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Introduction

Since ancient Egypt, mankind attempts to understand men-
tal illness, however, only around the mid-twentieth century, 
a probable biological cause was confirmed. Since then, mod-
ern psychiatry has established a set of systematic criteria for 
diagnosis, psychological therapies and the development of 
new drugs. And despite all progress, the prevalence of neu-
ropsychiatric disorders has not diminished. Strong genetic 
influence of these diseases has been elucidated, yet the role 
of such genes is still unclear [1]. Hence, more detailed molec-
ular-based studies are necessary for a better understanding of 
mental disorders. Approximately 25 % of the world popula-
tion will, at some point in their lifetime, be affected by a men-
tal disorder [2]. Among the leading causes of disability, espe-
cially among woman between 15 and 44 years old, there are 
several mental disorders, of which five of these disorders are 
listed as the first cause of burden, schizophrenia as the fifth 
and bipolar disorder as the seventh [3]. These diseases cause 
an increased risk of additional health problems, premature 
death, in addition to suicide attempts [4, 5].

The burden of mental disorders

Currently, depressive disorders are the most common 
mental illnesses worldwide, estimated to affect about 350 
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million people of all ages [3]. Major depressive disor-
der (MDD) is associated with high health costs [6], and 
according to the National Comorbidity Survey (NCS) it 
has a prevalence of 14.4 % over lifetime and 7.1 % on a 
12-month period [7]. The main symptoms of this disease 
are depressed mood and/or loss of interest or pleasure [8], 
while secondary symptoms are change in sleep, appetite, 
fatigue/energy loss, feelings of worthlessness or guilt, 
diminished concentration and suicidal thoughts [8, 9]. The 
basis for MDD treatment still consists in antidepressants, 
and only 30–40 % of the patients satisfactorily respond 
to them [10, 11]. There are several hypotheses aiming to 
explain the molecular basis of MDD; however, the patho-
physiology of these diseases is only partially understood 
[12–14].

Schizophrenia (SCZ) is a chronic mental disorder that 
usually emerges at the end of adolescence and develops 
slowly for months or even years [15]. SCZ may affect up 
to 1 % of the world population and presents a hereditabil-
ity of 80–85 % [16], which may cause a lifespan reduction 
in almost 20 years [17]. A burden that displays different 
symptoms, which are classified as positive, such as hal-
lucinations, deliria and thought disorders, and as negative, 
such as social interaction disorders, lack of motivation and 
anhedonia. Furthermore, cognitive deficiencies, such as the 
reduction in executive functions, selective attention, work-
ing memory and mental flexibility, may also be present 
[18]. As a multifactorial disease, SCZ involves exogenous 
and endogenous factors since the beginning of neurode-
velopment [19]. Some of the molecular aspects of SCZ 
are still to be unraveled, while the connection among the 
known aspects has still to be improved toward a more inte-
grated understanding of its physiopathology.

Bipolar disorder (BPD) is another psychiatric disorder 
that may affect up to 4 % of the world adult population 
[20]. It is characterized by two well-defined mood shifts, 
from manic to depressive mood, and it is possible to have 
periods with symptoms from both states. The diagnosis of 
BPD is performed clinically. This is a challenge, since the 
disease has a great heterogeneity, with unclear limits when 
compared to other psychiatric disorders [21]. Lithium is by 
far the most commonly used drug for BPD and works as 
a mood-stabilizing agent; nevertheless, its specific way of 
action was not yet entirely unraveled. However, there are 
several theories trying to explain its action mechanism, 
such as ionic channel alterations, or gene expression modu-
lation [21–23]. A cause factor for BPD remains unknown, 
what is already known is that some biochemical, genetic 
and environmental disturbed patterns may trigger the 
disease.

The study of the brain is the most natural way to under-
stand these neuropathologies, aiming to find possible 
causes for those brain disorders [24]. In addition, cellular 

and molecular arrangements differ between brain regions; 
thus, a better comprehension arises from characterizing 
them at the molecular level and their correlation with the 
disease pathobiology. Hence, this review aims to evalu-
ate and connect proteomic studies of human brain from 
patients with SCZ, MDD and BPD, in order to better under-
stand those diseases. These studies employed a myriad of 
proteomic techniques, which are described in detail below.

Proteomic methods used in neuropsychiatric 
studies

2DE/2D‑DIGE

The pioneer technique employed not only in psychiatric 
studies, but also in proteomic investigations in general, was 
the two-dimensional electrophoresis (2DE) [25]. Since the 
1970s, when developed [25], this technique is widely used 
in proteomic studies. Hence, between 2000 and 2010 half 
of the articles in proteomics in PubMed employed 2DE as 
its main method of study [26], which is still used for some 
particular questions, such as the study of intact proteins 
[26]. The 2DE combines two techniques: isoelectric focus-
ing (IEF), followed by a separation by SDS-PAGE. There-
fore, as all techniques of electrophoretic separation, mole-
cules with charge migrate under the influence of an electric 
field, and their migration velocity will depend on specific 
features of these molecules, such as size, shape and electri-
cal charge.

Thus, by late 1990s this technique was powered by the 
development of differential two-dimensional electrophore-
sis (2D-DIGE) [27]. Herein, proteins are covalently labeled 
in their lysine residues with fluorescent cyanins (-Cy3, Cy5 
and Cy2), and the samples are mixed prior to electropho-
retic separation, enabling precise and more sensitive pro-
teome quantification. Consequently, increasing reproduc-
ibility and sensitivity, samples can be compared in a single 
gel [28]. Inherent limitations of 2DE, which also applies 
to 2D-DIGE, are the difficulty of separating hydrophobic 
and extremely acidic or basic proteins, which can be par-
tially solved by protein extraction methods using deter-
gents. Moreover, proteins larger than 150 kDa and smaller 
than 10 kDa can be missed, demanding experiments using 
several gels with variable acrylamide concentrations. Com-
putational analyses of gels are rather semi-automated, 
demanding manual corrections for the quantification of 
protein expression.

Even with all limitations, 2DE and 2D-DIGE are genu-
inely a top-down analytical approach [26]. Their resolution 
power is remarkable as they are capable of resolving more 
than 10,000 protein spots in a single run [29], besides resolv-
ing protein isoforms and posttranslational modifications. 
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But their application to proteomics heavily relies on mass 
spectrometry for the identification of proteins.

Mass spectrometry‑based proteomics

A combination of liquid chromatography and mass spec-
trometry used for large-scale proteome analysis became 
popular by the end of the 1990s, when the term “Shotgun 
Proteomics” was coined [30]. At that point, shotgun prot-
eomics could be simply referred as mass spectrometry-based 
proteomics. But considering all the recent developments, 
both terms are actually referring to “mass spectrometry-
based bottom-up proteomics.” This consists primarily of the 
analysis of a digested proteome, which undergoes a chro-
matographic separation followed by MS/MS analysis [31, 
32]. Although this is virtually impossible, the aim here is 
to unveil the whole proteome of a given sample. For that, 
depending on the sample analyzed, single liquid chroma-
tography could be insufficient to resolve the complexity of 
biological protein mixtures, requiring a multidimensional 
chromatography separation. This concept has been applied 
since the description of MudPIT (multidimensional pro-
tein identification technology) in 2001 [33], but only more 
recently multidimensional chromatography separation 
has been more often used by a significant number of prot-
eomic studies [34, 35]. A given 2D-LC system may employ, 
for instance, a first separation of peptides by strong cation 
exchange (SCX) or by reversed-phase column, and this last 
has recently been more used, followed by separation on a 
reversed-phase column (RP), which could be employed.

Mass spectrometry‑based quantitative proteomics

In recent years, mass spectrometry-based quantitative pro-
teomics has earned significant space among quantitative 
techniques for proteins [36]. It is an alternative for anti-
body-based protein analysis, as virtually any protein can be 
accurately measured in a large number of samples [37].

Stable isotope/isobaric labeling approaches

Quantification of proteins is a key aspect in proteomic stud-
ies. Efforts in developing effective methods to increase 
sensitivity and accuracy led to the development of stable 
chemical (e.g., ICAT, iTRAQ, ICPL and TMT) and meta-
bolic (SILAC, SILAM and 15N) labeling techniques. Iso-
tope-coded affinity tags (ICATs) were the first application 
of stable isotope labeling to quantitative proteomics [38]. It 
relies on heavy and light mass tags containing either eight 
or no deuterium atoms, respectively, allowing the compari-
son of two samples in one experiment. Isotope-coded pro-
tein label (ICPL) follows the same principle, but up to 4 
samples could be labeled at once [39].

Isobaric tags for relative and absolute quantification 
(iTRAQ) are one the most used in vitro labeling technique 
in proteomic studies. Quantification consists of different 
isobaric tags, which label up to eight different samples, 
and can be used in any biological system [40]. Proteolytic 
peptides of each sample are labeled with an iTRAQ spe-
cific tag, and then, samples are mixed and further analyzed 
in LC–MS/MS [40]. iTRAQ tags present three distinct 
regions: one that reacts with the peptide, a reporter region, 
and a balance that complements the reporter region mass, 
making iTRAQ tags isobaric [41]. Once a given labeled 
peptide is submitted to MS/MS, the balance and reporter 
break apart, and the masses of the reporters are measured. 
The intensity of these reporters is linearly correlated with 
the quantity of the given peptide.

In addition, among metabolic labeling techniques, sta-
ble isotope labeling by amino acids in cell culture (SILAC) 
is the most employed and relies on the incorporation of 
non-radioactive, stable isotope containing amino acids in 
newly synthesized proteins. Culture medium is supple-
mented with “heavy” amino acids instead of natural amino 
acids to be incorporated into proteins. Then, both light and 
heavy-treated cells are mixed and processed together, until 
analysis by LC–MS/MS, when labeled peptides can be dis-
tinguished, and therefore, abundance was determined by 
relative signal intensities [42].

Label‑free

On the other hand, there are label-free approaches, which 
are simpler, require no additional wet-lab experiments and 
are reproducible and cheaper compared to stable isotope 
labeling techniques [43]. However, label-free quantification 
requires hard and specialized in silico analysis, thus turning 
relative quantification possible [44–46]. Label-free quanti-
tative analysis is based on two main approaches, the first is 
to count and compare fragment ion in spectra acquired from 
peptide derived from a precursor protein [47, 48]. The sec-
ond parameter is the measurement of the chromatographic 
peaks’ areas of peptide precursor ions, which is possible 
since these peaks are supposed to have a linear correlation 
with the amount of protein present in the sample [49]. In 
addition, label-free quantification does not limit the number 
of samples and conditions to be compared, which is suit-
able to longitudinal and clinical proteomics [50].

Targeted proteomics

SRM

Selected/multiple reaction monitoring (SRM/MRM) is 
able to detect and perform accurate quantitation of a tar-
get protein, or set of proteins, present in complex biological 
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samples [51]. This technique is performed with high effi-
ciency in triple quadrupole mass spectrometers (TQ or 
QqQ), wherein the first analyzer (Q1) achieves the isola-
tion of a given intact peptide (parent ion); the second ana-
lyzer (Q2, which is not a proper quadrupole in current mass 
spectrometers) works as a collision chamber, generating 
fragments (daughter ions) that will be measured separately 
and accurately in the third quadrupole (Q3). The various 
transitions between the precursor and fragment ion pairs 
are monitored over time, and when combined with standard 
chromatogram, peak retention time and intensity produce a 
high selectivity for quantification [52–55].

More recently, targeted-MS has been also employed in 
Q-TOF and Orbitrap mass spectrometers. The latest per-
forms the so-called parallel reaction monitoring (PRM), 
which measures daughter ions on a HR/AM mass analyzer 
instead of a quadrupole. This allows the parallel detec-
tion of all daughter ions from a given parent ion at once 
[56, 57]. PRM offers alternative ways to conduct targeted 
proteomics studies with comparable performance as SRM 
[58]. In a recent study, this type of acquisition was also 
implemented in an instrument of the type quadrupole time 
of flight (QqTOF). Using complex biological samples, 
selectivity and reproducibility of PRM compared to SRM 
were evaluated, showing a satisfactory performance of this 
instrument using this technique [59].

Antibody‑based techniques

Immunoassays have been the basis for protein measure-
ment for over half a century, with a limited range of tests 
available mainly for diagnosis [60]. Historically, Western 
blotting is the most common technique for immunodetec-
tion of proteins in complex samples. It consists basically 
in the transference of proteins from a gel to a membrane 
where the specific protein labeling with the respective anti-
bodies will be performed [61]. Alternatively, commercially 
available enzyme-linked immunosorbent assay (ELISA) 
can be more sensitive if compared to Western blot, in addi-
tion to better relative quantification using recombinant pro-
teins [62].

Western blot and ELISA are both commonly used in pro-
teomics as validation tools for differences in protein expres-
sion. The major drawback is that these techniques depend 
on specific and well-characterized antibodies, which can 
be challenging, especially for the study of posttranslational 
modifications. More recently, an analysis of large-scale 
antibody-based proteomic technique has emerged. Though 
using a lower throughput compared to mass spectrometry, 
this analysis employs multiplexed dye-coded microspheres, 
coated with antibodies. Those microspheres are used for 
identification and quantification of hundreds of proteins 
simultaneously, depending on the antibody composition of 

the assay, in dozens of individual samples [63]. The amount 
of sample required is also an advantage compared to other 
antibody-based techniques, though it still depends on the 
quality of those for greater reproducibility [64–68].

Biochemical pathways associated 
with neuropsychiatric disorders unraveled 
by proteomics

This review analyzes every proteomics study published 
thus far in several postmortem brain regions of patients 
with schizophrenia (SCZ), bipolar disorder (BPD) and 
major depression disorder (MDD). All differentially 
expressed proteins found in these studies were computed. 
The survey was conducted in PubMed with the following 
keywords “proteomic/proteome brain and schizophrenia/
bipolar disorder/major depressive disorder,” We found 14 
articles on SCZ studies [69–83], 4 on BPD [82, 84, 85] and 
7 on MDD [69, 79, 86–88], which found up- and down-
regulated proteins that were compiled and are presented 
in Supplementary table 1. BPD studies unraveled 731 dif-
ferentially expressed proteins, while 412 proteins were dis-
covered in SCZ studies and 187 proteins in MDD. All these 
proteins were further analyzed only by Ingenuity Pathway 
Analysis software (IPA, Ingenuity Systems, QIAGEN, 
Redwood, CA, USA; www.ingenuity.com), using curated 
connectivity information from the literature to determine 
interactions network among differentially expressed pro-
teins and determine canonical pathways in which they are 
involved [89]. Parameters used in the IPA software were: 
“genes only,” “include direct and indirect relationship” and 
“do not include endogenous chemicals.” Only molecules 
and/or relationships in humans were considered, and all 
cell types/tissues were taken into account, using prediction 
mode assigned to experimentally observed OR high.

Similarities among disorders

We compared the similarities of differentially expressed 
proteins associated with SCZ, MDD and BPD and found a 
small overlap among them (Fig. 1). About 26 proteins are 
common among SCZ, MDD and BPD; additional 28 are 
common between MDD and BPD, and 24 between MDD 
and SCZ. On the other hand, comparing SCZ and BPD, a 
greater similarity is observed, with about 146 proteins in 
common, which supports genomic studies [90–92]. The 
low overlap among the main psychiatric disorders might 
support disease specificity at the proteome level.

Additionally, analysis on the STRING—search tool for 
the retrieval of interacting genes/proteins (http://string-db.
org/)—was performed. This platform consists of a database 
devoted to protein–protein interaction, which provides a 
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comprehensive view of the interactions between proteins 
in the dataset (Jensen, 2008). Therefore, 24 proteins found 
differentially expressed in all three diseases were analyzed, 
as observed in Fig. 2. These proteins have a high degree 
of connectivity between them and are directly related to 

axonal region of neuronal cells (axon, 0.000334 FDR; neu-
ron projection terminus, 0.000919 FDR; axon terminus, 
0.000725 FDR; dendrite, 0.00726 FDR). However, the 
most correlated cellular component to those proteins was 
myelin sheath (1.45E−12 FDR), which is formed by oli-
godendrocytes. These cells are known to be altered in SCZ, 
MDD and BPD, as shown by both proteomic studies and 
neuroimaging [94–96], including its maturation process 
[97, 98].

Myelin is a multilaminar structure surrounding the axons 
of neurons made by oligodendrocytes in the central nervous 
system and by Schwann cells in the peripheral nervous sys-
tem, being an essential structure for the proper functioning 
of nerve impulse transmission, providing strength and speed 
[99, 100]. Studies of postmortem tissue in SCZ, MDD and 
BPD patients showed that myelination-related genes have a 
reduction in mRNA transcripts in patients [101–103]. Dam-
age to myelin can cause sensory-motor dysfunction, cogni-
tive impairment, mental retardation and even death [100].

The top network found dysregulated, according to IPA 
(score 28), is related to neurological, psychological and 
skeletal/muscular disorders, as shown in Fig. 3. This net-
work is composed of 31 molecules, among them 12 pro-
teins are altered in diseases, together with 19 partners of 
these molecules. This network has a central protein, the 
TP53, which directly or indirectly connects differentially 
expressed proteins from all three diseases. This protein has 

Fig. 1  Venn diagram depicting differences between expressed pro-
teins in schizophrenia (SCZ), bipolar disorder (BPD) and major 
depressive disorder (MDD)

Fig. 2  Differentially expressed proteins commonly found in SCZ, MDD and BPD and their functional correlations using STRING database
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anti-proliferation function, plays a role in the maintenance 
of somatic stem cells [104] and regulates the proliferation 
and differentiation of neural stem cells (NSC) [105]. There-
fore, NSCs maintenance/renewal, migration, differentiation 
and death can thus be disturbed and have a link with vari-
ous nervous system disorders, including neurodegeneration 
and psychiatric disorders [106].

Another molecule, REST (repressor element 1-silencing 
transcription factor), is also connected to the differentially 
expressed proteins. This transcription factor is required 
during differentiation, as induces the expression of neu-
ral-specific phenotypes. REST-dependent genes encode 
transcription factors, transmitter release proteins, voltage-
dependent receptor channels and signaling proteins [107]. 
REST is connected to the differentially expressed synapto-
somal-associated protein of 25 kDa (SNAP25), which also 
plays a critical role in modulating voltage-gated calcium 
channels and neurotransmitter release [108]. In addition, 
REST is connected to Alpha-internexin (INA) and GAP43, 
proteins related to cytoskeleton organization and impor-
tant function in synapsis and plasticity [109, 110]. These 
similar connections observed in all three disorders suggest 

a common synaptic and neurodevelopmental deregulation 
among them.

Main biochemical pathways of each disorder

In addition to those common features presented, several 
differentially expressed proteins were only observed in 
patients with SCZ, which have shown a link with neuro-
logical disease (p value 4.18E−03 to 1.09E−40) with 180 
proteins involved and psychological disorders (p value 
1.29E−03 to 1.09E−40) with 132 proteins. Those observed 
only in BPD resulted in greater overlap with neurologi-
cal disease (p value 2.88E−03 to 3.15E−31) with 255 
proteins involved and psychological disorders (2.48E−03 
to 3.15E−31) with 197 proteins. Similarly, differentially 
expressed proteins in MDD had 75 proteins involved in 
neurological disease (p value 2.39E−02 to 3.66E−13) and 
55 proteins in psychological disorders (p value 1.92E−02 
to 3. 66E−13).

According to IPA, the canonical pathways to which these 
disorders are associated are energy metabolism pathways 
deregulation, mainly related to oxidative phosphorylation 

Fig. 3  Differentially expressed proteins and predicted proteins as affected by deregulation them in SCZ, MDD and BPD
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mitochondrial dysfunction and gluconeogenesis, followed 
by cell signaling pathways, including signaling by Rho 
GTPases family, semaphorin signaling in neurons and 
14-3-3 mediated signaling.

Among the leading networks to which SCZ differen-
tially expressed proteins are involved were molecular 
transport, survival, cell death and neurological disease, 
with 47 connected proteins. For BPD, the main networks 
were related to neurological disease, psychological disor-
ders, cellular assembly and organization, with 41 proteins 
included in those networks. While differentially expressed 
proteins on MDD were mainly related to cellular assem-
bly and organization, cellular function and maintenance, 
cardiovascular system development and function, they 
have shown 37 proteins connected to those networks. As 
presented in Fig. 4, those proteins have a high connectiv-
ity among them, indicating a stronger correlation between 
pathways, which was recently reinforced by large genome 
studies with patients of these three disorders [111]. Simi-
larities between those diseases indicate common deregula-
tion basis, yet it is proposed [112] that at some point in 
development they follow different paths to become distinct 
disorders.

Schizophrenia

Getting an insight into differentially expressed proteins on 
schizophrenia brains (21.6 %—25 out of 116 differentially 
expressed proteins), we observe significant association with 
14-3-3-mediated signaling (p = 1.35E−18) (Fig. 5). The 
14-3-3 proteins are abundantly expressed in the brain and 
interact with a wide variety of cellular proteins, including 
kinases, phosphatases and transmembrane receptors [113, 
114]. These proteins regulate intracellular signaling, cell 
division and differentiation, ion channel function, apopto-
sis, neurodegeneration and dopamine synthesis [114, 115]. 
Moreover, 14-3-3 proteins have already been implicated 
in neurological disorders such as Parkinson’s, Alzheimer’s 
and Huntington diseases [116], additionally to psychiatric 
diseases, such as SCZ [117–120].

Indeed, the 14-3-3ζ-deficient mice have significant 
defects in functions such as working memory, sensory gat-
ing and associative learning [121, 122], which are related 
to long-term synaptic plasticity [122], and defects in neu-
ronal migration [121], integrating symptoms associated 
with SCZ-like behavior. Antipsychotic medications, such 
as haloperidol and olanzapine, affect the expression of 
14-3-3 proteins [119], endorsing association of this protein 
family with the disease.

Furthermore, proteins 14-3-3 zeta/delta (YWHAZ) 
have a broader incidence in the studied brain regions, 
which was found in five regions (corpus callosum (CC), 
anterior temporal lobe (ATL), anterior cingulate cortex 

(ACC), dorsolateral prefrontal cortex (DLPC) and medi-
odorsal thalamus (MDT)). This protein is involved in cell 
cycle, recognition of DNA alterations, apoptosis, dynamic 
changes of cytoskeleton and control of gene expression 
transcription [123]. Furthermore, new evidence indicates 
an important role in neurogenesis and cell migration [124].

Another protein commonly found altered was glial 
fibrillary acidic protein (GFAP). The protein was differ-
entially expressed in seven distinct regions [MDT, DLPC, 
CC, ACC, insular cortex (IC), frontal cortex (FC) and 
Wernicke’s area (WA)]. GFAP is found in glial cells of 
the central nervous system, being a classical marker for 
astrocytes [125]. Previous studies showed both GFAP 
mRNA and protein are decreased in patients with SCZ 
and BPD [79, 126]. Astrocytes play important roles in 
brain immune response, synaptic function, debug ions and 
cellular transmitters, neuronal metabolism and migration 
[127–129]. Thus, GFAP, as the main protein of intermedi-
ate filament in astrocytes, is a widely studied protein in 
diseases related to brain and is also very important during 
development [130].

Bipolar disorder

Several diseases, such as SCZ, BPD, Alzheimer’s and Par-
kinson’s, have some pathophysiological mechanisms in 
common, including the production of reactive species of 
oxygen (ROS) and the accumulation of mitochondrial DNA 
damage (mtDNA), which together result in mitochon-
drial dysfunction [131]. Recent studies with BPD patients 
have revealed differentially expressed proteins and mRNA 
related to mitochondrial dysfunction [132, 133], particu-
larly oxidative phosphorylation [134]. Mitochondrial dys-
function had higher correlation with BPD, with p value of 
9.86E−23 and 24.2 % (40/165), as observed in Fig. 6. In 
addition, BPD is also associated with mitochondrial DNA 
(mtDNA) mutations and polymorphisms [135, 136]. These 
mutations cause an imbalance of mitochondrial enzymes, 
which can affect energy metabolism. This imbalance can 
lead to prejudices in major mitochondrial functions, as to 
synaptogenesis and neuronal plasticity, shown altered in 
BPD [137, 138].

Furthermore, the proteins superoxide dismutase [Cu–
Zn] (SOD1), GFAP and stathmin (STMN1) have been 
identified differentially expressed in several brain regions 
of patients with BPD. SOD1 is the major intracellular form 
of the SOD enzyme family, which catalyze the removal of 
superoxide free radicals within the cells and are increas-
ingly recognized for their key role in response to oxidative 
stress [139]. This protein is also associated with replica-
tion of stress response genes, DNA damage response, stress 
response and general Cu/Fe homeostasis [140]. SOD1 is 
widely associated with psychiatric illnesses on proteomic 
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studies, such as BPD and SCZ, on both blood and brain 
samples [141–146].

Stathmin, on the other hand, has an important func-
tion in mitosis. Moreover, it plays several roles in cellular 
processes such as the regulation of cell cycle progression, 
microtubule dynamics, intracellular transport, cell motility, 
cell polarity and maintenance of cell shape [147]. Stathmin 
expression has been reported increased during neuronal dif-
ferentiation, plasticity and regeneration, key functions for 
proper brain functioning, thus explaining its possible alter-
ation in many neurodegenerative diseases [148].

Major depressive disorder

The leading canonical pathway correlated with MDD was 
the oxidative phosphorylation (OXPHOS), with p value of 
3.48E−15, and overlap of 15.4 % of molecules from the 
pathway (16/104). This pathway, as shown in Fig. 7, is 

directly related to the mitochondrial dysfunction shown 
in BPD results. Disorder of the mitochondrial OXPHOS 
causes biochemical imbalance of the primary route of ATP 
production, as this pathway is responsible for coordinat-
ing the transport of protons and electrons, which leads to 
energy production [149]. As OXPHOS is a complex path-
way, with about 85 proteins, there are a variety of pheno-
types related to this route [150]. Disturbances in this path-
way frequently occur in psychiatric diseases like SCZ, 
BPD and MDD [151–154]. Recent studies, using a mutant 
MDD mouse model, have observed dysregulated OXPHOS 
pathway gene expression on the hippocampus, which may 
play an important role in the disease [155].

The main differentially expressed protein in BPD was 
dihydropyrimidinase-related protein 2 (DPYSL2). This 
protein participates in regulation of hippocampal neuronal 
axon formation and establishes neuronal polarization [156, 
157]. Recently, the protein interactome of DPYSL2 was 

Fig. 4  Interaction network depicting similar proteins among diseases



11Eur Arch Psychiatry Clin Neurosci (2017) 267:3–17 

1 3

described. Among DPLYSL2 interacting proteins are those 
involved in axon guidance, along with semaphorin inter-
actions and WNT5A signaling [158]. The protein gene is 
located on chromosome 8 and is widely associated with 
neuropsychiatric diseases, such as SCZ, BPD and MDD, 
and neurodegenerative diseases, such as Parkinson’s and 
Alzheimer [159]. This protein was found at significantly 
lower levels in the frontal cortex of patients with MDD [79, 
87], in addition to the anterior cingulate cortex [69], which 
may cause abnormalities in neurodevelopment.

Concluding remarks

Mental disorders are common worldwide, affecting 1 out 
of 5 people [160], and psychiatric disorders contribute sig-
nificantly to this group. Since they are in general diseases 
of early ages of onset, these disorders often cause severe 
damage on patients’ lives, such as low level of education, 

marital instability, occupational status and financial down-
grade, as well as high social costs [161–163]. Normally, 
SCZ, MDD and BPD are only diagnosed when symptoms 
appear; hence, at this point the disease is already estab-
lished. As a consequence, disease severity is much higher, 
proportionally to less effective treatments. Therefore, 
greater efforts are needed to understand these diseases, 
aiming for an efficient treatment, thus preventing such 
damage. Studies in neuroscience have reached enormous 
progress in understanding the cellular and molecular pro-
cesses involved in psychiatric diseases [164], but the patho-
physiology of these disorders remains undefined [165].

Proteomics holds great promise in the understanding 
of psychiatric disorders [165], mainly through identifica-
tion of protein changes in postmortem brains of patients 
[164], and toward the large-scale analysis of posttransla-
tional modifications [166, 167]. By compiling data from 
SCZ, MDD and BPD patient research, we have uncovered 
some similarities referring to signaling pathways altered, 

Fig. 5  14-3-3-mediated signaling as the main canonical pathway related to differentially expressed proteins in SCZ
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which are mainly related to energy metabolism and sign-
aling. Nevertheless, each of these diseases has molecu-
lar particularities, including most frequent differentially 
expressed proteins, and deregulation of several canonical 
pathways, which are unveiled by proteomics. However, 
currently available data are still inconclusive, and several 
efforts are in course for better comprehension of biological 
mechanisms of these diseases. This study also highlights 
the importance of postmortem brains banks for the better 
comprehension of psychiatric diseases, particularly regard-
ing proteomic studies, which are used for multifactorial 

diseases such as psychiatric. In addition, we need more 
engagement among psychiatrists–researchers: It is possible 
to improve the access of researchers to these samples, thus 
increasing the number of researches in this area.
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