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turnover in Alzheimer’s disease.
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Introduction

Altered lipid metabolism is believed to be a key event to 
central nervous system (CNS) injuries [1, 2]. In fact, phos-
pholipid bilayer and associated lipids provide not only a 
permeability barrier but also a structured environment that 
is essential for the proper functioning of membrane-bound 
proteins [3]. One of the most important regulators of lipid 
organization is cholesterol. Its structure allows filling inter-
stitial spaces between hydrophobic fatty acid chains of phos-
pholipids [3].

Alterations in membrane metabolism has been exten-
sively described in Alzheimer’s disease (AD) mostly those 
caused by decrease in phospholipase  A2  (PLA2) activity, 
the main enzymes accountable for membrane phospholipids 
metabolism [4–6]. Furthermore, disturbances in cholesterol 
metabolism have been associated with the major pathologi-
cal signatures of AD, i.e. extracellular deposition of Aβ in 
senile plaques, intracellular accumulation of hyperphospho-
rylated aggregated Tau in neurofibrillary tangles and degen-
eration of neurons and their synapses [7, 8].

The major pool of cholesterol in the central nervous sys-
tem (CNS) is in myelin although neurons and glial cells 
also contain cholesterol. Brain cells synthesize all choles-
terol found in CNS, since the blood–brain barrier (BBB) 
hinders entry of cholesterol synthesized in the periphery [9]. 
To maintain brain cholesterol homeostasis, it is converted 
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into a more polar metabolite, the 24(S)-hydroxycholesterol 
(24OHC) which can be driven through the BBB [10–13]. 
24OHC is an endogenous regulator of the nuclear receptor 
Liver X Receptor (LXR) potentially regulating the choles-
terol and fatty acid synthesis pathways in the brain. In the 
adult brain almost all the neuronal requirements of cho-
lesterol are supplied by cholesterol transported by ApoE-
containing lipoproteins released from astrocytes. Via LXR, 
24OHC regulates the expression, synthesis and secretion of 
ApoE [14] and the expression of the sterol transporters ATP-
binding cassette A1, G1 and G4, involved in the transporter 
of cholesterol from glia to ApoE particle [15]. Therefore, 
24OHC participates in both cholesterol efflux pathways. 
Plasma levels are kept constant by liver clearance of 24OHC 
converted into bile acids or further conjugated for final elim-
ination. Thus, all 24OHC present in blood plasma arises 
from CNS, reflecting the brain cholesterol catabolism [15].

In the periphery, the major cholesterol metabolite is 
27-hydroxycholesterol (27OHC), representing an important 
mechanism for the daily elimination of cholesterol from the 
body. It is also able to cross the BBB [9, 16].

It is worth stressing the importance of ApoE in lipid 
homeostasis: it regulates cholesterol, triglyceride and phos-
pholipid transport and metabolism [17]. APOE gene has 
three common alleles ε2, ε3 and ε4 and gives rise to three 
main structural isoforms protein that differ in their effective-
ness: ApoE2, ApoE3 and ApoE4. 65–80% of AD patients 
carry at least one of ε4 [18]. The presence of this allele 
leads to a less effective protein highlighting 24OHC role in 
cholesterol efflux [19–21].

In fact several studies have already described a decrease 
in 24OHC and an increase of 27OHC in AD [22] in serum 
[23, 24] and CSF [25, 26], as a reflection of disease burden, 
the loss of metabolically active neurons and the degree of 
structural atrophy [23, 25, 27–34]. Findings from cell culture 
and animal studies suggest that 27OHC is associated with 
increased levels of APP as well as β-secretase (BACE1), the 
enzyme that cleaves APP to yield Aβ. On the other hand, 
24OHC is associated with increased levels of sAPPα, sug-
gesting that 24OHC facilitates the processing of APP by 
non-amyloidogenic pathway [35–38].

Donepezil hydrochloride, a selective acetylcholinester-
ase inhibitor (AChEi), is one of the widely used drugs in 
AD treatment [39–41]. These drugs delay the progression 
of brain atrophy, indicating a disease-modifying effect by 
attenuating neuronal death and a neuroprotective role and 
seem to affect cholesterol levels [42].

Since study from our group shows a significant effect of 
donepezil on PLA2 activity, increasing membrane phospho-
lipid metabolism [4], the aim of this study was to evaluate if 
short- and long-term donepezil treatment also affects lipid 
metabolism in a broader way by assessing cholesterol and 
metabolites 24OHC and 27OHC in plasma of AD patients 

and in healthy volunteers. Moreover, we investigated a pos-
sible role for APOE genotypes on cholesterol metabolism.

Materials and methods

The sample comprised 30 patients with mild or moder-
ate AD and 33 physically and cognitively healthy elderly 
controls. This open-label study was conducted at the Insti-
tute of Psychiatry, University of Sao Paulo, Brazil and 
participants were middle-income, community-dwelling 
individuals from the hospital catchment area. Local Ethi-
cal Committee approved this study, and all subjects signed 
a written informed consent prior to inclusion in the study. 
The diagnosis of probable AD was made according to the 
NINCDS–ADRDA diagnostic criteria [43]. Cognitive 
assessments were made with the Cambridge Cognitive 
Test (CAMCOG) [44] and the Mini-Mental State Examina-
tion (MMSE) [45] (Table 1). Table 2 shows the genotype 
frequencies of ApoE. In the last 6 months prior to enrol-
ment in the study, patients and the control group did not 
use AChEi or other drugs (e.g. neuroleptics, antidiabetic, 
lithium, antidepressants and anticonvulsants). After the com-
pletion of baseline assessments, all patients were started on 
donepezil treatment (5 mg/day). Doses were administered 

Table 1  Sociodemographic characteristics of patients and controls at 
baseline assessment and MMSE and CAMCOG score diagnosis

Data are presented as mean ± standard deviation
M male, F female, AD Alzheimer’s disease, MMSE Mini-Mental 
State Examination, CAMCOGC Cambridge Cognitive Test, p signifi-
cance of Chi-square test

Control (n = 33) AD (n = 30) p

Gender (M/F) 11/22 8/22 0.184
Age (years) 73.88 ± 5.35 73.93 ± 6.46 0.971
MMSE 28.64 ± 1.55 18.93 ± 5.08 0.0001
CAMCOG 95.36 ± 6.59 56.57 ± 18.31 0.0001
Education (years) 13.58 ± 5.45 5.93 ± 3.84 0.001

Table 2  Genotype frequencies of apolipoprotein E (ApoE)

1 control subject and 2 AD patients did not perform genotyping for 
APOE
AD Alzheimer’s disease

AD Control

Genotype
 ε2/ε2 3 (11%) 2 (6%)
 ε2/ε3 0 (0%) 4 (13%)
 ε3/ε3 15 (53%) 18 (56%)
 ε3/ε4 7 (25%) 7 (22%)
 ε4/ε4 3 (11%) 1 (3%)
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orally and increased to 10 mg/day after 1 month. Patients 
were monitored monthly, the MMSE was evaluated after 3 
and 6 months, and CAMCOG was evaluated 6 months after 
donepezil treatment. 

Sample collection

Blood samples were collected, in the morning after 8-h fast-
ing, using Vacutainer tubes containing EDTA (Vacutainer, 
Becton Dickinson). Samples were centrifuged at 20 °C and 
1400g for 10 min. Plasma was obtained, frozen and stored 
at −80 °C until analysis.

Plasma cholesterol concentrations were measured using 
commercially available enzymatic–colorimetric methods 
(Labtest Diagnostica, Brazil).

Measurements of oxysterols (24-hydroxycholesterol 
and 27-hydroxycholesterol) were performed according to 
Dzeletovic et al. [46]. Following is a brief description of 
the method.

Sample preparation

To plasma (1 mL) was added a mixture of deuterium-labelled 
internal standards followed by an alkaline hydrolysis with 
potassium hydroxide (0.4 M). After 2 h of incubation, the pH 
was adjusted to 7 with phosphoric acid. Extraction was per-
formed with the addition of 20 mL of chloroform and 6 mL 
of 0.9 M NaCl followed by vigorous shaking. The organic 
phase was evaporated using a rotary evaporator at room tem-
perature. The residue was resuspended with 1 mL of toluene. 
The next step was a solid-phase extraction using a silica 
cartridge (Supelclean LC-Si SPE tube) and isopropanol as 
eluent solution. The collected isopropanol was evaporated 
and the residue was treated with pyridine:trimethysilyl trif-
luoroacetamide (1:1, v/v) at 60 °C for 30 min.

Analysis by gas chromatography–mass spectrometry

The samples (1 μL) were injected in split mode into a gas 
chromatograph (GC) coupled to a mass spectrometer (MS) 
(Shimadzu GCMS-QP2010 Plus) equipped with the GCMS 
solution software version 2.5. The separation was performed 
with a Restek capillary column (30 m × 0.25 mm, 0.25 μm 
phase thickness). The oven temperature program was as fol-
lows: 240 °C for 7 min, 5 °C/min to 290 °C. Helium was 
used as carrier gas. The gas chromatograph was operated in 
constant flow mode with the flow rate set to 44.1 cm/s. The 
mass spectrometer was operated in single ion monitoring 
and the electron ionization energy was 70 eV. The ion source 
and interface temperature was 300 °C. [46].

APOE genotyping

DNA was extracted from peripheral blood by salting 
out [47]. Two single nucleotide polymorphisms (SNPs) 
(rs7412 and rs429358) were evaluated to determine the 
APOE genotype as previously described [48]. Amplifica-
tion reactions were performed using real-time polymerase 
chain reaction (PCR) SNP genotyping systems (TaqMan 
Assays; Life Technologies, Carlsbad, CA, USA), as fol-
lows: TaqMan PCR Mastermix 1×/μL, TaqMan SNP geno-
typing assay 1×/μL, 10 ng/μL genomic DNA and ultrapure 
water to make up a volume of 7 μL were mixed in each 
well of an optical plate. Allelic discrimination was evalu-
ated in a 7500 real-time PCR system (Life Technologies) 
comparing fluorescence levels before and after amplifica-
tion (45 cycles of 15 s at 95 °C and 1 min at 60 °C).

Statistical analysis

Baseline comparison of sociodemographic characteris-
tics of patients and controls were assessed with Fisher’s 
exact test for categorical variables and with Student’s t 
test for numerical ones. Longitudinal analysis of patients 
was carried out with a linear mixed-effect model (24OHC, 
27OHC, cholesterol, APOE, MMSE and CAMCOG). Pair-
wise comparison of means by time was corrected using 
sequential Bonferroni method. Normality assumptions 
were checked inspecting the QQ plots. All statistical anal-
yses were performed with the SPSS (Statistical Package 
for Social Sciences, for Windows, v. 14, Chicago, IL) and 
significance level was p < 0.05.

Results

At baseline, we found a decrease of plasma 24OHC 
(p = 0.003) in probable AD patients. No differences were 
observed regarding 27OHC and cholesterol levels at base-
line comparing to controls. After 3 months with 10-mg 
donepezil treatment we did not find any change in choles-
terol or 24OHC, which remained lower than controls but 
27OHC levels presented a slight increase (p = 0.023). After 
6 months of treatment we found a discrete increment in 
cholesterol levels (198.66 ± 54.49 mg/dL) (p = 0.04), but 
no change in 24OHC. 27OHC restored the baseline levels 
(Table 3; Fig. 1).

The presence of an ApoE4 allele did not show an asso-
ciation with cholesterol (p = 0.051), 24OHC (p = 0.262) 
or 27OHC (p  =  0.167). Education years and cognitive 
assessments (MMSE and CAMCOG) also show no asso-
ciation with the metabolites. In our samples there were no 
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differences between probable AD and controls regarding the 
presence of APOE4 allele.

After 6  months on donepezil, 46% of the patients 
remained cognitively stable or slightly improved on CAM-
COG (mean improvement 7.1  ±  3.5 points), while the 
remaining patients deteriorated (4.7 ± 3.2). These results 
did not show any association with the metabolite levels.

Discussion and conclusions

In the present sample, we found reduced plasma levels of 
24OHC in probable AD patients, whereas no differences 
were found regarding 27OHC and total cholesterol levels 
when compared to controls.

Decreased 24OHC levels in AD were reported in sev-
eral studies [49–53]. In fact, considerable evidences sug-
gest a relationship between the degree of brain atrophy and 
the cholesterol metabolite 24OHC in plasma level of AD 
patients and in other neurodegenerative diseases [28, 54]. 
Famer and colleagues [36] addressed in vitro the effects 
of 24OHC on the activity of α- and β-secretases, the two 
key enzymes involved in APP metabolism. They found 
the α-secretase activity and the relative protein values of 
extracellular sAPPα and total sAPP were significantly 
increased, whereas the β-secretase activity was reduced by 
24OHC, demonstrating that this oxysterol tends toward APP 
α-cleavage [36].

However, others studies report that plasma levels of 
24OHC in AD patients were not significantly different or 
increased comparing to control [34, 55, 56]. Some authors 

Table 3  Oxysterol and cholesterol levels according to diagnostic groups at baseline and post-treatment

Data carried out with a linear mixed-effect model. Data are presented as mean ± standard deviation. Cholesterol in mg/dL; oxysterols in ng/mg
AD Alzheimer’s disease

Control AD p value

Baseline 3 months 6 months AD (baseline)  
× control

AD (3 mth)  
× control

AD (6 mth)  
× control

Cholesterol 165.77 ± 31.26 186.63 ± 42.02 186.97 ± 54.3 198.67 ± 54.5 0.065 0.060 0.004
24OHC 49.62 ± 21.66 37.24 ± 13.57 36.58 ± 12.09 38.60 ± 14.02 0.003 0.002 0.009
27OHC 34.80 ± 10.15 38.20 ± 12.63 43.21 ± 17.58 40.12 ± 14.51 0.406 0.023 0.166

Fig. 1  Cholesterol and oxysterols pre- and post-donepezil treatment
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suggest that demyelination may cause a transient increase in 
the flux of 24OHC from the brain to the blood. Conversely, a 
destruction of neurons in combination with a loss of myelin 
occurring during a long period would be expected to result 
in decreased circulating levels of 24OHC at a later stage of 
the disease [57]. Thus, we assume that at least part of the 
contradictory findings regarding 24OHC levels in probable 
AD may be explained by sample heterogeneity regarding the 
different stages of the disease.

Regarding 27OHC, some authors have reported that this 
oxysterol increases levels of Aβ and p-tau and induces endo-
plasmic reticulum stress, a cellular response that is impli-
cated in AD [58]. Based on this, it is expected to find a 
decrease in plasma 27OHC and an increase in AD patients’ 
brain. In fact, brain levels of 27OHC were described to be 
increased in several areas of autopsied AD brains [57]. Like-
wise, Kolsch and colleagues [30] found significantly reduced 
27OHC in plasma of patients with dementing disorders com-
pared to non-demented subjects [17]. Despite all, our study 
found no differences in 27OHC plasma levels between AD 
patients and controls.

Many studies have shown that changes in membrane cho-
lesterol levels influence APP processing [59]. Cholesterol 
in the brain is mainly located in neuronal cell membranes 
and myelin sheets. This lipid is essential for cell membrane 
structure and function, particularly in lipid rafts, specialized 
membrane microdomains where the last step in Aβ produc-
tion [60] occurs. On the periphery, elevated cholesterol has 
been proposed to be a risk factor to developing AD by ani-
mal models and in vitro studies [61, 62]. However, in human 
studies, the results of cholesterol levels are controversial, 
both on the periphery and in the brain [63]. In our study, 
cholesterol levels at baseline were no different in plasma of 
probable AD patients as compared to controls.

APOE*4 allele was found to be associated with lowest 
levels of 24OHC, according to the hypothesis of an earlier 
faster and more intensive degenerative process in ε4 and the 
positive effect of ε4 allele on AD markers [64]. Despite this, 
the presence of an APOE4 allele did not show an association 
with cholesterol and oxysterol plasma levels in this study.

Regarding treatment with donepezil, we did not find an 
effect of 3- and 6-month treatment on 24OHC plasma lev-
els. With respect to 27OHC, we observed a slight increase 
with 3 months of treatment, but this increment was not 
maintained during the 6 months of donepezil treatment. 
Numerous studies have revealed that AChEI could regulate 
cholesterol level through activating the LXR pathway [65]. 
LXRs act as a dominant supervisor in cholesterol metabo-
lism including synthesis, uptake and trafficking. In studies 
with NPC mice, donepezil delayed the loss of cerebellar 
Purkinje cells and improved motor function via regulating 
the cholesterol-related homeostasis. These data suggest 
that donepezil reduced the cholesterol accumulation via 

inhibition of cholesterol synthesis through upregulation of 
the LXR pathway in NPC mice [66]. Contrasting, in our 
study we observed a significant increase in cholesterol levels 
as a result of donepezil treatment. Nonetheless, this incre-
ment of total cholesterol levels should not be overempha-
sized, as the mean values remained within the normal range 
(<200 mg/dL). It is, however, of interest that Adunsky and 
colleagues [67], in a cross-sectional study, found increased 
plasma cholesterol in AD patients using donepezil compared 
with AD patients who did not.

More studies are necessary in this field to confirm the 
effect of donepezil on cholesterol and metabolites. A rel-
evant factor, to be taken into account, is the small size of our 
sample, follow-up length and the lack of lumbar punctures. 
Despite this, it is a valuable sample, since patients were free 
of AChEi treatment and solely one variable was introduced 
in the follow-up: donepezil treatment. However, these results 
confirm and extend previous studies demonstrating disturbed 
cholesterol turnover in Alzheimer’s disease.
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