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Abstract
A recent study reported a negative association between a putatively functional dopamine (DA) polygenic score, indexing 
higher levels of DA signaling, and depressive symptoms. We attempted to replicate this association using data from the 
Duke Neurogenetics Study. Our replication attempt was made in a subsample of 520 non-Hispanic Caucasian volunteers 
(277 women, mean age 19.78 ± 1.24 years). The DA polygenic score was based on the following five loci: rs27072 (SLC6A3/
DAT1), rs4532 (DRD1), rs1800497 (DRD2/ANKK1), rs6280 (DRD3), and rs4680 (COMT). Because the discovery sample 
in the original study consisted mostly of Asian participants, we also conducted a post hoc analysis in a smaller subsample of 
Asian volunteers (N = 316, 179 women, mean age 19.61 ± 1.32 years). In the primary sample of non-Hispanic Caucasians, a 
linear regression analysis controlling for sex, age, socioeconomic status (SES), body mass index, genetic ancestry, and both 
early and recent life stress, revealed that higher DA polygenic scores were associated with higher self-reported symptoms of 
depression. This was in contrast to the original association of higher DA polygenic scores and lower depressive symptoms. 
However, the direction of the association in our Asian subsample was consistent with this original finding. Our results also 
suggested that compared to the Asian subsample, the non-Hispanic Caucasian subsample was characterized by higher SES, 
lower early and recent life stress, and lower depressive symptoms. These differences may have contributed to the observed 
divergence in associations. Collectively, the current findings add to evidence that specific genetic associations may differ 
between populations and further encourage explicit modeling of race/ethnicity in examining the polygenic nature of depres-
sive symptoms and depression.
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Introduction

Multiple lines of evidence implicate dopamine (DA) sign-
aling in the pathophysiology of depression [1, 2]. Accord-
ingly, two recent genome-wide association studies (GWAS) 
have implicated common sequence variation in DA-related 
genes in depression [3, 4]. Consistent with this literature, 
Pearson-Fuhrhop et al. [5] reported a significant association 
between depressive symptoms and a putatively functional 
DA polygenic score consisting of common polymorphisms 
across five different DA-related genes. Specifically, they 

found that higher DA polygenic scores were significantly 
associated with lower depressive symptoms. As higher DA 
polygenic scores putatively index higher in vivo DA signal-
ing, the direction of their reported association is consistent 
with some earlier research linking relatively low DA with 
depressive symptoms, such as anhedonia and amotivation 
[6, 7].

The current study represents our attempt to replicate 
the association between higher DA polygenic scores and 
lower depressive symptoms in the Duke Neurogenetics 
Study (DNS). To avoid population stratification biases and 
achieve maximum statistical power, we focused our analyses 
on the largest ethnic subsample in the DNS, non-Hispanic 
Caucasians (N = 520). However, as the original association 
reported by Pearson-Fuhrhop et al. [5] emerged from a dis-
covery sample (N = 273) with a preponderance of Asian par-
ticipants (49%), we also present findings from an exploratory 
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post hoc analysis in a small subsample of 316 students of 
Asian descent.

Methods and materials

Participants

Study participants included a subset of individuals having 
completed the DNS, which was designed to identify bio-
markers of risk for psychopathology amongst 18- to 22-year-
old full-time university students. Participants were recruited 
through posted flyers on the Duke University campus and 
through a Duke University listserv. All procedures were 
approved by the Institutional Review Board of the Duke Uni-
versity Medical Center, and participants provided informed 
consent before study initiation. All participants were free 
of the following study exclusions: (1) medical diagno-
ses of cancer, stroke, diabetes requiring insulin treatment, 
chronic kidney or liver disease, or lifetime history of psy-
chotic symptoms; (2) use of psychotropic, glucocorticoid, 
or hypolipidemic medication; and (3) conditions affecting 
cerebral blood flow and metabolism (e.g., hypertension).

Our primary sample consisted of 520 self-reported non-
Hispanic Caucasian participants (277 women, mean age 
19.78 ± 1.24 years) from the DNS for whom there were 
complete data on genotypes, depressive symptoms, and all 
covariates. Exploratory post hoc analyses were performed 
on a smaller Asian subsample (N = 316, 179 women, mean 
age 19.61 ± 1.32 years) from the DNS, also with complete 
data on study variables.

Current and lifetime DSM-IV axis I or select axis II dis-
orders (antisocial personality disorder and borderline per-
sonality disorder) were assessed with the electronic Mini 
International Neuropsychiatric Interview [8] and Structured 
Clinical Interview for the DSM-IV axis II subtests [9]. Of 
the 520 non-Hispanic Caucasians included in our analyses, 
117 individuals had at least one DSM-IV diagnosis. Of 
the 316 Asian participants, 42 individuals had at least one 
DSM-IV diagnosis. Importantly, neither current nor lifetime 
diagnosis was an exclusion criterion, as the DNS sought 
to establish broad variability in multiple behavioral pheno-
types related to psychopathology. However, no participants, 
regardless of diagnosis, were taking any psychoactive medi-
cation during or at least 14 days prior to their participation.

Socioeconomic status (SES)

We controlled for possible SES effects using the “social lad-
der” instrument [10], which asks participants to rank them-
selves relative to other people in the United States (or their 
origin country) on a scale from 0 to 10, with people who are 

best off in terms of money, education, and respected jobs, at 
the top (10) and people who are worst off at the bottom (0).

Genetic ancestry

To further minimize the risk of population stratification, 
an analysis of identity-by-state of whole-genome single 
nucleotide polymorphisms (SNPs) was performed in PLINK 
[11]. Multidimensional scaling was done separately for the 
two subgroups included in the current analyses (i.e., non-
Hispanic Caucasians and Asians), and the first two compo-
nents for each group were used in each respective analysis 
as covariates.

Depressive symptoms

The 20-item Center for Epidemiologic Studies Depression 
Scale (CES-D) was used to asses depressive symptoms in 
the past week [12]. All items were summed to create a total 
depressive symptoms score.

Life stress

We controlled for the effects of early life stress using the 
Childhood Trauma Questionnaire [CTQ; 13], and of stress 
during the year prior to study participation using the Life 
Events Scale for Students [LESS; 14]. All items from the 
CTQ were summed to create a total score of early life stress. 
For the LESS, we summed the 38 negatively valenced items 
for a total score of recent stress [as described in 15, 16].

Body mass index (BMI)

BMI was calculated based on the height and weight of the 
participants (pounds/inches2 × 703). We included BMI as a 
covariate because it is a known risk factor for depression 
[17].

Genotyping

DNA was isolated from saliva using Oragene DNA self-
collection kits (DNA Genotek) customized for 23andMe 
(www.23and​me.com). Genotyping was done through 
23andMe which uses the sevices/labs of the National Genet-
ics Institute (NGI), a CLIA-certified clinical laboratory and 
subsidiary of Laboratory Corporation of America. One of 
the two different Illumina arrays with custom content was 
used to provide genome-wide SNP data, the HumanOm-
niExpress (N = 524) or HumanOmniExpress-24 [N = 276; 
18–20]. We performed a K-means analysis based on the first 
two multidimensional scaling components of the Asian par-
ticipants, dividing them into two subgroups. Hardy–Wein-
berg equilibrium (HWE) tests were performed in PLINK 

http://www.23andme.com
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[11] on the created Asian groups and on the non-Hispanic 
Caucasians separately. All SNPs were in HWE (p > 0.05).

Dopamine polygenic scores

As per the strategy of Pearson-Fuhrhop et al. [5], we derived 
a DA polygenic score for each participant based on the fol-
lowing five loci: rs27072 (SLC6A3/DAT1), rs4532 (DRD1), 
rs1800497 (DRD2/ANKK1), rs6280 (DRD3), and rs4680 
(COMT). Scoring details are provided in Table 1. Of note, 
we used a putatively functional SNP in SLC6A3/DAT1 
instead of the variable number tandem repeat (VNTR) used 
in the original study, because VNTRs were not genotyped 
in our sample.

Statistical analyses

Descriptive statistics and univariate analyses of variance 
were conducted using SPSS version 24. Mplus version 7 
[21] was used to conduct a linear regression analysis with 

participants’ sex (coded as 0 = males, 1 = females), age, two 
genetic ancestry principal components, SES, BMI, and both 
early and recent life stress, as covariates. Maximum likeli-
hood estimation with bias-corrected bootstrapping (set to 
10,000) was used in all models to generate non-symmetric 
95% confidence intervals (CIs).

Results

Allele frequencies and descriptive statistics for the non-
Hispanic Caucasian and Asian subsamples are presented 
in Tables 1 and 2, respectively. The allele frequencies are 
comparable to those observed in the 1000 genomes sample 
for Europeans and East Asians.

DA polygenic scores and depressive symptoms

Of the covariates, only early life stress (b = 0.24, SE = 0.046, 
p < 0.001; CI 0.15–0.33) and recent life stress (b = 0.67, 

Table 1   The putatively functional single nucleotide polymorphisms included in the dopamine polygenic score

The “target allele” is the allele coded as 1

Gene SNP and allele coding Target allele frequency Functional associations

DRD1 rs4532
C = 1, T = 0

Non-Hispanic Caucasians-0.366
Asians-0.224

While there may be some indication of the functionality of rs4532 
through its high linkage disequilibrium with rs686 [39], it was 
coded based on the association of the G allele with dopamine-
related phenotypes, such as treatment resistance in schizophrenia 
[40] and shorter time to hallucinations in Parkinson’s disease 
patients [41]

DRD2 rs1800497
G(A2) = 1, A(A1) = 0

Non-Hispanic Caucasians-0.803
Asians-0.625

The T allele has been associated with reduced striatal DRD2 binding 
in postmortem tissue [42, 43] and with a blunted striatal response 
to reward [44]

DRD3 rs6280
C = 1, T = 0

Non-Hispanic Caucasians-0.309
Asians-0.319

The C allele has been associated with higher DRD3 dopamine affin-
ity and intracellular signaling in human embryonic kidney cells 
[45]. Additionally, it has been associated with increased reward-
related DA release in a PET study [46]

COMT rs4680
A = 1, G = 0

Non-Hispanic Caucasians-0.502
Asians-0.292

The A (Met) allele has been associated with lower COMT activity 
[47] and higher ventral striatum activity [48]

SLC6A3/DAT1 rs27072
T = 1, C = 0

Non-Hispanic Caucasians-0.183
Asians-0.278

The T allele has been associated with a loss of function and lower 
DAT activity [49]

Table 2   Descriptive statistics 
for the main study variables

Non-Hispanic Caucasians (N = 520) Asians (N = 316)

Minimum Maximum Mean (SD) Minimum Maximum Mean (SD)

Age 18 22 19.78 (1.24) 18 22 19.61 (1.32)
SES 2 10 7.34 (1.43) 2 10 6.93 (1.47)
Early life stress 25 74 31.33 (7.17) 25 76 35 (8.50)
Recent life stress 0 18 2.49 (2.30) 0 16 2.17 (2.40)
Body mass index 16.3 39.15 22.29 (2.83) 16.3 35.44 21.80 (2.68)
Depressive symptoms 0 43 8.96 (7.14) 0 52 10.70 (8.75)
Dopamine score 1 9 4.33 (1.37) 0 8 3.4 (1.57)
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SE = 0.15, p < 0.001; CI 0.39–0.96), significantly predicted 
depressive symptoms; so, that higher stress levels were asso-
ciated with higher depressive symptoms. The DA polygenic 
score significantly and positively predicted depressive symp-
toms (b = 0.43, SE = 0.20, p = 0.03; CI 0.05–0.82; Fig. 1a). 
The R2 of the model was 0.166. Comparing the R2 of the 
model with the DA polygenic score to the R2 of a model 
without it indicated that the variance explained by the poly-
genic score was small (R2 = 0.007).

Exploratory post hoc analyses in the Asian 
subsample

Since Pearson-Fuhrhop et al. [5] used a discovery sample 
with a majority of Asian participants, we also examined 
the association in a smaller Asian subsample as a post hoc 
analysis. Descriptive statistics for the Asian participants 
are presented in Table 2. Comparisons of the non-Hispanic 
Caucasian and Asian participants on the main study vari-
ables pointed to many differences between the groups. 
Non-Hispanic Caucasians were more likely to have a higher 
SES [F(1, 834) = 15.47, p < 0.001], less likely to experience 

early life stress [F(1, 834) = 44.65, p < 0.001], more likely 
to have a higher BMI [F(1, 834) = 6.21, p = 0.013], less 
likely to experience depressive symptoms [F(1, 834) = 9.92, 
p = 0.002], somewhat more likely to experience recent 
stress [F(1, 834) = 3.74, p = 0.054], and somewhat more 
likely to be older [F(1, 834) = 3.74, p = 0.054]. Lastly, the 
non-Hispanic Caucasian participants had higher DA poly-
genic scores than the Asian participants [F(1, 834) = 67.93, 
p < 0.001], suggesting differences in allele frequencies 
between populations.

In the Asian subsample, similar to the primary non-His-
panic Caucasian subsample, early and recent life stress were 
significant predictors of depressive symptoms (early life 
stress: b = 0.33, SE = 0.072, p < 0.001, CI 0.20–0.48; recent 
life stress: b = 0.54, SE = 0.17, p < 0.001, CI 0.21–0.90). 
However, in contrast to the non-Hispanic Caucasian subsam-
ple, SES also significantly predicted depressive symptoms 
(b = − 0.80, SE = 0.29, p = 0.006, CI − 1.39 to − 0.24), so 
that individuals from lower SES experienced higher levels 
of depressive symptoms. Lastly, in the Asian subsample, the 
association between the DA polygenic scores and depres-
sive symptoms was significant and negative (b = − 0.68, 
SE = 0.34, p = 0.047; CI − 1.38 to − 0.021), so that higher 
DA polygenic scores predicted lower levels of depressive 
symptoms (Fig. 1b). The R2 of the model was 0.214. Com-
paring the R2 of the model with the DA polygenic score 
to the R2 of a model without it indicated that the variance 
explained by the polygenic score was small (R2 = 0.012).

The effect of each SNP is presented in Table 3 for both 
the non-Hispanic Caucasian and Asian subsamples. In the 
non-Hispanic Caucasian subsample, the SNP in the SLC6A3/
DAT1 gene (rs27072) was significant (b = 1.62, SE = 0.63, 
p = 0.01; CI 0.50–3.001), explaining 0.015 of the variance. 
In the Asian subsample, the SNP in the DRD1 gene (rs4532) 
was significant (b = − 1.83, SE = 0.80, p = 0.022; CI − 3.49 
to − 0.36), explaining 0.013 of the variance.

Discussion

In the current study, we attempted to replicate earlier work 
by Pearson-Fuhrhop et  al. [5], reporting an association 
between higher DA polygenic scores and lower levels of 
depressive symptoms. While we did find a significant asso-
ciation between DA polygenic scores and depressive symp-
toms in our primary sample of non-Hispanic Caucasians, it 
was in the opposite direction to the one reported in the origi-
nal study: higher DA polygenic scores were associated with 
higher depressive symptoms. However, the pos hoc analysis 
in our smaller subsample of Asian participants revealed an 
association consistent with that of the original report: higher 
DA polygenic scores were associated with lower depressive 
symptoms. When each SNP was examined separately, there 
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Fig. 1   Dopamine polygenic scores are differentially associated with 
depressive symptoms in a non-Hispanic Caucasians and b Asians. To 
better depict the linear regression described in the text, the standard-
ized residuals of depressive symptoms, as assessed by the CES-D, are 
shown (controlling for sex, age, two multidimensional scaling ances-
try components, SES, BMI, and early and recent life stress)
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were specific loci that showed an independent significant 
effect on depressive symptoms, but these differed between 
our subsamples as well as between our study and the original 
study, indicating that individual SNP effects are less reli-
able, as replication studies of single candidate gene associa-
tions have previously shown [e.g., 22]. Lastly, the variance 
explained by the DA polygenic scores in both of our models 
(non-Hispanic Caucasians R2 = 0.007, Asians R2 = 0.012) 
was smaller than what was reported in the original discov-
ery sample (R2 = 0.085). Overestimating the true effect in 
discovery samples and finding smaller effect sizes in replica-
tion samples is a common observation usually explained as 
a regression to the mean [23].

The potential moderation of an association between DA 
polygenic scores and depressive symptoms is not inconsist-
ent with the original report of Pearson-Fuhrhop et al. [5]. In 
that report, there was a successful replication, albeit with 
a DA polygenic score that only included three of the origi-
nal variants, in a sample of 1267 adult Caucasians having 
a clinical diagnosis of non-psychotic MDD. However, a 
second replication attempt with a DA polygenic score com-
prising four of the original variants, in a sample of healthy 
381 young adult Caucasians, was not successful. Thus, the 
link between DA polygenic scores and depressive symptoms 
may be moderated by clinical diagnosis and age. Indeed, the 
presence of a clinically significant disease has been shown to 
moderate the effect of DA-related genes [24]. Additionally, 
there is an age-related decline in DA signaling [25], which 
could contribute to differences in the effects of dopaminergic 
genes on behavior across development.

Our findings, although exploratory, further suggest that 
race/ethnicity may also moderate the link between DA poly-
genic scores and depressive symptoms. This observation is 
in line with previous findings demonstrating population dif-
ferences in the effects of DA-related polymorphisms. For 
example, in a meta-analysis of 30 studies [26], the puta-
tively functional 7-repeat allele of the dopamine receptor 
D4 exon III variable nucleotide tandem repeat was positively 
linked to attention deficit hyperactivity disorder (ADHD) 
in European Caucasian and South American samples, but 
negatively linked to ADHD in Middle-Eastern samples. 

Similarly, the Met allele of the catechol-o-methyltransferase 
rs4680 has been associated with larger hippocampal vol-
ume in Caucasians [27], but smaller hippocampal volume in 
Han Chinese [28]. Theoretically, such differences can reflect 
variation in allele frequencies, linkage disequilibrium (LD) 
patterns, and/or non-genetic (e.g., cultural) effects. However, 
allele frequencies may be less likely to explain the current 
observed differences, because the effect in our non-Hispanic 
Caucasian subsample was not stronger, as may be expected, 
but reversed. It is possible that some of the examined SNPs 
only tag causal polymorphisms and consequently LD dif-
ferences may affect the observed findings. Additionally, 
our two groups differed in stress levels and socioeconomic 
background, which suggest cultural and experience-related 
influences that could potentially moderate the genetic 
effects (e.g., through epigenetic modifications that affect 
gene expression [29] and/or through modifications of brain 
structure and function [30]). Indeed, previous studies have 
demonstrated that culture can act as a moderator of genetic 
influences [31, 32]. Nevertheless, as with any association 
study, replication across different age groups and popula-
tions, and in clinical and healthy samples is necessary.

Our study has several limitations. First, we were not able 
to directly assess the functionality of the DA polygenic score 
and establish links with in vivo DA signaling. Although pre-
vious studies have demonstrated the functionality of each 
individual SNP, research that validates the functionality of 
the polygenic score is needed. Second, the analysis in the 
Asian subsample was done post hoc and should be treated 
with caution. Third, we did not have a large sample of Asians 
nor were we able to examine other racial/ethnic groups. 
Fourth, the current polygenic score is limited to five SNPs 
and future studies may choose to extend it by implementing 
findings from open resources such as the Genotype-Tissue 
Expression project [33]. Notably, however, here we were 
specifically interested in attempting to replicate the finding 
of Pearson-Fuhrhop et al. [5]. Lastly, our findings should 
be viewed as tentative until further replication is reported.

In studies seeking mechanistic insight, polygenic scores 
similar to the one used in the current study may be prefer-
able to either single candidate genes, which often fail to 

Table 3   The effect of each 
single nucleotide polymorphism 
on depressive symptoms as 
estimated with the CES-D

Each linear regression model included sex, age, socioeconomic status, ancestry genetic components, BMI, 
and early and recent life stress as covariates

Non-Hispanic Caucasians Asians

b SE p value b SE p value

rs1800497 0.458 0.511 0.371 − 0.467 0.702 0.506
rs4532 − 0.364 0.394 0.355 − 1.827 0.8 0.022
rs6280 0.224 0.423 0.596 0.6 0.732 0.413
rs4680 0.503 0.392 0.199 − 1.19 0.668 0.075
rs27072 1.621 0.627 0.01 − 0.878 0.661 0.184
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replicate [e.g., 22], or to GWAS-based scores, which may 
explain more phenotypic variance, but are often limited in 
providing insight into the molecular mechanisms underly-
ing the phenotype of interest [34]. If replicated, our results 
suggest that efforts to discover the biological mechanisms 
underlying depression and identify treatment targets should 
consider race/ethnicity as a moderator. Previous studies have 
indeed shown that racial/ethnic differences can affect treat-
ment response to various diseases [35–38].
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