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Abstract
Triggered by the ground-breaking finding that ketamine exerts robust and rapid-acting antidepressant effects in patients 
with treatment-resistant depression, glutamatergic systems have attracted attention as targets for the development of novel 
antidepressants. Among glutamatergic systems, group II metabotropic glutamate (mGlu) receptors, consisting of mGlu2 and 
mGlu3 receptors, are of interest because of their modulatory roles in glutamatergic transmission. Accumulating evidence 
has indicated that mGlu2/3 receptor antagonists have antidepressant-like effects in rodent models that mirror those of keta-
mine and that mGlu2/3 receptor antagonists also share underlying mechanisms with ketamine that are responsible for these 
antidepressant-like actions. Importantly, contrary to their antidepressant-like profile, preclinical studies have revealed that 
mGlu2/3 receptor antagonists are devoid of ketamine-like adverse effects, such as psychotomimetic-like behavior, abuse 
potential and neurotoxicity. Despite some discouraging results for an mGlu2/3 receptor antagonist decoglurant (classified as 
a negative allosteric modulator [NAM]) in patients with major depressive disorder, clinical trials of two mGlu2/3 receptor 
antagonists, a phase 2 trial of TS-161 (an orthosteric antagonist) and a phase 1 trial of DSP-3456 (a NAM), are presently 
on-going. mGlu2/3 receptors still hold promise for the development of safer and more efficacious antidepressants.
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Introduction

Major depressive disorder (MDD) remains a prevalent 
world-wide health problem. Although a number of antide-
pressant medications, most of which stem from monoamine-
based drug discovery, are currently available, they are far 
from ideal in terms of efficacy and the onset of antidepres-
sant action. Therefore, new antidepressants with increased 
efficacy and a shorter therapeutic lag time are required. 
Because dysfunctions of the glutamatergic system have 
been implicated in the pathophysiology of depression, glu-
tamatergic systems have recently gained significant attention 
as a target for the drug discovery of novel antidepressants 
[1, 2]. The importance of the glutamatergic systems for 

developing novel antidepressants has been highlighted by 
the ground-breaking findings of the antidepressant effects 
of ketamine, a non-competitive antagonist of N-methyl-
D-aspartate (NMDA) receptor. Since the rapid and robust 
antidepressant effects of ketamine in patients with MDD, 
including those with treatment-resistant depression (TRD), 
were first shown in 2000 [3] and 2006 [4], the antidepressant 
effects of ketamine and their mechanisms have been inten-
sively investigated. Currently,  Spravato®, a nasal spray that 
delivers esketamine which is a stereoisomer of ketamine, is 
available in the US and European markets as an adjunctive 
therapy for the treatment of TRD patients and for depres-
sive symptoms in adults with MDD who exhibit acute sui-
cidal ideation or behavior. However, esketamine retains the 
unwanted side effects of ketamine, including dissociative/
psychotomimetic symptoms and abuse potential, which ham-
pers the adoption of esketamine in daily practice. Therefore, 
novel approaches that can dissociate the ketamine-like anti-
depressant effects from ketamine-like adverse effects have 
been actively investigated. These approaches target proposed 
mechanisms underlying the antidepressant effects of keta-
mine, most of which are molecules within the glutamatergic 
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system including GluN2B-containing NMDA receptor 
and α-amino-3-hydroxy-5-methyl-isoxazole-4-propionate 
(AMPA) receptor [5]. In addition to these approaches, the 
possible use of another stereoisomer of ketamine, arketa-
mine, and a metabolite of ketamine, (2R,6R)-hydroxynor-
ketamine, have been rigorously investigated. To date, arket-
amine looks promising as a novel antidepressant without 
exerting ketamine-like adverse effects based on data in both 
rodents and TRD patients [6, 7]. Among the components of 
the glutamatergic system, we have been focusing on group II 
metabotropic glutamate (mGlu2/3) receptors, which have a 
modulatory role in glutamatergic activity mainly the presyn-
aptic regulation of glutamate flow. In this review, we will 
summarize the role of mGlu2/3 receptor in depression and 
the possibility of mGlu2/3 receptor antagonists as an alterna-
tive of ketamine by introducing both the efficacy in animal 
models and the underlying mechanisms. Moreover, we will 
touch on clinical trials of mGlu2/3 receptor antagonists.

Pharmacology of mGlu2/3 receptor 
and mGlu2/3 receptor antagonists

On a molecular basis, mGlu receptors have eight dif-
ferent subtypes. These receptors are divided into three 
groups (group I, II and III) based on amino acid similarity 
and signal transduction mechanisms [8, 9]. Among these 
subtypes, much attention has been paid to group II mGlu 
receptors, which consist of mGlu2 and mGlu3 receptors. 
mGlu2/3 receptors couple with Gi/Go proteins, leading to 

the inhibition of adenylyl cyclase activity. mGlu2/3 recep-
tors are mainly localized at the perisynaptic area of gluta-
matergic terminals in the frontal cortex and limbic systems, 
where they negatively modulate the release of glutamate 
[10]. Therefore, mGlu2/3 receptors play important roles in 
ameliorating glutamatergic tones when they are perturbed, 
as observed in several psychiatric conditions including 
schizophrenia [11], depression [12, 13] and addiction [14]. 
Indeed, mGlu2/3 receptor agonists were proven to be effec-
tive for a certain group of patients with schizophrenia [15] 
and generalized anxiety disorder [16]. A role of mGlu2/3 
receptors in the pathophysiology of depression has also been 
reported. For example, the level of mGlu2/3 receptor protein 
was reportedly elevated in rodent models of depression [17, 
18] and in the postmortem brains of patients with MDD 
[19]; in contrast, other reports have described reductions in 
mGlu2/3 receptor protein or mRNA in MDD patients [20] 
and in rodent models [21, 22]. These observations suggest 
that mGlu2/3 receptor abnormalities are involved in depres-
sion. In rodent studies, accumulating evidence suggests that 
mGlu2/3 receptor blockade may be beneficial for the treat-
ment of depression, although limited data also suggest the 
opposite direction.

To date, several mGlu2/3 receptor antagonists have been 
synthesized (Fig. 1), and in vitro activities of representative 
compounds are summarized in Table 1. These antagonists 
are divided into two categories according to differences in 
the binding site of the receptor: orthosteric antagonists [23, 
24] and negative allosteric modulators (NAMs) [25]. Orthos-
teric antagonists bind to glutamate binding sites, while 
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Fig. 1  Representative mGlu2/3 receptor antagonists. To date, two 
types of mGlu2/3 receptor antagonists have been synthesized: orthos-
teric antagonists (TP0178894, MGS0039, LY3020371, LY341495), 
and negative allosteric modulators (Decoglurant, RO04491533). 

Orthosteric antagonists contain a glutamate moiety in their molecule 
and bind to glutamate binding sites, which reside in the N-terminus 
of the receptor. Negative allosteric modulators bind to allosteric sites 
of the receptor that are located in the transmembrane regions
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NAMs bind to allosteric sites localized in the transmem-
brane regions of the receptor. Of note, the maximal binding 
value of an mGlu2/3 receptor ligand that binds to an allos-
teric site was nearly half that of the radioligand binding of an 
orthosteric ligand of the mGlu2/3 receptor [26]. Therefore, 
the binding modes of both classes mGlu2/3 receptor antago-
nists are apparently different, which may explain the differ-
ences in the in vivo outcomes of both types of antagonists.

Antidepressant profiles of mGlu2/3 receptor 
antagonists

The antidepressant-like effects of mGlu2/3 receptor antago-
nists were first reported by our group in 2004 [23], triggering 
subsequent studies on the antidepressant-like characteristics 

of mGlu2/3 receptor antagonists [27, 28]. To date, accumu-
lating lines of evidence have indicated similarities between 
the antidepressant-like effects of mGlu2/3 receptor antago-
nists and those of ketamine [27], which is summarized in 
Table 2. First, mGlu2/3 receptor antagonists (MGS0039, 
TP0178894, LY341495) exert rapid-acting and long-lasting 
antidepressant effects in rodent models such as the chronic 
social defeat stress model [17, 29, 30] and the chronic 
unpredictable stress model [31–33]; in both of these mod-
els, monoamine-based conventional antidepressants must be 
administered for more than a week for the exertion of the 
full-blown antidepressant effects. mGlu2/3 receptor antago-
nists, on the other hand, reversed the depressive-like behav-
iors in these models within 24 h after administration, and the 
effects lasted for more than a week after a single administra-
tion, as with ketamine. Also similar to ketamine, mGlu2/3 
receptor antagonists exerted the antidepressant-like effects in 
rodent models that were resistant to conventional antidepres-
sants, including a corticosterone-treated model [34]. There-
fore, mGlu2/3 receptor antagonists are effective in animal 
models that are pharmacologically regarded as TRD mod-
els. Furthermore, mGlu2/3 receptor antagonists have been 
shown to have not only curative effects, but also preventive 
effects. Highland et al. (2019) reported that mGlu2/3 recep-
tor blockade has prophylactic effects in studies involving 
pharmacological manipulation and the use of knockout mice 
lacking the mGlu2 or mGlu3 receptor [35]. Both knockout 
mice lacking the mGlu2 receptor and mice treated with 
LY341495 during stress were resilient to the development of 
depressive-like behaviors induced by several stress manipu-
lations. Moreover, a single treatment with LY341495 7 days 
prior to the commencement of stress exposure prevented 
not only the initial development of depressive-like behav-
iors, but also the reinstatement of maladaptive behaviors 
caused by re-exposure to stress, indicating that the transient 

Table 1  In vitro activities of representative mGlu2/3 receptor antago-
nists

Data of TP0178894 was cited from reference [86], data of MGS0039 
and LY341495 were from reference [23], data of LY3020371 were 
from reference [24] and data of RO04491533 were from reference 
[25]. Data of MGS0039 and LY341495 were obtained using rat 
mGlu2 and mGlu3 receptors, while others were obtained by using 
human mGlu2 and mGlu3 receptors
–: Data not available

Antagonist activ-
ity  (IC50, nM) 

Affinity  
(Ki, nM)

mGlu2 mGlu3 mGlu2 mGlu3

TP0178894 23.3  20.9 4.27  2.83
MGS0039 20.0  24.0 2.21  4.51
LY3020371 16.2  6.21 5.26  2.50
LY341495 23.3  14.2 3.15  3.06
RO04491533 296  270 – –

Table 2  Summary of characteristics and possible mechanisms of antidepressant-like effects of mGlu2/3 receptor antagonists and ketamine in 
preclinical studies

AMPA α-amino-3-hydroxy-5-methyl-isoxazole-4-propionate, BDNF brain-derived neurotrophic factor, TrkB tropomyosin-related kinase B, 
mTORC1 mechanistic target of rapamycin complex 1, mPFC medial prefrontal cortex

mGlu2/3 receptor antagonists Ketamine

Antidepressant-like effects Rapid acting
Long-lasting
Efficacy for treatment-resistant model
Enhancement of antidepressant-like effects of ketamine

Rapid-acting
Long-lasting
Efficacy for treatment-resistant model

Synaptic mechanisms AMPA receptor activation
BDNF/TrkB signaling stimulation
mTORC1 signaling stimulation
Increase in spine formation

AMPA receptor activation
BDNF/TrkB signaling stimulation
mTORC1 signaling stimulation
Increase in spine formation

Network mechanisms Activation of mPFC serotonergic transmission
Activation of mesolimbic dopaminergic transmission

Activation of mPFC serotonergic 
transmission

Activation of mesolimbic dopaminer-
gic transmission
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blockade of the mGlu2/3 receptor conferred a sustained 
enhancement of stress resilience. The authors additionally 
reported that the mGlu2 receptor, but not the mGlu3 recep-
tor, was responsible for these protective effects because the 
effects in knockout mice lacking the mGlu3 receptor were 
indistinguishable from those in wild-type mice.

While mGlu2/3 receptor antagonists have ketamine-like 
antidepressant profiles, they do not show ketamine-like 
adverse effects in rodents [28]. For example, the mGlu2/3 
receptor antagonist LY3020371 does not cause adverse 
effects known to be problematic with the use of ketamine, 
such as psychotomimetic-like behavior, cognitive impair-
ment, motor impairment, and abuse liability, in rodent mod-
els [36]. In addition, the daily intravenous infusion of a high 
dose of LY3020371 for 14 days did not produce critical toxi-
cological findings, including brain histochemistry, in either 
rats or cynomolgus monkeys [36]; therefore, ketamine-like 
neurotoxic effects were not noted. All these data clearly 
indicate that mGlu2/3 receptor antagonists are unlikely to 
have ketamine-like adverse effect profiles. Rather, mGlu2/3 
receptor antagonists have been reported to have pro-cogni-
tive effects in some animal models [37, 38], which would 
support the use of mGlu2/3 receptor antagonists compared 
with ketamine use for the treatment of MDD patients.

mGlu2/3 receptor antagonists have been reported to pos-
sess an additional characteristic that is expected to allow 
them to be beneficial when they are dosed with other rapid-
acting antidepressants. The combination of sub-effective 
doses of LY341495 and ketamine exerted significant anti-
depressant-like effects [32, 39, 40], indicating that mGlu2/3 
receptor antagonists augment the antidepressant effects of 
ketamine. In contrast, the combined doses of these sub-
stances did not produce the undesirable behavioral effects 
that are characteristic of ketamine when dosed alone, such as 
locomotor hyperactivity, impairment of short-term memory 
and disturbed motor coordination, in rodent studies involv-
ing the induction of antidepressant effects [32]. In addition 
to ketamine, LY341495 has been proven to enhance the 
antidepressant-like effect of scopolamine [41]. Like keta-
mine, scopolamine has been shown to exert rapid-onset anti-
depressant effects in patients with MDD, including those 
with TRD [42]; however, use of scopolamine is also lim-
ited because of adverse effects. Thus, the adjunctive use of 
mGlu2/3 receptor antagonists may be useful to mitigate the 
adverse effects of ketamine or scopolamine by allowing their 
doses to be lowered. Interestingly, LY341495 has recently 
been demonstrated to enhance the antidepressant-like effects 
of each ketamine stereoisomer, esketamine and arketamine, 
differentially [43]. While a sub-effective dose of LY341495 
enhanced the antidepressant-like effects of both stereoiso-
mers in a tail suspension test of naïve mice, it potentiated 
rapid (< 24 h) and sustained (> 3 days) antidepressant effects 
of arketamine but not esketamine in a chronic unpredictable 

stress model, suggesting that arketamine may play a key role 
in the mechanism of the enhancement of the antidepressant-
like effects of ketamine by LY341495. Because arketa-
mine has been proposed to have more potent and sustained 
antidepressant-like effects but fewer adverse effects than 
esketamine [7, 44, 45], facilitating the effects of arketamine 
through the use of mGlu2/3 receptor antagonists may be an 
interesting strategy.

In contrast to the above findings, mGlu2/3 receptor stimu-
lation, rather than blockade, and increased mGlu2 receptor 
expression have also been reported to exert antidepressant-
like behaviors and to confer stress resilience. For example, 
L-acetylcarnitine, which epigenetically increases mGlu2 
receptor expression, exerts antidepressant effects [21], and 
knockout mice lacking the mGlu2 receptor show increased 
stress susceptibility [46]. However, evidence involving spe-
cific mGlu2/3 receptor agonists or mGlu2 receptor posi-
tive allosteric modulators is limited, and the mechanisms 
involved have not been fully elucidated [47].

Mechanisms underlying 
the antidepressant‑like effects of mGlu2/3 
receptor antagonists

There are striking similarities in the underlying mecha-
nisms between ketamine and mGlu2/3 receptor antagonists, 
which may explain the ketamine-like antidepressant profiles 
of mGlu2/3 receptor antagonists [28]. Indeed, they share 
mechanisms not only at the synaptic level, but also at the 
network level, and it has been proposed that mGlu2/3 recep-
tor blockade has the same downstream mechanism of keta-
mine, as explained below. These similarities are depicted in 
Table 2 and Fig. 2.

Similarity at synaptic level

Both mGlu2/3 receptor antagonists and ketamine share 
underlying synaptic mechanisms that are triggered by an 
increase in glutamate release in the prefrontal cortex (PFC). 
mGlu2/3 receptor antagonists are thought to increase gluta-
mate release through the blockade of autoreceptors on gluta-
mate terminals, while ketamine increases glutamate release 
through the disinhibition of pyramidal neurons [27, 48]. 
Increased glutamate in the synaptic cleft activates postsynap-
tic AMPA receptors, which stimulates the secretion of brain-
derived neurotrophic factor (BDNF) and, subsequently, the 
stimulation of tropomyosin-related kinase B (TrkB) receptor 
signaling. These events lead to an increase in dendritic spine 
density and synaptic connections, presumably via a mecha-
nistic target of rapamycin complex 1 (mTORC1) signaling 
pathway [29, 49, 50]. Notably, AMPA receptor stimulation 
and a subsequent increase in BDNF secretion are considered 
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common pathways for various agents that mimic the antide-
pressant effects of ketamine [51–53], and this mechanism 
is necessary for mGlu2/3 receptor antagonists to enhance 
the antidepressant-like effects of arketamine [43]. Indeed, 
both AMPA receptor positive allosteric modulators and 
BDNF have been shown to exert antidepressant-like effects 
[54–57]. In animal models of depression, the above-men-
tioned pathways and spine density are reportedly perturbed 
in the PFC, and both ketamine and mGlu2/3 receptor antago-
nists ameliorated these abnormalities [29, 58, 59]. Regarding 
mTORC1 signaling, mTOR knockdown in the infralimbic 
cortex induced depressive-like behavior in mice [60], and 
the mTOR pathway was disturbed in the PFC of postmortem 
MDD patients [61]; therefore, the reversal of dysfunctional 
mTORC1 signaling may be an important mechanism for the 
exertion of ketamine-like antidepressant effects. In contrast, 
an increase in mTOR activity in the PFC of postmortem 
MDD patients was recently reported [62], and rapamycin, 

an inhibitor of mTORC1 signaling, prolonged, rather than 
blocked, the antidepressant effects of ketamine in MDD 
patients [63]. Therefore, the role of mTORC1 signaling 
activation in ketamine-like antidepressant actions requires 
further clarification.

Similarity at network level

Both serotonergic and dopaminergic transmissions are 
considered to play important roles in exerting antidepres-
sant effects. Dopaminergic and serotonergic pathways are 
reportedly involved in the antidepressant-like effects of both 
ketamine and mGlu2/3 receptor antagonists. The systemic 
administration of ketamine and mGlu2/3 receptor antago-
nists (LY341495 and LY3020371) increased the number 
of spontaneously active dopamine neurons in the ventral 
tegmental area (VTA) and dopamine release in the nucleus 
accumbens (NAc) and/or frontal cortex [64]. In addition, 

Network Mechanisms Synaptic Mechanisms

Fig. 2  Proposed mechanisms for the antidepressant effects of 
mGlu2/3 receptor antagonists and ketamine. mGlu2/3 receptor 
antagonists block perisynaptic mGlu2/3 receptors and the postsyn-
aptic mGlu3 receptor, while ketamine blocks the NMDA receptor 
on GABA interneurons and on extrasynaptic NMDA receptors. Both 
mechanisms converge to stimulate postsynaptic AMPA receptor 
signaling, which triggers network and synaptic changes. At the net-
work level, both compounds activate the DRN-mPFC serotonergic 
system and dopaminergic systems (both mesolimbic and mesocorti-
cal dopaminergic systems) through AMPA receptor stimulation. At 

the synaptic level, both compounds activate BDNF/TrkB/mTORC1 
pathways via AMPA receptor stimulation, leading to an increase in 
spine formation. These mechanisms might contribute to the antide-
pressant effects of both compounds. NMDA N-methyl-d-aspartate, 
AMPA α-amino-3-hydroxy-5-methyl-isoxazole-4-propionate, DRN 
dorsal raphe nucleus, mPFC medial prefrontal cortex, VTA ventral 
tegmental area, NAC nucleus accumbens, FC frontal cortex, BDNF 
brain-derived neurotrophic factor, TrkB tropomyosin-related kinase B, 
mTORC1 mechanistic target of rapamycin complex 1
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we reported that the direct injection of mGlu2/3 recep-
tor antagonists (MGS0039 and LY341495) into the NAc 
increased dopamine release in this region, indicating that 
mGlu2/3 receptor antagonists may activate the VTA-NAc 
dopaminergic system [65, 66]. The interaction of mGlu2/3 
receptor antagonists with the dopaminergic system is sup-
ported by in vivo behavioral results showing that both keta-
mine and LY341495 potentiated a dopamine D2/3 receptor 
agonist (quinpirole)-induced increase in locomotor activity 
[64]. Moreover, the injection of LY341495 into the NAc pre-
vented depressive-like behavior occurring during withdrawal 
from repeated methamphetamine treatment [67], indicating 
that mGlu2/3 receptor antagonists may exert antidepressant 
effects at least partly through the VTA-NAc dopaminergic 
system. Notably, this enhancement of the effects of mGlu2/3 
receptor antagonists on the dopaminergic system has been 
shown to be mediated through AMPA receptor stimulation 
[64, 66].

Several lines of evidence imply the involvement of the 
serotonergic system in the antidepressant-like effects of 
both ketamine and mGlu2/3 receptor antagonists. Both 
ketamine and an mGlu2/3 receptor antagonist (MGS0039) 
increased serotonin release in the medial prefrontal cortex 
(mPFC) [68–70]. The depletion of serotonin cancelled the 
antidepressant-like effects of ketamine and mGlu2/3 recep-
tor antagonists [70, 71]. Therefore, an increase in sero-
tonergic transmission may be responsible, in part, for the 
antidepressant-like effects of both ketamine and mGlu2/3 
receptor antagonists. We further investigated possible mech-
anisms through which both ketamine and mGlu2/3 receptor 
antagonists enhance the activity of the serotonergic system 
to exert their antidepressant-like effects. We found that the 
injection of ketamine or LY341495 into the mPFC increased 
c-Fos positive serotonin neurons in the dorsal raphe nucleus 
(DRN) [71], indicating a role of the mPFC-DRN pathway 
in these actions. This presumption was supported by the 
finding that AMPA receptor stimulation or an increase in 
glutamate in the mPFC with a glutamate transporter inhibi-
tor (both of these manipulations activate mPFC neurons) 
increased the number of c-Fos positive serotonin cells in 
the DRN [72, 73]. Pham et al. reported that the intra-mPFC 
injection of ketamine increased serotonin release in the 
mPFC as well as the antidepressant-like effects, both of 
which were attenuated by AMPA receptor blockade in the 
DRN [70, 74]. Therefore, the activation of DRN serotonin 
neurons regulated by the mPFC-DRN pathway is involved 
in the antidepressant-like effects of both mGlu2/3 receptor 
antagonists and ketamine. Notably, the optogenetic stimula-
tion of mPFC cells projecting to the DRN has been reported 
to exert robust antidepressant-like effects [75], and the anti-
depressant-like effect of ketamine or an mGlu2/3 receptor 
antagonist was blocked by the silencing of DRN neurons 
[70, 76], supporting the role of mPFC-DRN projections. 

Moreover, we further demonstrated that the antidepressant-
like effects of an mGlu2/3 receptor antagonist and ketamine 
were mediated by 5-HT1A receptor stimulation in the mPFC 
[76, 77]. Interestingly, subsequent activation of the phos-
phoinositide-3 kinase/Akt/mTORC1 pathway is responsible 
for the antidepressant-like effects of both compounds [76, 
77], and mPFC 5-HT1A receptor activation can mimic the 
rapid and sustained antidepressant-like effects seen in animal 
models, including the chronic unpredictable stress model, 
through mTORC1 signaling [78]. Collectively, these find-
ings imply that stimulation of the mPFC 5-HT1A receptor 
and the subsequent signaling mechanisms triggered by the 
release of serotonin through mPFC-DRN-mPFC projections 
are likely to be involved in the unique antidepressant-like 
effects of mGlu2/3 receptor antagonists and ketamine.

Role of mGlu2 receptor in the antidepressant 
actions of ketamine

A role of the mGlu2 receptor in the actions of ketamine has 
recently been reported. First, the antidepressant-like effects 
of ketamine were attenuated by an mGlu2/3 receptor agonist 
[40, 79]. In addition, the antidepressant-like effects of keta-
mine were no longer observed in mice lacking the mGlu2 
receptor [40]. Although the precise molecular mechanism 
for the role of mGlu2/3 receptor blockade in the action of 
ketamine needs to be further elucidated, these results indi-
cate the importance of the mGlu2 receptor in the antide-
pressant-like effects of ketamine and support the concept 
that mGlu2/3 receptor antagonists may have ketamine-like 
antidepressant profiles.

The antidepressant-like actions of mGlu2/3 antagonists 
are often attributed to the inhibition of the mGlu2 recep-
tor, but not the mGlu3 receptor, based on findings that the 
antidepressant-like effects of mGlu2/3 receptor antagonists 
are no longer observed in knockout mice lacking the mGlu2 
receptor, while they are seen in knockout mice lacking the 
mGlu3 receptor [40, 79, 80]. Nevertheless, several reports 
have indicated that mGlu3 receptor blockade may also 
contribute to the antidepressant-like effects. Conn’s group 
reported that a selective mGlu3 receptor NAM exerted anti-
depressant-like effects that were more potent than those of a 
selective mGlu2 receptor NAM [81]. Moreover, both mGlu2 
NAM and mGlu3 NAM reversed depressive-like behavior 
in a chronic variable stress model [82]. Interestingly, both 
mGlu2 and mGlu3 NAMs exert antidepressant-like effects 
via an increase in glutamate transmission in the PFC, but 
through mechanistically distinct manners: a presynap-
tic action (for mGlu2 NAM), and postsynaptic action (for 
mGlu3 NAM). However, no evidence is available regarding 
whether the blockade of either receptor alone can mimic 
ketamine-like antidepressant effects and if so, the underly-
ing mechanisms. Therefore, mGlu2/3 receptor antagonists, 
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rather than selective antagonists for the mGlu2 or mGlu3 
receptor, might be preferable as an alternative for ketamine.

Clinical trials of mGlu2/3 receptor 
antagonists

To date, clinical studies of several mGlu2/3 receptor antago-
nists have been conducted or are being conducted [83], as 
summarized in Table 3.

Decoglurant (RG1578/RO4995819)

Decoglurant, which was synthesized and developed by F. 
Hoffmann-La Roche, Ltd., is a NAM of the mGlu2/3 recep-
tor. Decoglurant has been shown to reduce the anhedonic 
index in a chronic mild stress model of rats and to res-
cue scopolamine-induced attention deficits in non-human 
primates [84]; thus, it is expected to be effective for both 
depression and cognitive dysfunction. A randomized, pla-
cebo-controlled, double-blind, multicenter phase 2 trial of 
decoglurant as an adjunctive treatment to selective seroto-
nin reuptake inhibitors or serotonin- and norepinephrine 
reuptake inhibitors for 6 weeks in MDD patients with inad-
equate responses to antidepressant treatment was conducted 
to evaluate decoglurant’s antidepressant and pro-cognitive 
effects [84]. In this study, none of the decoglurant doses 
(5 mg, 15 mg, or 30 mg) demonstrated significant differ-
ences from the placebo in terms of the primary endpoint 
(change from baseline in Montgomery Åsberg Depression 
Rating Scale total score at the end of 6 weeks of treatment). 
Furthermore, no pro-cognitive effects, as assessed using 
the Cambridge Neuropsychological Test Automated Bat-
tery, were seen. In addition to a high placebo response and a 
low prevalence of patients with clinically relevant cognitive 
impairment at baseline, which were raised by the authors 
as possible reasons for the lack of efficacy [84], some other 
reasons can be considered as possible explanations for the 

failure to show any efficacy in this trial. First, whether opti-
mal dose levels were used is uncertain. Although the authors 
claimed that the doses were unlikely to be suboptimal given 
the high brain penetrance observed in preclinical studies, 
whether the free fraction of decoglurant in the extracellular 
fluid was sufficient to block the mGlu2/3 receptor was not 
known. Regrettably, the concentrations of decoglurant in the 
cerebrospinal fluid (CSF) were not measured, therefore, no 
data on the target engagement of decoglurant in humans is 
available. Moreover, the neurophysiological and behavioral 
properties of decoglurant are quite different from those of 
ketamine and other mGlu2/3 receptor orthosteric antago-
nists and NAMs, and decoglurant failed to exert sustained 
antidepressant effects in preclinical studies [85]. Although 
detailed pharmacokinetic profiles of decoglurant have not 
been reported, the long half-life of decoglurant could be 
responsible for this difference, as the sustained stimulation 
of AMPA receptors can cause desensitization.

TS‑161 (TP0473292)

TS-161 was synthesized and is being developed by Taisho 
Pharmaceutical Co., Ltd. as an ester prodrug of TP0178894 
to improve oral bioavailability. TP0178894 is an mGlu2/3 
receptor orthosteric antagonist with potent antagonist 
activity and high selectivity for mGlu2/3 receptors [86]. 
TP0178894 and its prodrug have been shown to exert rapid-
acting and long-lasting antidepressant-like effects in a rodent 
model [30] and to exert the antidepressant-like effects in 
a rodent TRD model [86]. We conducted a randomized, 
double-blinded, placebo-controlled, single-ascending dose 
and 10-day multiple ascending dose study in healthy sub-
jects. The clinical study results demonstrated that TS-161 
is orally bioavailable and extensively converted into an 
active metabolite (TP0178894); the Cmax and AUC of the 
prodrug were approximately 0.1% of those of TP0178894 
[86]. In addition, we measured the CSF concentrations of 
TP0178894 after a single administration of TS-161 and 

Table 3  Summary of clinical trials of mGlu2/3 receptor antagonists

MDD major depressive disorder, NAM negative allosteric modulator, TRD treatment-resistant depression

Compound Drug-receptor interaction 
type

Development 
phase (trial 
status)

Population (target) Latest clinical trial 
clinicaltrials.gov 
identifier

Company /originator

Decoglurant 
(RG1578, 
RO4995819)

NAM 2 (completed) MDD NCT01457677 F. Hoffmann-La Roche, Ltd

TS-161 (TP0473292) Orthosteric antagonist 2 (on-going) TRD NCT04821271 Taisho Pharmaceutical Co., 
Ltd

MGS0210 (BCI-838) Orthosteric antagonist 1 (completed) (TRD) NCT01548703 Taisho Pharmaceutical Co., 
Ltd

DSP-3456 NAM 1 (on-going) (TRD) – Sumitomo Pharma Co., Ltd
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found that TP0178894 penetrated into the CSF, enabling an 
exposure level that was predicted to be sufficient to block 
mGlu2/3 receptors and exert the anticipated antidepressant 
effects [86]. Overall, TS-161 was safe and well tolerated, 
and only mild adverse events were seen at a dose of 100 mg, 
which is the dose level expected to exert pharmacological 
actions. A phase 2 study evaluating the efficacy of TS-161 
in patients with TRD is currently on-going with an upper 
dose level of 100 mg per day (ClinicalTrials.gov Identifier: 
NCT04821271).

MGS0210 (BCI‑838)

MGS0210, synthesized by Taisho Pharmaceutical Co., Ltd., 
is an ester prodrug of MGS0039. There are several lines of 
evidence that MGS0039, a selective and potent mGlu2/3 
receptor orthosteric antagonist [23], exerts ketamine-like 
antidepressant effects in rodents and shares the underlying 
mechanisms of its antidepressant-like actions with keta-
mine [27]. MGS0210 has been proven to improve the oral 
bioavailability of MGS0039 in both rats and cynomolgus 
monkeys [87, 88] and to show antidepressant-like effects 
in rodent models after oral administration [88]. A phase 
1 study was conducted by BrainCells Inc. in healthy sub-
jects. Although the plasma exposure of MGS0039, an active 
metabolite, increased after single and 7-day multiple doses 
of MGS0210, the plasma exposure levels of MGS0210 were 
approximately tenfold higher than that of MGS0039 [89], 
indicating that MGS0210 is not an ideal prodrug. None-
theless, it should be noted that dose- and time-dependent 
effects on some power spectra of quantitative electroenceph-
alograms were observed during a multiple ascending dose 
study, suggesting that MGS0039 may penetrate the brain 
to engage the mGlu2/3 receptor. MGS0210 was well toler-
ated, and adverse events were generally mild and transient 
in duration [89].

DSP‑3456

DSP-3456 is a NAM of the mGlu2/3 receptor that is cur-
rently being developed by Sumitomo Pharma Co., Ltd. 
According to the company’s website [90], DSP-3456 is in 
the phase 1 stage of development as a potential treatment for 
TRD in the US. The chemical structure and detailed phar-
macological profiles of DSP-3456 have not been disclosed.

Conclusions

Since the first demonstration of the antidepressant-
like effects of prototype mGlu2/3 receptor antagonists 
(MGS0039 and LY341495) in classical animal models [23], 
accumulating evidence has clearly shown that the blockade 

of mGlu2/3 receptors is an attractive approach for devel-
oping novel antidepressants with ketamine-like antidepres-
sant profiles but with safety profiles that are better than 
those of ketamine. Among these research activities, several 
mGlu2/3 receptor antagonists, both orthosteric antagonists 
and NAMs, have been generated, and some have been tested 
or are being tested in clinical trials.

In this respect, the results that decoglurant, an mGlu2/3 
receptor NAM, failed to show any efficacy in patients with 
MDD are discouraging. However, many reasons for this 
failure, including the clinical trial design (dose levels used, 
patient selection, etc.), and the validity of decoglurant as 
a tool for a proof-of-concept study for mGlu2/3 receptor 
antagonists should be considered carefully before drawing 
any conclusions regarding the efficacy of mGlu2/3 recep-
tor antagonists for the treatment of depression. Currently, at 
least two mGlu2/3 receptor antagonists are in clinical trials. 
In particular, the human proof-of-concept study of TS-161 
is of importance, because this compound was proven to have 
ketamine-like antidepressant profiles in rodent studies and 
the dose levels used in the trial are expected to be sufficient 
to block mGlu2/3 receptors. Therefore, mGlu2/3 receptor 
antagonists still hold promise for the development of safer 
and more efficacious antidepressants.
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