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Abstract
Treatment response and resistance in major depressive disorder (MDD) show a significant genetic component, but previous 
studies had limited power also due to MDD heterogeneity. This literature review focuses on the genetic factors associated 
with treatment outcomes in MDD, exploring their overlap with those associated with clinically relevant symptom dimensions. 
We searched PubMed for: (1) genome-wide association studies (GWASs) or whole exome sequencing studies (WESs) that 
investigated efficacy outcomes in MDD; (2) studies examining the association between MDD treatment outcomes and specific 
depressive symptom dimensions; and (3) GWASs of the identified symptom dimensions. We identified 13 GWASs and one 
WES of treatment outcomes in MDD, reporting several significant loci, genes, and gene sets involved in gene expression, 
immune system regulation, synaptic transmission and plasticity, neurogenesis and differentiation. Nine symptom dimensions 
were associated with poor treatment outcomes and studied by previous GWASs (anxiety, neuroticism, anhedonia, cognitive 
functioning, melancholia, suicide attempt, psychosis, sleep, sociability). Four genes were associated with both treatment 
outcomes and these symptom dimensions: CGREF1 (anxiety); MCHR1 (neuroticism); FTO and NRXN3 (sleep). Other 
overlapping signals were found when considering genes suggestively associated with treatment outcomes. Genetic studies 
of treatment outcomes showed convergence at the level of biological processes, despite no replication at gene or variant 
level. The genetic signals overlapping with symptom dimensions of interest may point to shared biological mechanisms and 
potential targets for new treatments tailored to the individual patient’s clinical profile.

Keywords  Major depression · Drug-gene interaction analysis · Pharmacogenomics · Drug targets · Treatment-resistant 
depression (TRD) · Antidepressants

Introduction

Major depression disorder (MDD) is a leading cause of dis-
ability worldwide and ranks as the fourth leading cause of 
morbidity, according to the World Health Organization [1]. 
Estimates of the lifetime prevalence of depression range 
from 7 to 20% [2] and the 12-month prevalence can be as 
high as 5% [1].

Major guidelines recommend pharmacotherapy as first-
line treatment for moderate to severe MDD [3, 4]. Anti-
depressants are among the most commonly prescribed 
medications worldwide [5] and have proven efficacy in 
reducing depressive symptoms. Currently, clinicians have 
access to several treatment options belonging to different 
classes of antidepressants, but none of them has clear evi-
dence of superiority over the others and the remission rates 
with antidepressant therapy are still concerningly low [6]. 

 *	 Chiara Fabbri 
	 chiara.fabbri41@unibo.it

1	 Department of Biomedical and Neuromotor Sciences, 
University of Bologna, Viale Carlo Pepoli 5, 40123 Bologna, 
Italy

2	 Department of Human Genetics, Radboud University 
Medical Center, Nijmegen, The Netherlands

3	 Donders Institute for Brain, Cognition and Behaviour, 
Radboud University, Nijmegen, The Netherlands

4	 Department of Medicine and Surgery, Kore University 
of Enna, Enna, Italy

5	 Oasi Research Institute-IRCCS, Troina, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00406-024-01873-1&domain=pdf
http://orcid.org/0009-0004-6913-9657
http://orcid.org/0009-0001-6187-0187
http://orcid.org/0000-0001-7930-563X
http://orcid.org/0000-0003-0276-7865
http://orcid.org/0000-0003-4363-3759


	 European Archives of Psychiatry and Clinical Neuroscience

Indeed, only  ~ 30% of patients achieves remission after the 
first treatment, and even after four trials of treatment the 
percentage of remission does not reach 70% [7, 8]. After 
each treatment failure, the chance of response to the next 
antidepressant decreases and the risk of treatment-resistant 
depression (TRD), which is commonly defined as the lack 
of response to at least two treatments, increases [9, 10]. The 
trial-and-error process of finding an effective antidepres-
sant can be prolonged and demoralizing, leading to delayed 
recovery and potentially contributing to the chronicity of the 
disease. Additionally, lack of treatment response exposes 
patients to a range of distressing and debilitating side effects 
[11, 12], which can undermine the therapeutic alliance.

Therefore, understanding the individual factors that influ-
ence treatment response in MDD is of primary importance to 
improve outcomes related not only to depressive symptoms, 
but also quality of life and overall functioning. Treatment 
response has a hereditary basis—for example, a concord-
ance of antidepressant response- has been demonstrated in 
affected members of the same family [13] and a significant 
single nucleotide polymorphism (SNP)-based heritabil-
ity (h2

SNP) was found by genome-wide association studies 
(GWASs) [14]. Clinical and socio-demographic variables 
also contribute to treatment outcomes [15, 16]. Certain risk 
factors, such as suicidality and comorbid anxiety, may have 
a genetic basis overlapping with that of treatment response; 
conversely, socio-demographic variables and clinical fac-
tors such as duration and severity of the depressive episode, 
may exert effects independent from the genetics involved in 
treatment outcomes [17].

Although MDD is conceptualized as a single disorder, 
its diagnosis is formulated from a combination of symp-
toms that present with considerable variability, as over 1000 
unique symptom combinations can be observed [18]. This 
phenotypic variability likely reflects the biological and envi-
ronmental heterogeneity among patients, and may be partly 
linked to the heterogeneity observed in treatment response. 
Strong evidence shows that certain symptoms tend to co-
occur, identifying subtypes of depression [19]. This is the 
case, for example, of atypical depression, which is character-
ized by the presence of mood reactivity and reversed neu-
rovegetative symptoms (e.g. increased appetite/weight and 
hypersomnia). These symptoms likely have similar patho-
physiological correlates and share common polygenic liabili-
ties [20, 21]. On the other hand, distinct symptom domains 
are expressions of the heterogeneous genetic architecture 
of depression [22]. Consistently, specific symptom profiles 
tend to exhibit greater responsiveness to particular medi-
cations because of their pharmacodynamic profiles, in line 
with recommendations by the Canadian Network for Mood 
and Anxiety Treatments (CANMAT) guidelines [4]. Fur-
thermore, certain depressive symptom dimensions such as 
anxiety, hypersomnia, anhedonia, suicidality, are associated 

with poorer treatment response, suggesting shared genetics 
between specific depressive symptom profiles and treatment 
outcomes [18].

Therefore, the aims of this narrative review are to (1) 
summarize the genetic factors associated with treatment 
efficacy outcomes in MDD; and (2) to explore the overlap 
between these genetic factors and those involved in specific 
symptom dimensions previously associated with treatment 
outcomes in MDD. This approach can provide information 
useful to identify specific biomarkers for treatment person-
alization, with implications for future research and clinical 
practice. To reach the second aim, we first reviewed the lit-
erature to identify the genetic signals associated with MDD 
treatment outcomes, focusing on GWASs and whole exome 
sequencing studies (WESs), given the instability of results 
from candidate gene studies [23, 24]. Then, we investigated 
whether these genetic associations overlap with those of 
MDD treatment outcomes. The rationale of this approach is 
to contribute to interpreting the existing literature in terms of 
genetic factors associated with treatment outcomes that may 
also be linked to specific symptoms, thereby helping to dis-
sect the biological and clinical heterogeneity of poor treat-
ment response and suggesting new treatment targets specific 
to certain symptom dimensions rather than MDD overall.

Methods

We searched PubMed, GWAS catalog (https://​www.​ebi.​
ac.​uk/​gwas/), GWAS atlas (https://​atlas.​ctglab.​nl/), and 
medRxiv (https://​www.​medrx​iv.​org/) for original research 
articles on the following topics: (1) GWASs or WESs that 
investigated efficacy outcomes in MDD (response, remis-
sion, symptom improvement, or TRD, as defined in each 
original study); (2) the association between MDD treatment 
outcomes and specific depressive symptoms/dimensions; 
(3) GWASs that investigated the genetics of the symptom 
dimensions identified in (2).

When more GWASs were available in (3) for the same 
trait, we focused on the largest study demonstrating a sig-
nificant h2

SNP. We considered association signals at locus, 
gene, and gene set level. As the main topic of this work 
was to review the genetics of treatment outcomes in MDD, 
for studies in (1) we decided to present both genetic asso-
ciations surviving multiple testing correction and sugges-
tive association signals (p-value  <  5 × 10–8 and 5 × 10–8  ≤  
p-value < 5 × 10–6 at locus level, respectively). Although this 
was not a systematic review, we aimed to provide a com-
prehensive consideration of GWASs and WESs relevant to 
MDD treatment outcomes.

Finally, based on the overlap between genes identified 
(either significant or suggestive associations) from the SNP- 
and gene-level analyses of treatment outcomes and those 

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://atlas.ctglab.nl/
https://www.medrxiv.org/
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significatively associated with the clinical dimensions in 
(3), we conducted a gene-drug interaction analysis via www.​
DGIdb.​org [25].

Results

Genetic associations with treatment outcomes

A total of 13 GWASs and one WESs were included in 
this review, and their main characteristics are summarized 
in Table 1. Most studies had relatively small sample size 
(i.e., < 10 K), with only three exceptions, including one large 
study with 154,433 participants [26]; only 6 studies demon-
strated a significant h2

SNP of the outcome(s) of interest, with 
values generally around 0.8–0.10.

At locus level, 11 genome-wide significant associations 
were identified, spanning across multiple genes, includ-
ing ITGA9, NRXN3, UST, MECOM, FTO, and MCHR1 
(Table 2A). Additional suggestive signals were identified, 
including for example LINGO2, CACNA1C, PRG3, ITGA1, 
EPHB1 and SLC27A1 genes (Supplementary Table 1). How-
ever, we underline that these non-significant results have 
unclear relevance and were not replicated across studies.

A total of 25 genes were associated with the outcomes in 
the gene-level analyses, including LZTS3, PRNP, OR4K2, 
PPFIBP1, and GPHA2 (see Table 2B for all results). Sug-
gestive associations were identified, including ADGRG5, 
MAP3K2, the solute carrier genes SLC17A4 and SLCO3A1, 
the glutamate receptor gene GRM3,, and genes encoding for 
many zinc finger proteins (Supplementary Table 2). How-
ever, none of these were replicated across studies.

Noteworthy, both suggestive and significant association 
findings had some consistency in terms of biological pro-
cesses involved at the pathway level, showing an involve-
ment of the immune system (e.g.: NCR3, LST1, and LCN2), 
synaptic transmission and dendritic spine formation (e.g.: 
PPFIBP1, PRNP, LZTS3, and NRXN3), neurogenesis and 
differentiation (e.g.: NRXN3, MECOM, CGREF1 and 
MAP1A), and regulation of transcription and gene expres-
sion (e.g.: DHX8, MECOM, ETV4, MEPCE, and PFAS). 
These observations are supported by the findings from gene 
set enrichment analyses (GSEAs). In particular, while no 
enrichment for specific gene sets was replicated across 
studies, GSEAs showed that many gene-sets are involved 
in or regulate similar biological processes. For exam-
ple, signal transduction (Rhodopsine-like receptors A/1 
R-HSA-373076 and Calcium-activated potassium channel 
activity GO:0015269); gene expression and nuclear func-
tions (Chromosomal part GO:0044427 and Chromosome 
pathway GO:0005694), neurotransmission and synapse 
activity (Neuronal action potential GO:0019228, Transmis-
sion of nerve impulse GO:0019226, Long term potentiation 

hsa04720), immune function (Lymphocyte mediated immu-
nity GO:0002449) ( Table 2C and Supplementary Table 3).

Genetic associations with symptom dimensions

Nine symptom dimensions were identified as associated with 
poor treatment outcomes in MDD and studied by previous 
GWASs showing significant h2

SNP, namely: anxiety symp-
toms, neuroticism (including symptoms of apathy, worth-
lessness, guilt, loneliness, and excessive worry), anhedo-
nia, cognitive functioning, melancholia, suicide attempt, 
psychotic symptoms, sleep symptoms, and sociability. No 
GWASs showed significant h2

SNP for other symptoms also 
associated with poor therapeutic outcomes, such as irritable 
mood, inner tension, dissociative symptoms, and reverse or 
typical neurovegetative symptoms (with the exception of 
sleep-related symptoms) [15, 16, 27, 28].

The main characteristics of the included studies are 
summarised in Table 1, whilst full details and results are 
reported in the Supplementary Tables 1, 2, and 3. The 
selected GWASs were performed on large samples, in the 
range of 500 K participants, and all reported multiple signifi-
cant genetic associations with the traits of interest (Table 1 
and Supplementary Tables 1 and 2).

Given the focus of this review, a comprehensive descrip-
tion of these results is beyond our aims, while we were inter-
ested in describing the potential overlap with the genetic 
associations found for MDD treatment outcomes. Among 
the genes significatively associated with treatment outcomes, 
four overlapped with those associated with symptom dimen-
sions, more precisely with anxiety (CGREF1), neuroticism 
(MCHR1) and sleep (FTO, NRXN3) (Table 3, in bold).

When considering also genes suggestively associated 
with treatment outcomes, additional signals were found in 
common with anxiety, anhedonia, executive functions, and 
sociability, as well as more overlapping genes for neuroti-
cism and sleep (Table 3).

At gene set level, exact matches were found only with 
sleep, involving gene sets related to synaptic activity 
(hsa04730, hsa04730), G alpha signalling (R-HSA-418594), 
taurine/hypotaurine metabolism (hsa00430), immune 
response (BIOCARTA_VEGF_PATHWAY, hsa04612), 
and Alzheimer’s disease (hsa05010). However, even if no 
exact gene set overlaps were found between MDD treatment 
outcomes and other symptom dimensions, we identified pat-
terns of possible overlap in some biological mechanisms 
involved. For example, gene sets associated with neuroti-
cism, executive functions, and suicide attempts are pre-
dominantly related to neurogenesis and neurotransmission. 
Similarly, also other biological processes are involved both 
in MDD treatment outcome and some of the clinical dimen-
sions, like synaptic plasticity (executive functions), immune 

http://www.DGIdb.org
http://www.DGIdb.org
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Table 1   Characteristics of the genetic studies included for treatment outcomes (A) and associated clinical dimensions (B)

A

References Phenotype Sample size Type of study h2
SNP h2

SNP phenotype Number of significant 
SNPs/genes/gene sets

Huang et al. 2023 [82] % symptom change, 
response

421 GWAS – – 28 gene sets

Kang et al. 2023 [26] TRD 154,433 GWAMA 0.02–0.04 TRD vs non-TRD 2 SNPs
Pain et al. 2022 [14] Remission, % change in 

symptom severity
5,151—5,218 GWAMA 0.13 Remission vs non-remis-

sion (mega-GREML)
2 genes

0.396 Remission vs non-
remission (meta-
GREML)

−0.018 (NS) Percentage improvement 
(mega-GREML)

0.215 Percentage improvement 
(meta-GREML)

Fabbri et al. 2021 [83] TRD 16,372 GWAS 0.08 TRD vs non-TRD –
Kang et al. 2020 [84] Remission 155–511 WES – – 11 genes, 53 gene sets
Li et al. 2020 [85] Response, TRD 4,005–25,506 GWAS, GWAMA 0.08 TRD vs non-TRD 3 SNPs, 4 genes

0.01 (NS) SNRI response vs. non-
response

0.04 (NS) SSRI response vs non-
response

0.07 (NS) NDRI response vs. non-
response

Wigmore et al. 2020 
[34]

TRD, stage of resistance 3,452–4,213 GWAS, GWAMA 0.27* Stage of resistance –
0.60* TRD vs non-TRD

Fabbri et al. 2019 [86] TRD, response, % symp-
tom change

759–3,225 GWAS, GWAMA – – 2 gene sets

Fabbri et al. 2018 [87] % symptom change, 
remission

1,422–2,145 GWAS, GWAMA – – 2 SNPs, 1 gene, 2 gene 
sets

Li et al. 2016 [88] Response, TRD 4,536–9,688 GWAMA 0.11 (NS) TRD vs non-TRD 1 SNPs, 18 gene sets
0.12 (NS) (Es)citalopram response 

vs non-response
0.05 (NS) SSRI response vs non-

response
−0.05 (NS) NDRI response vs non-

response
Hunter et al. 2013 [89] Sustained response 1,116 GWAS – – 7 genes, 8 gene sets
Uher et al. 2013 [89] % symptom change, 

remission
1,354–2,256 GWAMA – – 2 SNPs

Tansey et al. 2012 [90] % change in symptom 
severity

568–2,897 GWAS, GWAMA – – –

Uher et al. 2010 [91] % change in symptom 
severity

312–706 GWAS – – 1 SNP

B

References Phenotype Sample size Type of study h2
SNP Number of significant SNPs/genes/gene sets

Friligkou et al. 2024 [92] Anxiety 1,096,458 GWAMA, 
TWAMA, 
PWAMA

0.05 42 SNPs, 118 genes

Nagel et al. 2018 [93] Neuroticism 449,484 GWAMA 0.05–0.10 145 SNPs, 599 genes, 7 gene sets
Ward et al. 2019 [94] Anhedonia 375,275 GWAS 0.06 11 SNPs
Hatoum et al. 2023 [95] Executive functions 427,037 GWAS 0.09–0.10 342 SNPs, 353 genes, 12 gene sets
Cai et al. 2015 [96] Melancholic features 4,509 GWAS – 29 SNPs
Docherty et al. 2020 [97] Suicide attempt 518,612–958,896 GWAMA 0.06 38 SNPs, 37 genes, 519 gene sets
Barkhuizen et al. 2020 [98] Psychotic experiences 116,787–117,794 GWAS 0.07–0.10 104 SNPs
Bralten et al. 2021 [99] Sociability 342,461 GWAS 0.06 19 SNPs, 56 genes, 8 gene sets
Goodman et al. 2024 [100] Sleep health score 413,904 GWAS 0.07–0.15 401 SNPs, 588 genes, 860 gene sets
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response (suicide attempt, sleep), and nucleic acid and gene 
expression (suicide attempt) (Supplementary Table 3).

New therapeutic targets for treating symptom 
dimensions associated with poor response?

Based on the overlap discussed in the previous paragraph, 
we conducted a gene-drug interaction analysis. Of the four 
significant overlapping genes, no compounds were found to 
interact with either NRXN3 or CGREF1, while interactions 
were found only for the melanin concentrating hormone 
receptor 1 (MCHR1) and the fat mass and obesity associ-
ated gene (FTO, also known as ALKBH9). MCHR1, also 
known as SLC1, is a G-protein coupled receptor (GPCR) 
which binds the melanin-concentrating hormone (MCH, or 
PMCH) and inhibits cAMP accumulation while stimulating 
intracellular calcium influx. MCH is likely involved in the 
regulation of feeding behaviour, mood, sleep–wake cycle 
and energy balance [29]. Four still non-approved compounds 
resulted to interact with MCHR1, of which SNAP-7941 is 
the lead compound of MCHR1-inhibitors and displayed 
promising anxiolytic, antidepressant, and anorectic effects, 
even though not replicated in clinical trials [30]. Another 
MCHR1 antagonist, BMS-830216, is currently in phase 2 
for the treatment of obesity [31].

Concerning FTO, eight compounds were found, all 
already approved as antineoplastics (INFɑ-2A, INFɑ-2B, 
mercaptopurine, and bisantrene), antiviral (ribavirin), antiar-
rhythmic (atenolol), antihypertensive (atenolol, hydrochloro-
thiazide), and disease-modifying antirheumatic drugs (aza-
thioprine). FTO’s exact physiological function is yet to be 
uncovered; however, it is a non-heme iron enzyme located in 
the nucleus and likely related to growth, development, BMI, 
obesity, and type 2 diabetes mellitus [32].

When considering the overlap with genes associated 
with poor treatment outcome at a suggestive level, interest-
ing gene-drug interactions were found for GRM3 with risp-
eridone and two selective mGluR2/3 agonists (LY2969822 
and LY404039, and the corresponding prodrug of the latter 
LY2140023); and CACNA1C with haloperidol, citalopram, 
valproate, and gabapentinoids. For all gene-drug interac-
tions, see Table 3.

Discussion

The identification of genetic factors modulating MDD treat-
ment outcomes has been challenging and led to few clinical 
applications, limited to genes involved in drug metabolism 
[33]. In the 50 years after the first evidence of a substan-
tial heritability coming from family genetic studies [33], 
many studies focused on candidate genes, with minor and 
mainly unreplicated findings. In the last 10 years, GWASs 
produced more interesting findings, due to a more extensive 
coverage of the genome and larger samples, as discussed in 
this review. To date, it has been estimated that genetics may 
account for up to 60% of the variance in treatment resistance 
according to pedigree-based heritability [34].

However, the polygenic nature of MDD treatment out-
comes and the relatively limited size of most samples 
resulted in scattered results which do not generally overlap, 
at least at SNP or gene level. The redundancies among the 
pathways modulating antidepressant outcomes and the het-
erogeneity of depressive symptoms are likely involved in the 
discrepancy of results at SNP and gene level [35–38]. The 
approach used in the present review aimed to partially over-
come these issues, by integrating the genetic signals associ-
ated with antidepressant outcomes and specific symptom 
dimensions of clinical relevance, and by extending the analy-
sis to pathways, pointing out potential mechanisms involved 
in treatment resistance and possible treatment targets.

Both at variant/gene level and gene set level, treatment 
outcomes were linked to gene expression regulation, cen-
tral nervous system (CNS) development, synaptic plasticity, 
and immune system activity. One speculative interpretation 
of these results is that anomalies in the regulation of gene 
expression concur with abnormal CNS development (from 
tissue differentiation to synapse formation) and with an aber-
rant brain-immunity interplay, resulting in increased risk of 
developing more severe and less treatment-responsive MDD.

We identified four genes that were significantly associated 
with both treatment outcomes and the clinical dimensions of 
interest, namely CGREF1 (anxiety), MCHR1 (neuroticism), 
FTO and NRXN3 (sleep). NRXN3 (neurexin 3) encodes for 
a surface protein acting as cell adhesion molecule-receptor 
and it is likely involved in synaptic plasticity [39]. Other 
than with treatment response, it was also associated with 
sleep health (Supplementary Tables 1 and 2), suggesting 
a protective function on brain physiological activity. Pol-
ymorphisms in this gene have been linked to obesity and 

Table 1   (continued)
AD antidepressant, GWAMA genome-wide association meta-analysis, GWAS genome-wide association study, h2

SNP SNP-based heritability, 
PWAS proteome-wide association study, SNP single-nucleotide polymorphism, TRD treatment-resistant depression, TWAS transcriptome-wide 
association study, WES whole exome sequencing, NS non-significant
*Pedigree-based heritability estimates and not h2

SNP
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Table 2   Genome-wide significant variants (A), genes (B), and gene sets (C) associated with AD treatment outcome

A

Phenotype/outcome Locus/variant significant Gene(s) corresponding Sources

AD response rs12054895 Intergenic Uher et al. 2013 [101]
rs17651119 MYO10

AD response rs1908557 Intergenic, between GPRIN3 and SNCA 
(SNCA)

Li et al. 2016 [88]

% symptom change rs116692768 ITGA9 Fabbri et al. 2018 [87]
rs76191705 NRXN3

% symptom change rs2500535 UST Uher et al. 2010 [91]
AD response rs4955665 MECOM Li et al. 2020 [85]

rs4884091 RNF219-AS1 Li et al. 2020 [85]
TRD rs150245813 Intergenic, several eQTLs (LTB) Li et al. 2020 [85]

rs56313538 FTO Kang et al. 2023 [26]
rs133082 MCHR1

B

Phenotype/outcome Genes Source

Remission BRPF3, CGREF1, COMT, LZTS3, MAP1A, MEPCE, PFAS, PPFIBP1, PRNP, 
SLC25A40, ST3GAL5

Kang et al. 2020 [84]

DHX8, ETV4 Pain et al. 2021 [14]
AD response B9D1, C11ORF85, C9ORF16, EPN2, GPHA2, LCN2, PPP2R5B Hunter et al. 2021 [89]
% symptom change OR4K2 Fabbri et al. 2018 [87]
AD response ADAMTS5 Li et al. 2020 [85]
TRD LST1, LTB, NCR3 Li et al. 2020 [85]

C

Outcome Function Gene set Source

AD response Differentiation GGC​CAG​T_MIR193A_MIR193B Li et al. 2016 [88]
HALLMARK_ADIPOGENESIS Li et al. 2016 [88]

Sustained response Endocrine BIOCARTA_MPR_PATHWAY​ Hunter et al. 2013 [89]
hsa04940 Type I diabetes mellitus Hunter et al. 2013 [89]

AD response Immunity GO:0002460 Adaptive immune response based on 
somatic recombination of immune 
receptors built from immunoglobu-
lin superfamily domains

Huang et al. 2023 [82]

WP2328 Allograft Rejection Huang et al. 2023 [82]

GO:0019724 B cell mediated immunity Huang et al. 2023 [82]

GO:0006956 Complement activation Huang et al. 2023 [82]

WP545 Complement Activation Huang et al. 2023 [82]

GO:0006957 Complement activation, alternative 
pathway

Huang et al. 2023 [82]

GO:0006958 Complement activation, classical 
pathway

Huang et al. 2023 [82]

R-HSA-166658 Complement cascade Huang et al. 2023 [82]

GO:0002455 Humoral immune response mediated 
by circulating immunoglobulin

Huang et al. 2023 [82]

GO:0016064 Immunoglobulin mediated immune 
response

Huang et al. 2023 [82]

GO:0002449 Lymphocyte mediated immunity Huang et al. 2023 [82]
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Table 2   (continued)

C

Outcome Function Gene set Source

GO:0005579 Membrane attack complex Huang et al. 2023 [82]

GO:0030449 Regulation of complement activation Huang et al. 2023 [82]

R-HSA-977606 Regulation of Complement cascade Huang et al. 2023 [82]

GO:0002920 Regulation of humoral immune 
response

Huang et al. 2023 [82]

R-HSA-166665 Terminal pathway of complement Huang et al. 2023 [82]

CMP_7107 TNF pathway Hunter et al. 2013 [89]

hsa04612 KEGG_ANTIGEN_PROCESSING_
AND_PRESENTATION

Hunter et al. 2013 [89]

AD response PID_CDC42_REG_PATHWAY​ PID_CDC42_REG_PATHWAY​ Li et al. 2016 [88]
AD response Metabolism ko00460 Cyanoamino_acid_metabolism Li et al. 2016 [88]

hsa00534 KEGG_GLYCOSAMINOGLY-
CAN_BIOSYNTHESIS_HEP-
ARAN_SULFATE

Li et al. 2016[88]

hsa00430 KEGG_TAURINE_AND_HYPO-
TAURINE_METABOLISM

Li et al. 2016 [88]

hsa00565 LIPID_HOMEOSTASIS Li et al. 2016 [88]
Sustained response Neurodegeneration hsa05010 KEGG_ALZHEIMERS_DISEASE Hunter et al. 2013 [89]
AD response Neurotransmission GO:0019228 Neuronal action potential Huang et al. 2023 [82]

GO:0019226 Transmission of nerve impulse Huang et al. 2023 [82]
Sustained response hsa04720 KEGG_LONG_TERM_POTENTIA-

TION
Hunter et al. 2013 [89]

AD response hsa04730 KEGG_LONG_TERM_DEPRES-
SION

Li et al. 2016 [88]

AD response Nuclear GO: 0044427 Chromosomal part Fabbri et al. 2018 [87]

GO:0005694 Chromosome pathway Fabbri et al. 2018 [87]
AD response HALLMARK_E2F_TARGETS Li et al. 2016 [88]

Positional geneset chr16p12 Li et al. 2016 [88]
chr22q11 Li et al. 2016 [88]
chr8p22 Li et al. 2016 [88]

AD response Signaling R-HSA-1296052 Ca2 + activated K + channel Huang et al. 2023 [82]
GO:0015269 Calcium-activated potassium channel 

activity
Huang et al. 2023 [82]

R-HSA-373076 Class A/1 (Rhodopsin-like receptors) Huang et al. 2023 [82]
GO:0005513 GOBP_DETECTION_OF_CAL-

CIUM_ION
Huang et al. 2023 [82]

(R-HSA-418594) G alpha (i) signaling events Huang et al. 2023 [82]
R-HSA-500792 GPCR ligand binding Huang et al. 2023 [82]
WP455 GPCRs, Class A Rhodopsin-like Huang et al. 2023 [82]

Sustained response CMP_6680 G alpha q pathway Hunter et al. 2013 [89]
PAHS-043A WNT_SIGNALING Hunter et al. 2013 [89]

AD response R-HSA-418038 REACTOME_NUCLEOTIDE_
LIKE_PURINERGIC_RECEP-
TORS

Li et al. 2016 [88]

GO:0005070 SH3_SH2_ADAPTOR_ACTIVITY Li et al. 2016 [88]
Stress response GO:0019835 Cytolysis Huang et al. 2023 [82]

BIOCARTA_VEGF_PATHWAY​ Li et al. 2016 [88]
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substance use disorders [40, 41], suggesting an influence on 
impulse control. This increases the interest towards this gene 
and the possibility to target/modulate it by future therapies, 
despite currently there are no known compounds/molecules 
targeting NRXN3.

FTO (fat mass and obesity-associated protein) and 
MCHR1 (melanin concentrating hormone receptor 1) were 
both significantly associated with TRD and with sleep and 
neuroticism, respectively. Both are involved in energy home-
ostasis, but FTO acts more on a cellular level regulating 
adipogenesis and fat mass [32, 42–44], while MCHR1 is 
involved in the regulation of feeding behaviour and energy 
balance and has known effects on mood and sleep–wake 
cycle [45]. Variants in MCHR1 have been linked to a reduced 
expression in the dorsolateral prefrontal cortex [46] and 
are in linkage disequilibrium with another variant recently 
linked to an increased risk of bipolar disorder [47]. Several 
drugs interact with FTO but, as far as we know, no specific 
compound has been developed or studied specifically. Inter-
estingly, FTO also maps to a genomic region showing sig-
nificant local genetic correlation between MDD and type 2 
diabetes mellitus and obesity, suggesting that FTO could be 
implicated in the shared etiopathogenesis between MDD and 
insulin resistance-related conditions [48]. We found FTO to 
interact with antihypertensive drugs, i.e. hydrochlorothiazide 
(a diuretic) and atenolol (a β-blocker). Angiotensin agents, 
calcium-channel blockers, and β-blockers (but not diuretics) 
have been recently associated with decreased rates of depres-
sion [49]. On the other hand, MCHR1 has been investigated 
and promising results were found for some compounds [50, 
51], but results were not replicated [30].

CGREF1 (cell growth regulator with EF-hand domain 
1) inhibits cell proliferation, despite its function has not 
been fully elucidated [52]. We found that this gene was 
associated with remission to antidepressants and anxiety 

(Supplementary Table 2), but it was implicated in other 
traits as well by previous GWASs, such as brain measures, 
risk-taking behaviours, wellbeing, and educational attain-
ment [53–57]. Therefore, CGREF1 may be involved in the 
modulation of multiple but likely connected phenotypes, 
which are relevant for antidepressant effects. Currently, there 
are no known compounds that target CGREF1.

Other genes were not significantly associated with anti-
depressant outcomes, however suggestive findings were 
reported (Supplementary Tables 1–3). Among these genes, 
we outline GRM3, [58], SLCO3A1, LINGO1 and LINGO2. 
EPHB1 (Supplementary Table 1) regulates chemotaxis and 
proliferation of neural progenitors in the hippocampus [58], 
a well known region for mood disorders physiopathology 
and AD efficacy [59, 60]. It was first identified as poten-
tially involved in antidepressant response by one of the first 
GWASs in this field, which reported a suggestive association 
with a SNP located downstream of this gene [61]; however, 
this GWAS was not formally included in the present review, 
as it included both unipolar (MDD) and bipolar depres-
sion, while this work was focused on MDD. This gene was 
also associated with several symptom dimensions of inter-
est, including neuroticism, anhedonia, and executive func-
tions. EPHB1 has a key role in axon guidance and, with 
other ephrin-B receptors, is involved in the development and 
maturation of dendritic spine and synapse formation [58]. 
To date, no specific drug exists to selectively target EPHB1, 
however it interacts with progesterone [25], which has been 
proved to modulate the expression of γ-aminobutyric acid 
type-A receptors (GABAAR) via its metabolite allopreg-
nanolone [62]. Noteworthy, brexanolone, a synthetic allo-
pregnanolone analogous, is approved for the treatment of 
postpartum depression [63].

GRM3 represents an interesting finding. Unlike 
NMDA (N-Methyl-D-aspar tic acid) and AMPA 

Table 2   (continued)

C

Outcome Function Gene set Source

AD response Structural GO:0098797 Plasma membrane protein complex Huang et al. 2023 [82]
GO:0046930 Pore complex Huang et al. 2023 [82]

AD response GO:0060090 MOLECULAR_ADAPTOR_
ACTIVITY

Li et al. 2016 [88]

GO:0030674 PROTEIN_BINDING_BRIDGING Li et al. 2016 [88]
TRD Metabolism hsa00071 KEGG_FATTY_ACID_METABO-

LISM
Li et al. 2016 [88]

Signaling GO:0043949 GOBP_REGULATION_OF_
CAMP_MEDIATED_SIGNAL-
ING

Fabbri et al. 2019 [86]

TRD Nuclear GO:0000183 GOBP_NUCLEOLAR_CHROMA-
TIN_ORGANIZATION

Fabbri et al. 2019 [86]

AD antidepressant, TRD treatment resistant depression
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Table 3   Genes associated with AD treatment outcomes overlapping with genetic signals associated with symptom dimensions

Gene Outcome Symptom dimension Drug

FTO TRD Sleep (SHS-PC1, PC3, PC4) INTERFERON ALFA-2A
RIBAVIRIN
INTERFERON ALFA-2B
ATENOLOL
AZATHIOPRINE
MERCAPTOPURINE
BISANTRENE
HYDROCHLOROTHIAZIDE

MCHR1 TRD Neuroticism BMS-830216
SB-568849
SNAP-7941
T-226296

NRXN3 % symptom change Sleep (SHS-ADD/PC1/PC2) None
CGREF1 Remission Anxiety None
GRM3 AD response Neuroticism, executive functions LY404039

OLEOYL-ESTRONE
MGS-0210
DECOGLURANT
HEROIN
LY2140023
POMAGLUMETAD METHIONIL
LY2969822
RISPERIDONE
DECOGLURANT

CACNA1C TRD Executive functions NICARDIPINE HYDROCHLORIDE

NIFEDIPINE

CILNIDIPINE

NICARDIPINE

ELPETRIGINE

CALCIUM CHANNEL BLOCKER

DILTIAZEM MALATE

DILTIAZEM HYDROCHLORIDE

ISRADIPINE

MANIDIPINE

DENATURED ETHANOL

NILVADIPINE

SULOCTIDIL

ARVERAPAMIL

CELECOXIB

CLEVIDIPINE

NIMODIPINE

VERAPAMIL

BENIDIPINE

NISOLDIPINE
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Table 3   (continued)

Gene Outcome Symptom dimension Drug

AZD1305

PREGABALIN

GABAPENTIN

LACIDIPINE

RITODRINE

LERCANIDIPINE HYDROCHLORIDE

NITRENDIPINE

AMLODIPINE BENZOATE

CITALOPRAM

MEPIRODIPINE

ATENOLOL

IMAGABALIN

LEVAMLODIPINE MALEATE

HALOPERIDOL DECANOATE

IBUTILIDE

AMLODIPINE MALEATE

RAUWOLFIA SERPENTINA (USP)

VALPROIC ACID

DRONEDARONE HYDROCHLORIDE

GABAPENTIN ENACARBIL

CINNARIZINE

ATAGABALIN

TERODILINE HYDROCHLORIDE

BEPRIDIL HYDROCHLORIDE

AZELNIDIPINE

AMLODIPINE BESYLATE

PHLOROGLUCINOL

FELODIPINE

CTNNA3 AD response Anhedonia ANTIDEPRESSANT AGENT
EPHB1 TRD Neuroticism, anhedonia, executive functions RECOMBINANT FIBROBLAST 

GROWTH FACTOR 2
VANDETANIB
HESPERADIN
PROGESTERONE

ARFGEF2 AD response Executive functions None
USMG5 (ATP5MK) AD response Neuroticism, sleep None
PKHD1 TRD Neuroticism None
PRSS35 AD response Sleep (SHS-PC2) None
SCG3 TRD Executive functions None
AVL9 TRD Sleep (SHS-PC3) None
SATB1-AS1 TRD Anxiety None
CAMKMT TRD Sleep (SHS-PC3) None
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Table 3   (continued)

Gene Outcome Symptom dimension Drug

GNAZ AD response Sleep (SHS-PC2) None
MTRNR2L9 SNRI response Sleep (SHS-PC2) None
LINC01360 AD response Anxiety None
RTDR1 AD response Sleep (SHS-PC2) None
SGCZ TRD Neuroticism, executive functions, sociability, sleep None
LINGO2 Remission Neuroticism None

For selecting genes associated with treatment outcomes, we considered associations at variant level annotated with the corresponding gene or at 
gene level, either significant or suggestive (those which were significant are in bold), as explained in the methods paragraph
AD Antidepressant, SHS-ADD sleep health score-additive, SHS-PC sleep health score-principal component, TRD treatment resistant depression

(α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) 
receptors, glutamate metabotropic receptors are G-protein 
coupled receptors (GPCR) with more complex effects, 
involved in synapse plasticity, for example long-term 
depression (LTD) at excitatory synapses [64]. GRM3 was 
associated with neuroticism and executive functions (Sup-
plementary Table 2). Thus, compounds acting at this site 
may hypothetically be beneficial for patients experiencing 
a depressive episode with a sense of guilt and worthless-
ness, interpersonal sensibility, and/or cognitive symptoms. 
To date, the only drug that seems to interact with GRM3 is 
risperidone, a second-generation antipsychotic (SGA) used 
as adjunctive therapy in psychotic depression or as augmen-
tation to antidepressants in TRD [65]. Other compounds 
targeting glutamate receptors are under study for the treat-
ment of schizophrenia [66] and depressive disorders, such as 
MGS-0210 [67], which is a selective metabotropic glutamate 
receptor antagonist with antidepressant-like activity [68].

Even if only suggestive, the association of the organic 
anion transporter SLCO3A1 with remission after treatment 
may suggest a role of endogenous organic anions, vasopres-
sin and prostaglandins in MDD outcome [69, 70]. Notewor-
thy, SLCO3A1 is significatively expressed in the CNS, espe-
cially in oligodendrocytes [70, 71] but also in neurons and 
grey matter glial cells [69, 72]. However, SLCO3A1 activity 
is not yet fully understood and new interactions have been 
found with other exogenous compounds [73], such as modu-
lation of its expression levels by valproic acid [74].

The role of energy metabolism in mood disorders is 
well known, as discussed above for FTO and MCHR1, 
and there is an increasing consensus on the involvement, 
for example, of glucidic metabolism in brain disorders 
[75, 76]. We observed significant association with many 
genes involved in feeding behaviour and sleep–wake cycle. 
LINGO1 and LINGO2 were associated with symptom 
remission and neuroticism, and are likely involved in syn-
apse assembly [77], other than being associated with BMI 
[78]. No drug exists to date targeting these genes, but they 
are modulated by resveratrol and vitamin D [79] and they 

may represent putative targets for future complementary 
treatments, for example in patients with higher levels of 
neuroticism and BMI [80, 81].

This review provides a comprehensive overview of 
GWASs and WESs on treatment outcomes in MDD, also 
leveraging an innovative, clinically-oriented approach to 
explore the complex genetics of MDD treatment outcomes. 
By integrating genetic signals associated with MDD treat-
ment outcomes and specific depressive symptom dimen-
sions, our approach may pave the way for developing tar-
geted treatments for non-responsive patients exhibiting 
specific symptom profiles. However, several limitations 
should be acknowledged. Firstly, we did not perform sta-
tistical analyses to test the genetic overlap between treat-
ment outcomes and the symptom dimensions of interest; 
however, this was beyond the aims of this paper, being 
this work intended as a review of the literature. A com-
mon limitation of the included GWASs on MDD treatment 
outcomes was the relatively small sample size, and the 
resulting limited power to detect genome-wide significant 
associations and to replicate findings across studies. Last 
but not least, pharmacogenetic findings and targets identi-
fied by gene-drug interactions need functional validation 
to assess their potential clinical relevance and applicabil-
ity. This consideration outlines the importance of using 
complementary and integrated research approaches, for 
example in vitro/in vivo models evaluating compound 
properties and activity.

In conclusion, this review presents significant insights 
into the genomics of treatment outcomes in MDD, high-
lighting the existence of genetic factors overlapping with 
specific clinical dimensions that are in turn associated 
with poor treatment outcomes. We prioritised four genes, 
including CGREF1, MCHR1, FTO, and NRXN3, which 
are linked to both MDD treatment outcomes and relevant 
clinical dimensions. These findings highlight the potential 
for developing new treatments that target specific depres-
sive symptom dimensions, contributing to the advance-
ment of precision psychiatry.
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