirnhausio in Actis notatum est causticam illam a speculo concavo
sphaerico radios solares reflectente formatam simul esse cycloidalem, provolutione circuli super
circulo generatam. [From this point on, I made several improvements in the detection of optical
lines causing the light rays to converge in, or diverge from, a fixed point, or to keep parallel paths.
All this was investigated by Newton in Principia and by Huygens in his treatise De lumine...
Moreover, it was indicated by Huygens in De Lumine and by Tschirnhaus in Acta eruditorum that
a spherical concave mirror will produce a cycloidal caustic, namely, the same curve that results
when a circle rolls on a fixed one].”

51 Leibniz wrote: “Lineas illas opticas Cartesius habuit sed celavit. Eas postea ab Hugenio,
(sed qui nondum edidit) et nunc a Newtono inventas intelligo. Etiam mihi, sed per diversam viam
innotuere. Et habebam quidem methodos generales dudum, sed proprias perelegantes eruendi
occasionem dedit egregium inventum D.ni Tschirnhausii nostri in Actis publicatum qui integ-
ras lineas tanquam focos considerat. [Those optical lines were well known by Descartes, but he
concealed them. After him, they have been found by Huygens and Newton, as I see. They were
known to me too, even if through a different path. I had very good methods for drawing them, and
the remarkable discovery of Tschirnhaus, who in Acta deals with such lines as foci, gave me the
opportunity of knowing his very smart researchs ].”

52 Leibniz 1694, 311.
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Fig. 20. A circle of the bi-parametric family

Fig. 21. Leibniz’s example: the parabolic envelope of a family of circles

y2 = ax + a2

4

which is the equation of the sought curve, namely a parabola as in Fig. 21.
Leibniz did not give any explanation of the preceding, though he was conscious of

its importance:“But this method is especially suitable for dealing with problems of pure
or applied geometry, and questions of mechanics or physics.”
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He ended his paper with the claim53 that:

Thus, in my theoretical treatment of the optical lines, I have discovered an approach that
showed that lines are capable of making the rays either convergent, divergent or parallel
if they are given by a law, or if they come from a mirror of a certain shape. In such a
way, if the rays are required to converge, a special line is formed by the aggregation of
the ellipses; the same rule applies if they are parallel or divergent.

Leibniz left some points obscure, but no doubt he understood the relationship between
catacaustics and envelopes.

8. Conclusions

The subject of caustics appeared on the mathematical scene with Huygens, but it
was Tschirnhaus, an “amateur” in the world of academics, who highlighted its impor-
tance. His ideas were based on his own experiments and on vague theories gleaned from
writings by Descartes and Huygens, while Leibniz, who worked alongside him, seemed
more interested in the implications that the subject might have for tangents and never
really analyzed the matter deeply enough.

La Hire was the last of the old-school mathematicians. He was an opponent of Vari-
gnon and de l’Hospital, but it is difficult to understand his acrimony towards Tschirnhaus.
Whatever the reason, Tschirnhaus’s work was marred by his rush to publish his insights
without giving detailed supporting evidence. La Hire attacked his mistakes in geometry,
while in the field of analysis his opponent was Johann Bernoulli.54 However, it should
also be said that Tschirnhaus honestly acknowledged his mistakes and tried to amend
them. Even though he was an opponent of the new form of calculus, he consciously
addressed the field of mathematical physics in regard to modeling. He devoted himself
to catacaustics only, but the subject would be broadened to include anticaustics and dia-
caustics later by Jakob Bernoulli. In this light, therefore, Tschirnhaus the optics scholar,
can be seen as a trait d’union between the new and old analytical schools. Johann Ber-

53 “Hac ratione jam olim in schediasmate de lineis opticis inveni modum lineas exhibendi, quae
radios ordinatim positione datos, seu a datae figurae speculo venientes, reddant convergentes aut
divergentes, aut parallelos. Formatur enim talis linea ellipsium concursu, si radii debeant fieri
convergentes; eadem methodus valet, si sint parallelae aut divergentes.”

54 Tschirnhaus’s “assertiones” also attracted criticism from Johann Bernoulli. For example,
in the fifth part of his Lectiones , entitled Inventio curvarum, quae unicum habeant spatium
quadrabile, Bernoulli began by observing: “Ad confirmationem ejus quod diximus, dari spatium
curvilineum geometricum, quod unico modo sit quadrabile, & non infinitis, ut Dn. Tschirnhaus
asserit (Acta, sept. 1687, p. 526) &c. [All this confirms what I have already explained, namely, the
value of the area under a given curve can be squared in only one way, and not in infinitely many,
as Tschirnhaus asserts].” Also in the next lesson ( Continuatio ejusdem argumenti), Bernoulli
writes, even more expressly: “ tamen generaliter omnes curvas, quae unum spatium quadra-
bile habent, infinita alia habere, D.nus Tschirnhaus male asseruerit. [nevertheless, Tschirnhaus
wrongly claimed that each curve which can be squared, could be squared in an infinity of other
ways].”



The Work of Tschirnhaus, La Hire and Leibniz 249

noulli, a less innovative but much more keen-minded and deeper mathematician, has only
been fleetingly mentioned. It was he who, from 1692 onwards, improved the researchs
on caustics by his great analytical skills. In a future paper we will investigate the work on
caustics carried out by Jakob and Johann Bernoulli. By the end of the seventeenth century
these initial applications of geometrical optics were to become the founding principles
of differential geometry, and the basis for a new field of mathematical-physics.

Acknowledgments. The authors are indebted to Prof.A. Shapiro for his useful advices and encour-
agements and to Prof. D. Ritelli for his help in preparing the final LATEX version of the paper.
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