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Abstract
The CACNA1C and the ZNF804A genes are among the most relevant schizophrenia GWAS findings. Recent evidence shows 
that the interaction of these genes with the schizophrenia diagnosis modulates brain functional response to a verbal flu-
ency task. To better understand how these genes might influence the risk for schizophrenia, we aimed to study the interplay 
between CACNA1C and ZNF804A on working memory brain functional correlates. The analyses included functional and 
behavioural N-back task data (obtained from an fMRI protocol) and CACNA1C-rs1006737 and ZNF804A-rs1344706 geno-
types for 78 healthy subjects and 78 patients with schizophrenia (matched for age, sex and premorbid IQ). We tested the 
effects of the epistasis between these genes as well as of the three-way interaction (CACNA1C × ZNAF804A × diagnosis) 
on working memory-associated activity (N-back: 2-back vs 1-back). We detected a significant CACNA1C × ZNAF804A 
interaction on working memory functional response in regions comprising the ventral caudate medially and within the left 
hemisphere, the superior and inferior orbitofrontal gyrus, the superior temporal pole and the ventral-anterior insula. The 
individuals with the GWAS-identified risk genotypes (CACNA1C-AA/AG and ZNF804A-AA) displayed a reduced working 
memory modulation response. This genotypic combination was also associated with opposite brain activity patterns between 
patients and controls. While further research will help to comprehend the neurobiological mechanisms of this interaction, 
our data highlight the role of the epistasis between CACNA1C and ZNF804A in the functional mechanisms underlying the 
pathophysiology of schizophrenia.

Keywords  CACNA1C gene · ZNF804A gene · Epistasis · Schizophrenia · fMRI · Working memory

Introduction

Schizophrenia (SZ) is a severe and disabling psychiatric 
disorder whose heritability has been estimated to be up 
to 80%, highlighting its strong genetic component [1]. 
Genome-wide association studies (GWAS) have provided 

compelling evidence of the polygenic architecture of SZ, 
with probably thousands of genetic variants with additive 
effects [1, 2]. The organisational complexity that involves 
such polygenicity is further complicated by the fact that 
genes are not functioning alone, and many of them inter-
play with each other, the so-called genetic epistasis. Since 
then, the challenge has been to study the modifying effect 
that one allele may exert over another at a different locus, 
an effect related to the dependencies within molecular 
pathways to ensure biological function [3]. As well, the 
convergence of GWAS data has allowed highlighting 
relevant pathways in the pathophysiology of SZ, such as 
synaptic plasticity [4, 5]. The CACNA1C and ZNF804A 
genes are part of these pathways, and they map to two of 
the most robustly associated loci with the susceptibility 
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for the disorder [4–8]. However, how they increase the 
vulnerability for SZ remains relatively unknown, and their 
epistatic effect has been scarcely studied.

On the one hand, the CACNA1C gene encodes for the 
α-1C subunit of the Cav 1.2 voltage-dependent L-type cal-
cium channel, an ion channel that regulates the calcium 
influx into the cell upon the polarisation of the membrane 
and represents the predominant calcium channel in the 
brain [9–11]. The location of this channel in neuronal bod-
ies, dendritic spines and shafts is indicative of critical roles 
in the regulation of postsynaptic signalling pathways, neu-
rotransmitter release, neuronal excitability, synaptic plas-
ticity and cell survival [12]. Within CACNA1C variability, 
the rs1006737-G/A has been associated with the risk of 
SZ through GWAS and meta-analysis [8, 13] and with the 
modulation of CACNA1C mRNA levels in the dorsolateral 
prefrontal cortex in human prenatal post-mortem brain sam-
ples [14]. Reinforcing the relevance of this genetic variant, 
a study based on human-induced neurons has reported the 
association between the SZ’s risk allele and an increased 
mRNA expression and Cav1.2 current density [15]. Addi-
tionally, studies on post-mortem human brain samples have 
related this same risk allele to CACNA1C expression changes 
[14, 16].

On the other hand, the ZNF804A gene encodes for the 
zinc-finger protein 804A. While its exact function remains 
unclear, the presence of the zinc-finger domain suggests a 
role as a transcription factor and as a gene-expression regu-
latory element of genes related to synaptic plasticity pro-
cesses, such as cell adhesion, neurite outgrowth and den-
dritic branching [17–19]. To these data, recent studies also 
add evidence on its implication in mRNA processing and 
RNA translation [20, 21]. Indeed, among genes regulated 
by ZNF804A, there are RBFOX1, DRD2 and COMT, which 
have also been associated with the risk for SZ [20, 22]. The 
ZNF804A is expressed throughout foetal development and 
in the adult human brain [18, 23], and its dysregulation may 
contribute to altered neuronal and synaptic structures related 
to psychotic disorders [24]. Regarding the genetic variability 
of ZNF804A, the rs1344706-A/C has been associated with 
psychosis [2, 4, 6, 25, 26] and with higher schizotypy scores, 
a risk phenotype associated with the susceptibility for psy-
chosis distributed in the general population [27, 28]. Moreo-
ver, from a molecular point of view, it has been seen that 
the rs1344706-A allele is associated with reduced ZNF804A 
expression in prenatal and adult post-mortem human brain 
[18], which was later confirmed by another post-mortem 
foetal brain study evidencing a reduced expression of the 
most abundant ZNF804A splice variant in A risk homozy-
gotes [23]. For both, CACNA1C-rs1006737 and ZNF804A-
rs1344706, the A allele has been identified as the risk vari-
ant associated with SZ through candidate gene, GWAS and 
meta-analytic approaches [2, 6, 8, 26, 29, 30].

To get a comprehensive overview of how genetic variabil-
ity contributes to SZ, functional MRI (fMRI) is considered 
a powerful tool to assess the relationship between genetic 
and biological mechanisms underlying the cerebral activa-
tion patterns and cognitive features in psychiatric disorders 
[31]. In this regard, there is extensive research on the role of 
CACNA1C and ZNF804A in the modulation of brain func-
tion using multiple approaches and paradigms. Nonetheless, 
the previous studies are mainly based on healthy partici-
pants [32–37]. Focusing on working memory, several studies 
have reported independent associations for both genes with 
changes in the connectivity between the dorsolateral prefron-
tal cortex and the hippocampus in healthy subjects [32, 34, 
38]. Regarding the CACNA1C, there is only one study that 
reported the effect of the rs2007044 variability (a variant in 
linkage disequilibrium with rs1006737) on working memory 
brain activity response in a case–control sample of Chinese 
origin [39]. On the other hand, most of the ZNF804A-fMRI 
data on SZ come from studies based on resting-state para-
digms or evaluating different cognitive dimensions [40–43]. 
Only one study showed that within affected individuals, the 
rs1344706 modulated the connectivity between the right 
dorsolateral prefrontal cortex and the left hippocampal for-
mation during the N-back task performance [40].

Based on this evidence, a common downstream physio-
logical pathway for CACNA1C and ZNF804A genes has been 
suggested [44] since genes that disrupt the same molecular 
pathway are more likely to influence similar phenotypes 
[45]. For this reason, inspecting epistatic effects in quantifi-
able and brain-based phenotypes may add relevant data on 
their joint role. Indeed, previous evidence points towards an 
interplay between these two genes on brain function during 
a verbal fluency task [46], showing that carrying both risk 
genotypes (CACNA1C-AA/AG and ZNF804A-AA) could 
be associated with opposite effects in fMRI response in 
individuals with SZ and healthy subjects. Also, from struc-
tural approaches in bipolar disorder, which has a substan-
tial shared background with schizophrenia [47, 48], there 
are data suggesting a CACNA1C and ZNF804A epistasis on 
white matter microstructure alterations [49]. In this sense, 
further neuroimaging studies analysing the epistasis between 
CACNA1C and ZNF804A in healthy controls and patients are 
needed, and they could benefit from using more homogene-
ous samples to overcome some of the limitations resulting 
from the disorder’s epidemiological characteristics.

According to the above mentioned, our main goal was 
to investigate the CACNA1C and ZNF804A epistatic effects 
concerning brain function during the performance of a work-
ing memory task in a matched sample of healthy subjects 
and patients with SZ. Secondly, we aimed to assess whether 
this putative epistatic effect exerted a differential modulation 
depending on the health/disease status. We hypothesised that 
the effect of the genetic variability at the CACNA1C gene 
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on the brain response to the N-back task would be modu-
lated by the variability at the ZNF804A gene, or vice versa, 
and that this epistatic effect would be different regarding 
the diagnosis.

Methods and materials

Sample

The sample consisted of 78 healthy subjects (HS) and 78 
patients with a confirmed diagnosis of SZ according to 
DMS-IV-TR (based on an interview by two psychiatrists). 
All participants were of European ancestry with ages com-
prised between 18 and 65 years old, had a current IQ > 70 
(WAIS-III) [50] and were right-handed. The HS had no 
personal or family history of psychotic disorders or treat-
ment. All participants met the same exclusion criteria, which 
included: major medical illness affecting brain function, 
neurological conditions, history of head trauma with loss 
of consciousness and present or history of drug abuse or 
dependence. The patients were evaluated with the Positive 
and Negative Symptoms Scale (PANSS) [51, 52]. The pre-
morbid IQ in patients (and the corresponding estimated IQ 
in controls) was assessed using the Word Accentuation Test 
[53]. Healthy subjects and patients with SZ were matched 
for age, sex, and premorbid IQ to conduct the neuroimaging 
association analyses. The description of the sample is sum-
marised in Table 1.

Ethical approval was obtained from the Germanes Hospi-
talàries Research Ethics Committee, and all participants pro-
vided written informed consent about the study procedures 
and implications. All procedures were carried out according 
to the Declaration of Helsinki.

Molecular analysis

Genomic DNA was extracted for all individuals either from 
buccal mucosa through cotton swabs using ATP Genomic 
Mini Kit Tissue (Teknokroma Analitica, S.A., Sant Cugat 
del Vallès, Spain) or from peripheral blood cells using 
Realpure SSS kit (Durviz, S.L.U., Valencia, Spain). Two 
SNPs were genotyped, the rs1006737-A/G at CACNA1C 
gene (12p13.33) and the rs1344706-C/A at ZNF804A gene 
(2q32.1). The allelic discrimination was performed using 
a fluorescence-based procedure (Applied Biosystems 
Taqman 5′-exonuclease assays) using standard conditions, 
and the polymerase chain reaction plates were read on 
ABI PRISM 7900HT instrument with SDS v2.1 software 
(Applied Biosystems). The genotyping call rate was > 0.99, 
and the accuracy of the method was tested by running in 
duplicate the 10% of the samples and confirming all the 
repeated genotypes. The minor allele frequency in our 
sample (rs1006737-A = 0.30 and rs1344706-C = 0.42) was 
similar to the one described for the European superpopula-
tion in the 1000 Genomes Project (rs1006737-A = 0.32 and 
rs1344706-C = 0.38), and the genotype frequencies were in 
Hardy–Weinberg equilibrium in both diagnostic groups.

Table 1   Demographic, clinical and genetic description of the sample included in the study

All the quantitative variables include mean and standard deviation (sd). The sex description includes male/female count (% of males) for both 
healthy subjects and patients with schizophrenia (SZ). The clinical description of patients includes: illness duration (in years), PANSS scores, 
and Chlorpromazine (CPZ) equivalents (mg/day). The count (frequency) of each genotype combination is given
a Data of Illness duration were available for 73 patients
b Data of PANSS scores were available for 73 patients
c Data of CPZ equivalent doses were available for 76 patients

Healthy subjects (n = 78) Patients with SZ (n = 78)

Age 37.31 (10.09) 37.56 (9.80) t-student = − 0.16, p = 0.88
Sex 53:25 (67.9%) 53:25 (67.9%) χ2 = 0.00, p = 1.00
Premorbid IQ 104.13 (7.23) 102.33 (7.94) t-student = 1.38, p = 0.14
Illness durationa – 13.91 (9.99) –
PANSS totalb – 72.62 (21.28) –
PANSS positiveb – 17.23 (6.37) –
PANSS negativeb – 20.97 (8.16) –
PANSS general psychopathologyb – 34.41 (10.05) –
CPZ equivalentsc – 569.56 (447.0.2) –
CACNA1C Acar + ZNF804A AA 16 (0.21) 17 (0.22) χ2 = 0.12, p = 0.99
CACNA1C Acar + ZNF804A Ccar 20 (0.26) 21 (0.27)
CANCA1C GG + ZNF804A AA 12 (0.15) 11 (0.14)
CACNA1C GG + ZNF804 Ccar 30 (0.38) 29 (0.37)
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To maximise the power and given the small number of 
individuals carrying CACNA1C-AA and ZNF804A-CC 
genotypes, all the analyses were carried out by grouping the 
minor and the heterozygous genotypes (Table 1), follow-
ing the same criteria as previously [46]. Then, the resulting 
dichotomised genotypes were used in all the analyses: CAC-
NA1C-GG homozygotes vs CACNA1C-AA/AG (A-allele 
carriers, Acar); ZNF804A-AA homozygotes vs ZNF804A-
AC/CC (C-allele carriers, Ccar).

N‑back task

Functional images were acquired while participants per-
formed a sequential-letter version of the N-back task [54], 
which engages many storage and executive processes related 
to attention and working memory. The task had two levels 
of memory load (1-back and 2-back) presented in a blocked 
design manner. Each block consisted of 24 letters that were 
shown every 2 s (1 s on, 1 s off), and all blocks contained 
five repetitions located randomly within the blocks. Indi-
viduals were told to indicate repetitions by pressing a but-
ton. Four 1-back and four 2-back blocks were presented in 
an interleaved way, and between them, a baseline stimulus 
(an asterisk flashing with the same frequency as the letters) 
was presented for 16 s. Characters were shown in green for 
1-back blocks and red for 2-back blocks. The same day and 
before the scanning session, all participants underwent a 
training session outside the scanner.

fMRI acquisition parameters

The fMRI data acquisition was performed with a GE Sigma 
1.5T scanner (General Electric Medical Systems, Milwau-
kee, Wisconsin, USA) at Hospital Sant Joan de Déu (Barce-
lona, Spain). The fMRI scanners included 266 volumes for 
each individual and a gradient echo-planar imaging sequence 
depicting the blood oxygen level-dependent (BOLD) sig-
nal. Each volume contained 16 axial planes acquired with 
the following parameters: repetition time = 2000 ms., echo 
time = 20 ms., flip angle = 70°, section thickness = 7 mm, 
section skip = 0.7  mm, in-plane resolution = 3 × 3  mm. 
The first 10 volumes were discarded to avoid T1 saturation 
effects.

Brain functional data analysis

The fMRI image analyses were performed using FEAT tool 
included in FSL Software (FMRIB Software, University 
of Oxford, Oxford, UK) [55]. In the first-level analysis, 
images were corrected for movement and co-registered to 
a common stereotaxic space [Montreal Neurologic Insti-
tute (MNI) template]. To minimise unwanted movement-
related effects, subjects with an estimated maximum 

absolute movement > 3.0 mm or an average absolute move-
ment > 0.3 mm were previously excluded from the study. 
Normalised volumes were spatially smoothed using Gauss-
ian filter with a full-width at half-maximum of 5 mm, and 
general linear models were fitted to generate individual acti-
vation maps for three different contrasts: 1-back vs baseline, 
2-back vs baseline and 2-back vs 1-back. Additionally, to 
control for the movement parameters, the movement vari-
ables were added to the model as nuisance variables. All 
the statistical tests were performed using a cluster-wise 
correction method for multiple comparisons. The initial set 
of clusters was defined with a cluster-forming threshold of 
Z = 2.6 (equivalent to a p value < 0.005) using the standard 
field theory correction implemented in FSL. Afterwards, 
only those clusters with a p value < 0.05, family-wise cor-
rected for multiple comparisons using Gaussian random field 
methods, were considered and reported (according to stand-
ard procedures in FSL). Subsequently, in the second-level 
analysis, we tested in the whole sample (healthy subjects and 
patients): (i) the CACNA1C × ZNF804A epistasis and, (ii) 
the CACNA1C × ZNF804A × diagnosis three-way interac-
tion. This was conducted through a full-factorial ANOVA, 
including the main effects of diagnosis, CACNA1C and 
ZNF804A and all the two-way interactions (whole-brain cor-
rected and adjusted by age, sex, and premorbid IQ). This was 
tested in the 2-back vs 1-back contrast to specifically assess 
working memory functional response [56]. Afterwards, to 
interpret the direction of the results, using the FSLSTATS 
tool in FSL, individual mean activity scores were estimated 
from the areas where significant effects were detected, and 
these values were plotted using SPSS (IBM SPSS Statistics, 
version 27.0, released 2020, IBM Corporation, Armonk, 
New York). It must be acknowledged that the mean activity 
scores obtained from the 2-back vs 1-back contrast do not 
represent mean activity per se, but the mean activity change 
occurred between 1-back and 2-back levels.

To assess the diagnostic relevance of these results, we 
first evaluated the diagnostic differences in 2-back vs 1-back 
contrast by employing an ANOVA model (whole-brain cor-
rected) comparing brain activity between HS and patients 
(adjusted for age, sex, and premorbid IQ). The results 
retrieved the clusters with higher activation in HS as com-
pared to patients and the clusters with higher activation in 
patients as compared to HS (described in detail in Supple-
mentary Material). These regions were then transformed 
into two brain masks. Afterwards, we repeated the above-
explained full-factorial ANOVA tests within these two brain 
masks.

N‑back behavioural measures

The behavioural measure used was the signal detection the-
ory index sensitivity, d′ score [57]. Higher values of the d′ 
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score indicate a better ability to discriminate between targets 
and distractors, while negative values indicate that subjects 
are not performing the task. Therefore, all the individuals 
included in the analyses had positive d′ values (both, d′1 for 
1-back and d′2 for 2-back).

Statistical analyses

Demographic and clinical data were analysed using SPSS. 
First, in the complete sample, the effect of the CAC-
NA1C × ZNF804A epistasis on sex, age and premorbid IQ 
was examined through χ2 and ANOVA. Second, we tested 
the epistasis in relation to the risk of the disorder by means 
of χ2. Finally, within patients, we assessed the epistatic 
effect on the clinical variables (PANSS score and Chlor-
promazine equivalents) using ANOVA tests. No significant 
results were derived from these analyses (Table 1).

The statistical analyses conducted for the fMRI data have 
been described previously in the fMRI data analysis section.

Regarding the N-back behavioural analysis, we studied 
both: (i) the CACNA1C × ZNF804A epistasis and, (ii) the 
three-way interaction (CACNA1C × ZNF804A × diagnosis), 
on the variability between d′1 and d′2 performance using 
a full factorial repeated measures ANOVA (SPSS). In this 
model, the two d′ values were considered as the within-
subjects two-level factor and the diagnosis, CACNA1C and 
ZNF804A as the between-subjects factors (adjusted by age, 
sex, and premorbid IQ).

Results

Brain functional data

We tested the CACNA1C × ZNF804A epistasis and three-
way interaction (CACNA1C × ZNF804A × diagnosis) on the 
brain activity patterns during working memory (2-back vs 
1-back contrast of the N-back task).

On the one hand, we observed a significant CAC-
NA1C  ×  ZNF804A epistasis in one cluster (445 vox-
els, peak activation at MNI [− 2, 6, − 6], Zmax = 4.15, p 
value = 0.0149) (Fig. 1). This cluster was located medially 
at the ventral caudate and the olfactory cortex and, within 
the left hemisphere, extended to the superior and inferior 
orbitofrontal gyrus, the superior temporal pole and reached 
the ventral-anterior insula. To better describe this result, we 
extracted and plotted the mean activity scores of the cluster 
separately for HS and patients. We observed that the epi-
static effect worked in the same direction in both groups 
(see the dashed arrows in Fig. 1b). Beyond the epistatic 
effect, it is of note that all individuals, except the patients 
carrying both risk alleles (CACNA1C-Acar + ZNF804A-
AA), responded to the increased difficulty of the task by 

decreasing the mean activity (as indicated by the negative 
values of the mean activity change in Fig. 1b). On the con-
trary, the patients carrying both risk alleles presented a mean 
activity change in the opposite direction compared to the rest 
of the subjects (see the positive values of the mean activity 
change in Fig. 1b).

On the other hand, the three-way interaction was 
non-significant.

To assess the relevance of the detected effect in relation to 
the SZ’s diagnosis, we extracted the clusters with significant 
activity differences between patients and controls (described 
in Supplementary Material). Within these regions, the analy-
ses of the CACNA1C × ZNF804A epistasis and three-way 
interaction confirmed the previously explained results. 
The same cluster where the epistasis was detected in the 
whole-brain analysis, albeit reduced in size (encompassing 
the medial caudate and the olfactory cortex), remained sig-
nificant (187 voxels, peak activation at MNI [− 2, 6, − 6], 
Zmax = 4.15, p value = 0.0149).

N‑back behavioural data

The epistasis showed a trend effect on the performance dif-
ferences between the two levels of the task (d′1 and d′2) 
(F = 3.52, p value = 0.063). Independently of the diagnosis, 
individuals carrying CACNA1C-GG + ZNF804A-Ccar geno-
types, and also those with both risk genotypes (CACNA1C-
Acar + ZNF804A-AA), showed less ability to adapt to the 
task increased difficulty (Fig. 2). The three-way interaction 
did not retrieve significant results on N-back performance.

Discussion

Besides the extensive research done on the role of CAC-
NA1C-rs1006737 and ZNF804A-rs1344706 in brain func-
tional phenotypes, there is only one previous fMRI study 
exploring the genetic epistasis between these two genes. 
This study reports an epistatic effect in healthy subjects and 
a three-way interaction with the diagnosis on verbal flu-
ency’s functional correlates [46]. Our study adds evidence 
on the interaction between these genes on another cognitive 
domain affected in schizophrenia, as is working memory, 
and describes a CACNA1C × ZNF804A epistasis on N-back 
associated functional response across patients with SZ and 
healthy subjects.

The analysis assessing the interplay between CAC-
NA1C and ZNF804A on brain activity associated with 
N-back performance (2-back vs 1-back contrast) revealed 
significant epistasis between these two SZ risk genes. The 
epistasis was found in regions comprising the caudate, 
the inferior frontal gyrus, the superior temporal pole, and 
the insula. The fact that the epistasis worked in the same 
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Fig. 1   a Axial view of the cluster with significant CACNA1C × 
ZNF804A epistasis at 2-back vs 1-back contrast, resulting from the 
analysis including both healthy subjects and patients with schizo-
phrenia (Zmax = 4.15, p value = 0.0149). The right side of the image 
represents the right side of the brain. The MNI coordinates are given 
for the shown slices. Units of the bar are the standardised Z scores (Z 
threshold = 2.6, p value < 0.05). b Bar plots with corresponding mean 

activity change for the significant 2-back vs 1-back cluster. Estimated 
marginal means and ± 2 standard errors (se) are plotted separately 
for healthy subjects in the left and patients with schizophrenia in the 
right by CACNA1C × ZNF804A genotypes. The black dashed lines 
indicate the directionality of the significant CACNA1C × ZNF804A 
epistasis detected. Based on these values, the effect size was esti-
mated (ηp

2 = 0.01)

Fig. 2   Plots representing the d′2–d′1 score (N-back behavioural 
measures), which is used to evaluate performance differences 
between the two levels of the task (according to Egli et al. [56]). The 
bars correspond to the estimated marginal means and ± 2 standard 

errors (se) for healthy subjects in the left and patients with schizo-
phrenia in the right by CACNA1C × ZNF804A genotypes. The grey 
dashed lines indicate the directionality of the CACNA1C × ZNF804A 
epistasis trend (F = 3.52, p value = 0.063)
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direction in both diagnostic groups explains why the CAC-
NA1C × ZNF804A × diagnosis three-way interaction was not 
detected in this cluster. However, the estimation of the mean 
activity change showed that the directionality of the mean 
activity shift in patients with SZ carrying the risk genotype 
combination (CACNA1C-Acar + ZNF804A-AA) was oppo-
site as compared to the rest of the individuals. This is indica-
tive of an increase in brain activity in response to the task 
difficulty, which is contrary to the activity decrease observed 
in the rest of the subjects.

The areas where the epistasis was found have been pre-
viously associated with divergent brain function between 
patients and controls in response to the N-back task. On the 
one hand, regions such as the superior temporal pole were 
previously associated with N-back differences between HS 
and patients with SZ, in a study performed by our group 
in a partially overlapping sample [58]. Also, through meta-
analytic approaches, regions such as the left insula have been 
related to SZ's distinctive functional activity in response to 
this task [59]. On the other hand, when we conducted the 
analysis within the regions with diagnostic differences, the 
epistasis was also significant. The diagnostic relevance of 
the implicated regions and the directionality of the effect 
driven by the previously identified risk alleles point towards 
the biological plausibility of the finding. However, despite 
the biological meaningfulness of our data obtained through 
a cluster-wise correction method, which helps in type I error 
control [60], we must acknowledge that our results have to 
be interpreted cautiously because the detection of epistatic 
effects in other regions or even three-way interactions could 
be hampered by our limited sample size.

Framing our results with previous evidence, our data 
are partially aligned with Tecelão et al. [46]. This study 
found that healthy individuals carrying both risk genotypes 
(CACNA1C-Acar and ZNF804A-AA) showed reduced acti-
vation in the precuneus, the posterior cingulate cortex, the 
calcarine sulcus and the thalamus. In contrast, they did not 
describe any effect on subjects with SZ. Unlike the preced-
ing data [46], we did not find the diagnosis to modulate the 
directionality of the genetic epistasis. While our study and 
the previous one used a comparable sample, the same scan-
ner’s magnetic field and similar acquisition parameters, this 
dissimilarity could be due to other methodological differ-
ences. First, the three-way epistasis previously described 
modulated the functional response to verbal fluency, while 
we assessed working memory. Also, distinct results could 
arise from differences in the characteristics of the samples. 
In the preceding study, the sample included individuals from 
different ethnical origins and with demographic differences 
across diagnostic groups. In contrast, our sample included 
only individuals of European ancestry and the putative effect 
of age, sex and premorbid IQ on brain function was con-
trolled by matching HS and patients with SZ.

Considering the behavioural results, the epistasis did not 
reach significance. This result could be understood from the 
perspective that behavioural phenotypes are further from the 
genetic background, and therefore, genetic variability at this 
level is considered less penetrant [61]. Nonetheless, con-
sidering together both behavioural and functional results, it 
must be mentioned that the individuals who showed higher 
modulation in the functional response were also the ones 
whose performance was least affected by the change at 
behavioural difficulty (CACNA1C-GG + ZNF804A-AA and 
CACNA1C-Acar + ZNF804A-Ccar). This might suggest a 
link between the observed epistatic effect on brain activity 
modulation and the putative effect on behavioural response. 
Together our and previous data indicate the interest of the 
analyses of epistatic effects on the brain and behavioural 
phenotypes. While the assessment of epistatic and three-way 
interactions on neuroimaging phenotypes has been typically 
conducted in samples sizes comparable to ours [62–65], 
advances towards a better understanding of inter-individual 
differences in brain function require the reproducibility in 
samples of thousands of participants and meta-analytical 
evidence [66].

Lastly, some limitations of our study should be acknowl-
edged. The main one is accounted for the sample size. 
Although our sample of 78 HS and 78 patients with SZ is 
larger than the median sample size of brain-wide associa-
tion studies according to a recent revision [66] and, also 
than the previous fMRI study reporting CACNA1C and 
ZNF804A epistasis [46], neuroimaging genetic association 
studies conducted in samples with less than 100 individu-
als may be conditioned by type I and type II errors [60]. 
On the one hand, considering type I error, there are several 
methodological aspects in our analyses that have been used 
to prevent it, such as our hypothesis-driven approach and 
the polymorphic variants selection based on SZ’s GWAS 
significance; the homogeneity of our sample in terms of eth-
nicity, demographic variables, and general cognitive abili-
ties, derived from the use of matched groups; and the stricter 
significance threshold together with the cluster-wise correc-
tion method. On the other hand, type II errors could have 
impeded the detection of epistatic effects in other regions 
or even three-way interactions. While we are aware that the 
lack of power statistical analyses limits this interpretation, 
their implementation in our study was difficulted by the sta-
tistical model used for the neuroimaging analysis (whole-
brain three-way interaction). To our knowledge, the avail-
able power tools are focused on ROI-based approaches and 
two-sample T test. Also, we considered that post hoc power 
analyses have been repeatedly discouraged and regarded as 
uninformative [67–69]. Finally, we must consider that, as 
in our statistical model patients with SZ and HC were both 
included, variables related exclusively to the illness status 
could not be considered. Bearing this in mind, we examined 
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the possible effect of illness duration, PANSS total score, 
estimated medication dose through Chlorpromazine (CPZ) 
equivalents on the estimated brain mean activity and the 
d′ difference (d′2–d′1 score) through bivariate correlations 
within patients. Whereas no effects were detected neither in 
relation to mean brain activity (illness duration r = 0.164, 
p = 0.17; PANSS score r = 0.09, p = 0.47; medication dose 
r = 0.07, p = 0.56; medication type F = 0.23, p = 0.80), nor 
on the task performance (illness duration r = 0.05, p = 0.68; 
PANSS score r = 0.01, p = 0.97; medication dose r = 0.13, 
p = 0.28; medication type F = 0.92, p = 0.41), we cannot 
completely rule out the modulatory effects of patients’ clini-
cal conditions and medication on these phenotypes. Finally, 
data from larger samples (ideally including thousands of 
individuals to ensure the reproducibility of the results), the 
assessment of larger genetic variability, (two SNPs do not 
represent the polygenic nature of working memory and SZ), 
and higher resolution scanners (with higher sensitivity for 
detecting changes in brain activation), are needed to com-
pare these results and replicate thereof.

In conclusion, our study adds novel evidence on the inter-
play between CACNA1C and ZNF804A, two of the variants 
most strongly associated with SZ, on working memory 
functional response, evaluated with the N-back task during 
an fMRI protocol. Furthermore, we observed an opposite 
activity pattern between patients and healthy subjects when 
considering only those carrying the GWAS-identified risk 
genotypes. While further studies are needed to comprehend 
the neurobiological mechanisms by which these two genes 
interact, the converging evidence suggests the role of this 
epistatic effect in the altered functional mechanisms under-
lying the pathophysiology of schizophrenia and encourages 
new research on their putative common pathway.
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