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Abstract
Decision making and cognitive flexibility are two components of cognitive control that play a critical role in the emergence, 
persistence, and relapse of gambling disorder. Transcranial direct current stimulation (tDCS) over the dorsolateral pre-
frontal cortex (DLPFC) has been reported to enhance decision making and cognitive flexibility in healthy volunteers and 
individuals with addictive disorders. In this triple-blind randomized sham-controlled parallel study, we aimed to determine 
whether tDCS over DLPFC would modulate decision making and cognitive flexibility in individuals with gambling disorder. 
Twenty participants with gambling disorder were administered Iowa Gambling Task (IGT) and Wisconsin Card Sorting Test 
(WCST). Subsequently, participants were administered three every other day sessions of active right anodal /left cathodal 
tDCS (20 min, 2 mA) or sham stimulation over bilateral DLPFC. WCST and IGT were readministered following the last 
session. Baseline clinical severity, depression, impulsivity levels, and cognitive performance were similar between groups. 
TDCS over the DLPFC resulted in more advantageous decision making (F1,16 = 8.128, p = 0.01, ɳp2 =0.33) and better cog-
nitive flexibility (F1,16 =8.782, p = 0.009, ɳp2 = 0.35), representing large effect sizes. The results suggest for the first time 
that tDCS enhanced decision making and cognitive flexibility in gambling disorder. Therefore, tDCS may be a promising 
neuromodulation-based therapeutic approach in gambling disorder.
Trial registration: Clinicaltrials.gov NCT03477799.
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Introduction

Gambling disorder (GD) is defined as a progressive and 
chronic maladaptive disorder characterized by the failure 
to control gambling activities despite various aversive 
outcomes [1]. Among the different diagnostic criteria to 
define GD, cognitive control over the urge to be involved 
in gambling activities is considered to be a core feature 
[1]. Cognitive control requires a complex integration of 
higher order processes to generate goal-directed flexible 
and adaptive behavioral responses. Thus, it has been con-
ceptualized as the sum of four components, namely deci-
sion making, cognitive flexibility, response inhibition, and 
conflict monitoring [2]. Decision making and cognitive 
flexibility are of particular importance in GD as they have 
a critical role in the emergence and persistence of the dis-
ease and are associated with disease severity, gambling 
frequency, gambling urge intensity, dropout, and relapse 
rates [3–7].

Decision making is a component of cognitive control 
that plays a central role in the evaluation of desires and 
intentions within the context of past experiences and 
knowledge to modulate behavioral responses in a goal-
directed manner [8]. Despite being involved in the neural 
basis of neuropsychiatric disorders [9, 10], impairment of 
decision making has particular importance in addictive 
disorders, as they are characterized by the persistence of 
the drug use or the addictive behavior, despite multiple 
undesired consequences [11]. To support this notion, a 
wealth of literature illustrates that addictive disorders have 
been reliably associated with deficits of decision making 
[12–14] and cognitive flexibility [14, 15] resulting in the 
prevention of treatment seeking, passing of time, and 
worsening of the illness in the addictive disorders [16, 
17]. Considering the clinical and neurophysiological simi-
larity [18], it is not surprising that deficits of decision 
making [5] and cognitive flexibility have also been found 
in GD [19–21], even at a higher level than substance use 
disorders in a recent study [22]. Moreover, GD might be a 
pure illustration of pathological decision making than in 
the absence of exogenous drug effects [23], thus providing 
an opportunity to examine decision making clearly. Deci-
sion making has been commonly assessed with the Iowa 
Gambling Task (IGT) in GD and IGT is an ecologically 
valid measure of decision making [5]. Thus, the incre-
ment of IGT net scores have been found to be correlated 
with better decision making in real-life [5]. Moreover, the 
IGT performance has been found to be correlated with 
problem gambling severity [24]. The neural substrates 
of IGT involve different brain areas including the Ven-
tromedial Prefrontal Cortex (VMPFC) and Dorsolateral 
Prefrontal Cortex (DLPFC) along with dorsal anterior 

cingulate cortex, insular cortex, and parietal areas [25]. 
Among them, right DLPFC has been considered to play 
the general role in the top-down regulation of decision 
making [26]. Similarly, subjects with GD were reported to 
have decreased functional Magnetic Resonance Imaging 
(fMRI) activity in the right VMPFC and DLPFC during 
deck selection in IGT, as opposed to baseline [27].

Cognitive flexibility is another component of cognitive 
control [2], responsible for adapting to changing environ-
ments [28]. Cognitive flexibility deficits have been shown 
in addictive disorders [29] and GD [30, 31] and linked to 
clinical outcomes [7, 29]. Cognitive flexibility has also 
been reported to be correlated with decision making in 
healthy subjects, in individuals with HIV-associated neu-
rocognitive disorders and gambling disorder [5, 32, 33]. 
Similarly, individuals with high cognitive flexibility have 
also been reported to have better IGT performance [34]. 
Cognitive flexibility has been measured with the Wiscon-
sin Card Sorting Task (WCST) in GD [30, 31]. In respect 
of the neural substrates of the WCST, various brain areas 
have been implicated, including bilateral lateral PFC, ante-
rior cingulate cortex, and inferior parietal lobule [35, 36] 
indicating a role for both hemispheres. In subjects with 
GD, a decreased fMRI activation of the right ventrolateral 
prefrontal cortex was shown during reversal shifting and 
after monetary losses or gains [37].

Transcranial direct current stimulation (tDCS) is a safe 
and well-tolerated noninvasive brain stimulation technique 
[38] that modulates neuroplasticity by applying weak elec-
trical currents passed between two scalp electrodes placed 
over target cortical locations. Quite a few studies suggest 
that tDCS over the DLPFC has been reported to enhance 
decision making [39–43] while different results were 
achieved in older adults [44]. In addition, participants who 
received cathodal stimulation over the left DLPFC have 
been reported to have better cognitive flexibility [45, 46]. 
Neurostimulation has also been suggested to potentially 
be beneficial in GD [37] and nascent literature has begun 
to provide preliminary evidence of this notion [47–49]. 
However, the primary outcomes from these studies did 
not include measures of decision making and cognitive 
flexibility. Regarding tDCS, a study applying tDCS in GD 
showed relationships between prefrontal metabolite levels 
and levels of risk-taking, impulsivity, and craving, lending 
support to the potential beneficial effects of tDCS [50]. 
Thus far, the effect of tDCS on cognitive functions in GD 
has not been reported yet.

Following the line of research illustrating the enhanc-
ing effect of tDCS on decision making and cognitive flex-
ibility, we hypothesized that anodal tDCS over the right 
DLPFC (coupled with contralateral cathodal stimulation), 
in comparison to sham, would enhance both decision mak-
ing and cognitive flexibility in GD. We also evaluated the 
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relationship between decision making and cognitive flex-
ibility in GD.

Materials and methods

Participants

Sample size was calculated using G*Power 3.1.9.2 (Effect 
size f: 0.6, ɑ: 0.05, Power 0.8, Number of groups: 2. Num-
ber of Measurements: 2) for a two-way repeated-measures 
ANOVA. The total sample size needed was 20. Thus, 20 
male right-handed participants satisfying Diagnostic and 
Statistical Manual of Mental Disorders-5 (DSM-5) criteria 
for gambling disorder were recruited from the Addiction 
Outpatient Clinic of the Department of Psychiatry in Istan-
bul University. No female participants were included due to 
non-admission to our clinic. Participants were required to 
be aged between 18 and 65 and to be drug-free. The exclu-
sion criteria were the following: current DSM-5 diagnosis 
of major depressive disorder, current or previous DSM-5 
diagnosis of alcohol and substance use disorders includ-
ing tobacco use disorder, schizophrenia, bipolar disorder, 
or other psychotic disorder, use in the past 4 weeks of any 
medication with known pro-convulsant action or current 
regular use of any psychotropic medications, any history of 
any clinically significant neurological disorder, the presence 
of mental retardation diagnosis (previously identified), any 
personal or family history (1st degree relatives) of seizures 
other than febrile childhood seizures, illiteracy, deficient lan-
guage or refusal to participate. No significant comorbidity 
was observed. Only one participant had a past history of a 
major depressive episode and psychotropic drug use.

Baseline clinical gambling severity, depression, and 
impulsivity were assessed with South Oaks Gambling 
Screen [SOGS] [51], Canadian Pathological Gambling 
Severity Index [PGSI] [52], Beck Depression Inventory 
[BDI] [53], and Barratt Impulsivity Scale-11 [BIS-11] [54].

All participants attended to the procedures in the study 
and none were excluded after enrollment. The study pro-
tocol was approved by both the Institutional Ethical Com-
mittee and Turkish Ministry of Health Ethical Committee. 
The study protocol strictly complied with the Declaration 
of Helsinki. Written informed consent was obtained from 
all participants after the details of the procedures had been 
fully explained.

Experimental design

We conducted a triple-blind randomized sham-controlled 
parallel study. Participants, interventionist, and the asses-
sor were blinded to the condition. Upon enrollment into the 
study, participants were randomly assigned with a ratio of 

1 to 1 to one of two conditions to receive three every other 
day 20-min 2 mA sessions of either (i) active anodal right/
cathodal left (n = 10) or (ii) sham anodal right/cathodal 
left (n = 10) tDCS over the DLPFC. The participants were 
administered the IGT and the Wisconsin Card Sorting Test 
(WCST) by a trained neuropsychologist in a quiet labora-
tory. A computerized version of standard IGT was used. 
The order of the tasks performed in a single session was 
randomized.

After the psychiatric and neurocognitive assessment, par-
ticipants received three every other day sessions of 20-min 
active tDCS or sham tDCS. Predictions of the participants 
about the stimulation type (active or sham) were recorded 
to assess the integrity of the blinding. Safety was assessed 
through open-ended questions based on the tDCS adverse 
events questionnaire [55]. WCST and IGT were readminis-
tered after the last application.

Intervention

Two 5 × 7 cm electrodes saturated with 0.9% saline solution-
soaked sponges were placed using elastic straps [56]. The 
anode was placed over area F4 and cathode was placed over 
area F3 using the 10/20 international system. The stimula-
tion was delivered using a battery-driven constant current 
stimulator (Neuroconn DC-STIMULATOR Plus, neuroConn 
GmbH, Ilmenau, Germany). Active stimulation involved 
delivery of 2 mA of direct current for 20 min with a 30-s 
ramp up and down of current. To deliver sham stimulation, 
the procedure was identical, except that the current was 
delivered at 2 mA for 30 s with a 30-s ramp up and ramp 
down, thus leading to similar initial sensations of tDCS. 
This method of sham stimulation has been reported to be a 
reliable application [57]. Predefined codes of the stimulator 
were used to accomplish the blinding of the investigator and 
the participant.

Neurocognitive tasks

Iowa gambling task

In the Turkish adaptation of computerized IGT [58], partici-
pants are loaned 2000 Turkish Liras of “play money”. They 
choose cards from four decks of cards, identical in appear-
ance, to maximize the amount of money earned. Participants 
completed 100 trials during the task. However, participants 
perform the test without knowing the total number of trials. 
Decks A and B are considered disadvantageous, whereas 
the other two decks, decks C and D, are considered advanta-
geous. Each card choice in decks A and B results in a 100 
Turkish Liras gain and each card choice in decks C and D 
result in a 50 Turkish Liras gain. In this respect, it would 
be advantageous to choose cards from the first two decks. 
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Probabilistic punishments were intermixed amongst rewards 
in a programmed schedule. Associated with each of block 
of 10 trials, decks A and B result in a net loss of 250 Turk-
ish Liras, whereas decks C and D result in a net gain of 250 
Turkish Liras. Further broken down within each block of 
10 trials, decks A and C are associated with more frequent, 
yet smaller money losses and decks B and D with one large 
money loss. Participants were expected to learn the contin-
gencies and develop a strategy involving the preference of 
advantageous decks. Net score was calculated by subtracting 
the number of disadvantageous choices (decks A’ and B’) 
from the number of advantageous choices (decks C’ and 
D’). Net scores were generally associated with overall gain.

Wisconsin card sorting test

WCST [59] is widely used to assess abstraction ability and 
the ability to shift and maintain cognitive strategies for cat-
egorization. Participants were given 128 stimulus cards indi-
vidually and were required to match each card to one of four 
key cards that varied on three perceptual dimensions (i.e. 
color, form, and number). At any given time, the matching 
rule was to match on one of these dimensions. After each 
match, the rater informed the participant whether they were 
correct. After ten consecutive correct sortings, the matching 
rule changes without warning and the participant must learn 
the new matching rule for the next set. The test requires stra-
tegically planning, conducting organized searches and utiliz-
ing environmental feedback to inform decisions, and restric-
tion of impulsive responding. The number of perseverative 
errors was calculated as a measure of cognitive flexibility.

Data analysis

Data analysis was conducted using SPSS software version 
22.0 between two groups: (a) Active group: includes indi-
viduals who were delivered 2 mA right anodal/left cathodal 
stimulation over the DLPFC (b) Sham group: includes 
individuals who were delivered sham stimulation over the 
right and left DLPFC. Normality of the data distribution 
was assessed using the Kolmogorov–Smirnov and the Sha-
piro–Wilk tests. For the detection of baseline differences 
between two groups concerning the sociodemographic and 
clinical characteristics, Chi square or Mann-Whitney-U tests 
were applied. A repeated measures analysis of variance 
(RM-ANOVA) was employed with time (pre-tDCS, post-
tDCS) as the independent within-subjects variable, tDCS 
intervention group as the independent between-subjects vari-
able, and the difference in pre-post scores on the neurocog-
nitive tasks as the dependent variable. The outcome meas-
ures were pre-tDCS and post-tDCS IGT net scores and the 
number of perseverative errors in WCST. Effect sizes were 
calculated as partial eta squared (ηp2). Spearman correlation 

coefficients, rho, were calculated between the behavioral 
data and neurocognitive test scores. A Chi square test was 
used to assess the integrity of blinding.

Results

Baseline characteristics of the sample

Baseline characteristics were summarized in Table 1. The 
mean age of the sample was 37.2 (± 10.3). Participants had 
13.4 (± 3.2) years of education as well as mean scores of 
BDI, SOGS, PGSI, BIS-11 of 7.6 (± 7.8), 15.8 (± 1.4), 19.4 
(± 5.1), 64.1 (± 9.0), respectively. The two groups resembled 
each other in age, educational level, the age of gambling ini-
tiation, engagement frequency in gambling activities, clini-
cal gambling severity, gambling disorder duration, total loss 
due to gambling, depression level, impulsivity level, and 
initial neurocognitive test performances (p’s > 0.100), thus 
indicating that randomization was valid.

Relationship of neurocognitive task scores

Regarding the relationship between neurocognitive test 
measures, a trend towards negative correlation was found 
between the Pre-tDCS IGT net score and the number of 
perseverative errors in the pre-tDCS WCST in the whole 
sample (r = − 0.430, p = 0.070). Post-tDCS IGT net score 
correlated negatively with the number of perseverative errors 
in the post-tDCS WCST in the whole sample (r = − 0.450, 
p = 0.049) and in the active group (r = − 0.667, p = 0.047, 
but not in the sham group (p = 0.600).

The effect of tDCS on decision making

RM-ANOVA indicated a main effect of time on IGT net 
score (F1,16 = 13.571, p = 0.002). A significant tDCS 
intervention*time interaction was found (F1,16 = 8.128, 
p = 0.01, ɳp2 =0.330) (Table 2; Fig. 1).

The effect of tDCS on cognitive flexibility

No main effect of time on the number of perseverative 
errors was found (F1,16 = 1.134, p = 0.300). A significant 
intervention*time interaction was found (Table 2; Fig. 2) 
(F1,16 =8.782, p < 0.001, ɳp2= 0.350).

Feasibility and blinding efficacy of the procedure

None of the participants reported significant adverse effects 
during or after the tDCS sessions. Participants were unable 
to distinguish between active and sham stimulation, thus 
confirming the validity of blinding (x2 = 0.222, p = 0.500).
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Discussion

This triple-blind randomized placebo-controlled parallel 
study investigated the effect of applying tDCS over the 
frontal cortices on decision making and cognitive flexibil-
ity. Consistent with our hypotheses, we demonstrated that 
tDCS delivered over bilateral DLPFC (F3/F4) enhanced 
both decision making and cognitive flexibility in a GD 
population. We also demonstrated that tDCS is well-toler-
ated and feasible in GD. To the best of our knowledge, this 
is the first study assessing the effect of tDCS on cognitive 
performance in GD.

We found promising results supporting the enhancing 
effect of tDCS on decision making in GD. The results are 
consistent with the majority of the studies conducted in 
healthy populations [39–41], in a clinically impulsive sam-
ple of veterans [42] and in individuals with addictive dis-
orders [43]. Fecteau et al. were the first to report the effect 

of right anodal/left cathodal tDCS over DLPFC on risk-
taking in healthy subjects [39]. A recent study also [41] 
showed a similar effect of the right anodal/left cathodal 
tDCS over the DLPFC under a context of haste in healthy 
subjects. In a tDCS study comparing cocaine abusers with 
non-abusers, stimulation over the right DLPFC led to 
improvements in both Balloon Analog Risk Task (BART) 
and Game of Dice Task in abusers while stimulation over 
the left DLPFC only resulted in improvement of BART 
[43]. In contrast, tDCS over both right and left DLPFC 
was reported to increase risk propensity in chronic mari-
juana users [60], possibly due to baseline differences in 
age and impulsivity or chronic alterations in brain circuits. 
A study using High Definition-tDCS over the left DLPFC 
also reported better IGT scores in healthy subjects [61]. 
Moreover, a recent study reported better IGT scores after 
2 mA cathodal stimulation over the right DLPFC in sub-
jects with Parkinson’s Disease [62]. Enhancement of deci-
sion making after anodal stimulation of the left DLPFC 

Table 1   Background characteristics of the participants

Values represent: mean (standard deviation/range)
a South Oaks Gambling Screen
b Canadian Pathological Gambling Severity Index
c Beck Depression Inventory
d Barratt Impulsivity Scale

Characteristic Active group (n = 10) Sham group (n = 10) Total (n = 20) p

Age (years) 35.7 (6.3/28–45) 38.6 (13.5/18–55) 37.2 (10.3/18–55) 0.730
Education (years) 14.4 (3.1/8–16) 12.4 (3.1/8–16) 13.4 (3.2/8–16) 0.190
Gambling Disorder duration (years) 13.3 (5.1/6–20) 16.7 (9.9/5–30) 14.9 (7.7/5–30) 0.606
The age of gambling initiation (years) 21.8 (5.6/14–32) 22.7 (8.3/12–36) 22.2 (6.8/12–36) 0.815
SOGSa 16 (1.3/14–18) 15.7 (1.5/14–19) 15.8 (1.4/14–19) 0.666
PGSIb 21 (5.4/9–27) 17.8 (4.5/13–26) 19.4 (5.1/9–27) 0.100
Total loss (Turkish liras) 168,750 (194,674/10000–

1000000)
168,142 (367,324/60,000–

600,000)
168,466 (277,083/10000–

1000000)
0.100

BDIc 7.1 (6.3/1–21) 8.1 (9.5/1–29) 7.6 (7.8/1–29) 0.863
BISd, total 63 (8.9/53–82) 65.2 (7.4/53–80) 64.1 (9.0/53–82) 0.489
BIS Motor subscale 20.5 (4.0/16–28) 20.6 (2.3/16–23) 20.6 (3.2/16–28) 0.863
BIS attention subscale 15.4 (3.0/10–23) 15.1 (3.2/11–20) 14.8 (3.5/10–23) 0.931
BIS Non-planning subscale 27.5 (3.7/26–32) 29.1 (5.0/22–39) 28.3 (4.3/22–39) 0.436

Table 2   Pre and post-tDCS cognitive profile of the participants

tDCS transcranial direct current stimulation, SD standard deviation

Active group 
(n = 10)

SD Sham group 
(n = 10)

SD Total (n = 20) SD

Iowa gambling test net score (pre-tDCS) − 11.3 20.4 − 8 20.5 − 9.6 19.9
Iowa gambling test net score (post-tDCS) 11.3 21.2 − 5.1 23.2 3.1 23.2
Wisconsin card sorting test (pre-tDCS), perseverative errors 26.6 11.1 26 16.8 26.3 13.8
Wisconsin card sorting test (post-tDCS), perseverative errors 13.6 8.80 32.5 23.6 23 19.8
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and cathodal stimulation of the right DLPFC might be due 
to the bilateral involvement of the DLPFC in IGT perfor-
mance [63] or alterations of neural circuits among sam-
ples (i.e. healthy subjects, subjects with GD or Parkinson’s 
Disease). Overall, the right anodal/left cathodal montage 
over the DLPFC was considered to improve the interhemi-
spheric balance of activity during decision making [39]. 
Thus, we assessed the effect of this particular montage and 
found the enhancing effect of tDCS on decision making.

The achieved results also support the notion that prefron-
tal cortices have a significant role in decision making [14, 
25, 26, 64]. Given the complexity of the necessary calcula-
tions required, it is not surprising that a distributed neu-
ral network including many cortical and subcortical areas 
play a role during decision making [14]. Among them, the 
importance of both the VMPFC and the DLPFC seems to 
have a central role [14, 65]. VMPFC activity from fMRI was 
considered to be associated with encoding of the value sig-
nals to direct decision making and the DLPFC activity was 
considered to be associated with the self-control that modu-
lates these value signals [66]. The DLPFC activity was also 
reported to be correlated with the VMPFC activity when 
individuals exercise self-control [66]. Hence, the DLPFC 
was reported to be required for suppressing the seductive 
emotional impulses [14]. To sum, both regions might have 
critical roles in decision making results from the current 
study.

In respect of cognitive flexibility, the literature shows no 
consensus on cognitive flexibility deficits in GD. Despite 
several negative results [20, 21, 67, 68], cognitive flexibility 
was found to be impaired in GD in other studies [30, 31]. 
We observed improvement of cognitive flexibility follow-
ing right anodal/left cathodal stimulation over the DLPFC. 
Concerning the effect of neurostimulation on cognitive flex-
ibility, significant improvement has been observed in those 
who received cathodal stimulation over the left DLPFC [45, 
46]. Mansouri et al. reported a decrease in post-error slow-
ing indicating better performance in WCST after cathodal 
stimulation over the dominant hemisphere with larger posi-
tive electrode over the contralateral supraorbital area [45]. 
Accordingly, Luft et al. reported better problem-solving per-
formance using cathodal stimulation over the left DLPFC 
and explained the results with a better achievement of con-
straint relaxation [46]. Consistent with previous reports [45, 
46], cathodal stimulation over the left DLPFC in our study 
might result in better disengagement from current task and 
engagement in the new task.

We also found a correlation between decision making 
and cognitive flexibility following the tDCS applications. 
This result is in confirmation with previous research that 
suggested a possible relationship between these two com-
ponents of cognitive control [32, 33]. This relationship 
was considered to be due to the requirement of cognitive 

Fig. 1   Changes in Iowa Gambling Task Net Score. Mean net score in 
the Iowa Gambling Task. Active group: Black line, sham group: Gray 
line. Pre-tDCS shows the baseline scores while post-tDCS shows the 
score of the Iowa Gambling Task, administered after the third appli-
cation. Error bars represent standard error. RM-ANOVA indicated 
a main effect of time on IGT net score (F1,16 = 13.571, p = 0.002). 
A significant tDCS intervention*time interaction was found (F1,16 = 
8.128, p = 0.010, ηp2 =0.330)

Fig. 2   Changes in the number of perseverative errors in the Wiscon-
sin Card Sorting Test. The number of perseverative errors in the Wis-
consin Card Sorting Test. Active group: Black line, sham group: Gray 
line. Pre-tDCS shows the baseline values while post-tDCS shows the 
values of the readministered task (after the third application). Error 
bars represent standard error. No main effect of time on the number 
of perseverative errors was found (F1,16 = 1.134, p = 0.300). A signifi-
cant intervention*time interaction was found (Table 2; Fig. 2) (F1,16 
=8.782, p < 0.001, ηp2= 0.350)
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flexibility in the long-term decision making to evaluate the 
consequences of the past choices for better decisions [69]. 
Hence, it might be argued that the improvement in cogni-
tive flexibility might have played a facilitating role in the 
improvement of decision making. However, there are also 
reports of a negative relationship between decision making 
and cognitive flexibility in healthy people [70–72] and in 
subjects with GD [67, 68] that claimed decision making is 
irrelevant of general cognitive flexibility. In conclusion, the 
literature is inconsistent and further research is needed to 
elucidate this relationship.

Another point to be emphasized here is that the achieved 
results might not only be due to the modulation of the 
DLPFC activity. TDCS delivered to F3 and F4 stimulates a 
majority of frontal cortices. Thus, tDCS delivered over the 
DLPFC might directly or indirectly modulate the activity of 
the VMPFC in healthy people [40, 65, 66] and in individuals 
with addictive disorders [73]. OFC has also been associated 
with decision making [14] and tDCS over the right OFC also 
resulted in better decision making and interference inhibition 
performances in healthy individuals [74]. Therefore, direct 
or indirect modulation of the right OFC might have contrib-
uted to the enhancing effect of tDCS over the right DLPFC 
on cognitive functions. While stimulation was delivered over 
DLPFC (F3/F4), it is important to note that these results 
should not be interpreted as DLPFC specific due to the broad 
pattern of stimulation delivered by conventional tDCS.

While GD has been considered to be a public health issue 
[75], there are still various unmet needs for understanding 
the neural basis and treatment of GD [76]. Moreover, vari-
ous challenges occur during the treatment of individuals 
with GD including high dropout and relapse rates [77, 78]. 
These outcome parameters along with the disease severity 
were found to be associated with decision making and cog-
nitive flexibility deficits [3, 4, 6, 7]. Therefore, reinforcing 
the treatment with interventions enhancing cognitive control 
may be a novel treatment strategy. To this end, psychothera-
peutic [79] and pharmacological [80] interventions, as well 
as cognitive training and repetitive Transcranial Magnetic 
Stimulation, were explored in addictive disorders [81, 82]. In 
addition to the above-mentioned strategies, we demonstrated 
that tDCS over the DLPFC enhanced decision making and 
cognitive flexibility in GD. Moreover, tDCS over the DLPFC 
with decision making training may result in better cognitive 
outcomes even though it has not been tested in GD previ-
ously [42].

The achieved results are best viewed in the context of 
limitations. First, we enrolled a limited number of the par-
ticipants due to difficulties in recruiting subjects with GD as 
a result of low admission rate and the exclusion of individu-
als with other addictive and neuropsychiatric disorders. The 
study group was restricted to a treatment-seeking population 
and it was not possible to generalize the present findings 

to ecological settings as treatment-seeking individuals with 
GD might be less impulsive [83]. Furthermore, we did not 
include women due to the non-admission of female indi-
viduals during the period of enrollment for the study. This 
should be taken into account as any sex-based differences in 
decision making and executive function processes or neural 
underpinnings may impact response to tDCS in the context 
of GD [84, 85]. Further research is needed in sex-matched 
samples. Besides, we assessed the effect of three sessions 
of tDCS as we considered that long-term protocols might 
result in high drop-out rates in individuals with GD. Future 
studies should assess the effect of more sessions of tDCS 
in individuals with GD to find the most beneficial dose of 
tDCS. Moreover, we only assessed the short-term effect of 
tDCS. Future research should replicate our findings with a 
follow-up period to determine the stability of the achieved 
results. Finally, our analyses did not include the differences 
in gambling severity as we considered that detecting changes 
in gambling severity might require a long-term period.

Conclusions

This study extends findings concerning the enhancing effect 
of tDCS on cognitive functions to individuals with GD, 
suggesting for the first time that three sessions of 20-min 
tDCS over bilateral DLPFC might be a novel intervention 
to enhance decision making and cognitive flexibility in 
individuals with GD. Our results also suggest bilateral pre-
frontal cortices as a potential target of tDCS in conditions 
associated with deficits of cognitive control. Future research 
efforts are needed to carefully examine the precise molecular 
mechanisms involved in the effect of tDCS, short- and long-
term effects of different electrode montages, and dosing of 
tDCS on the clinical variables and cognitive functions in 
gambling disorder.
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