ORIGINAL PAPER

Aberrant NMDA receptor DNA methylation detected by epigenome-wide analysis of hippocampus and prefrontal cortex in major depression

Oliver Kaut · Ina Schmitt · Andrea Hofmann · Per Hoffmann · Thomas E. Schlaepfer · Ullrich Wüllner · René Hurlemann

Received: 22 October 2014 / Accepted: 19 December 2014 / Published online: 9 January 2015 © Springer-Verlag Berlin Heidelberg 2015

Abstract Current perspectives on the molecular underpinnings of major depressive disorder (MDD) posit a mechanistic role of epigenetic DNA modifications in mediating the interaction between environmental risk factors and a genetic predisposition. However, conclusive evidence for differential methylation signatures in the brain's epigenome of MDD patients as compared to controls is still lacking. To address this issue, we conducted a pilot study including an epigenomewide methylation analysis in six individuals diagnosed with recurrent MDD and six control subjects matched for age and gender, with a priori focus on the hippocampus and prefrontal

O. Kaut (⊠) · U. Wüllner Department of Neurology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany e-mail: oliver.kaut@ukb.uni-bonn.de

I. Schmitt · U. Wüllner German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany

A. Hofmann · P. Hoffmann Department of Genomics, Life & Brain Center, 53105 Bonn, Germany

P. Hoffmann Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland

T. E. Schlaepfer · R. Hurlemann Department of Psychiatry, University of Bonn, 53105 Bonn, Germany

T. E. Schlaepfer Department of Psychiatry and Behavioral Medicine, The Johns Hopkins Hospital, Baltimore, MD 21287-7413, USA

R. Hurlemann Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany cortex as pathophysiologically relevant candidate regions. Our analysis revealed differential methylation profiles of 11 genes in hippocampus and 20 genes in prefrontal cortex, five of which were selected for replication of the methylation status using pyrosequencing. Among these replicated targets, GRIN2A was found to be hypermethylated in both prefrontal cortex and hippocampus. This finding may be of particular functional relevance as GRIN2A encodes the glutamatergic *N*-methyl-D-aspartate receptor subunit epsilon-1 (NR2A) and is known to be involved in a plethora of synaptic plasticity-related regulatory processes probably disturbed in MDD.

Keywords Depression · Epigenetics · Hippocampus · NMDA receptor · Prefrontal cortex

Introduction

Depressive syndromes and their etiologies are highly diverse. As a consequence, knowledge about their molecular underpinnings is still limited, resulting in a relative lack of mechanistically driven treatments [1]. While genomewide association studies (GWAS) have failed to identify robust and consistent risk modifiers for depression, genetic vulnerability is believed to strongly interact with environmental exposures including stressful life events, and there is accumulating evidence that epigenetic regulation may critically influence the susceptibility for depression by mediating this interplay [1, 2]. Epigenetic regulation refers to the heritable, but reversible modification of gene transcription in the absence of changes to the DNA coding sequence per se [3]. Multiple mechanisms underlying epigenetic regulation have been reported including DNA methylation of cytosine bases [4]. Consistent with evidence for volumetric decreases of the hippocampus (HIP) and other forebrain regions as well as decrements in neurotrophic factors are observations in rodent models of depression that the methylation signatures of genes encoding brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor are altered by stress—especially in the HIP [1, 5]. Even prenatal maternal stress may increase the susceptibility for depression in adolescent offspring via epigenetic regulation [6]. For instance, gestational factors have been proposed to influence adult depression-like behavior in utero by increasing the DNA methylation rate of the alpha calcitonin gene-related peptide in the rodent HIP [7].

Studies of peripheral DNA methylation patterns may also be informative by revealing potential non-invasive biomarkers for depression. Again, these studies have largely focused on BDNF, with a hypermethylation profile of the BDNF gene being of potential relevance as a diagnostic marker in the absence of predictive value for clinical outcome [8, 9].

Interestingly, glutamatergic mechanisms of depression have received less attention from epigenetic research, although there is substantial evidence from rodent models that depressogenic stress induces glutamatergic overactivity as well as overexpression of *N*-methyl-D-aspartate (NMDA) receptors [10–12]. Further significant support for a proximal role of NMDA receptors in the pathophysiology of depression comes from human studies documenting rapid (within hours) antidepressant responses of the NMDA receptor antagonist ketamine in patients with treatment-resistant depression, possibly via up-regulation of synaptogenesis and synaptic plasticity in HIP and prefrontal cortex (PFC) [13–15].

Given the urgent need for insights into the epigenetics of depression, the rationale of the present study was to conduct an epigenome-wide DNA methylation analysis in postmortem brain specimens obtained from six patients and six healthy controls matched for age and gender, with a priori focus on the HIP and PFC as high-priority candidate regions strongly implicated in the stress-induced neuroplastic changes associated with the disorder and their rapid reversal with ketamine [1, 15]. We hypothesized that our analysis would reveal specific target sites that exhibit differential methylation signatures in patients relative to controls and can be validated as physiologically relevant epigenetic modifications.

Materials and methods

Subjects and tissue acquisition

Postmortem human brain samples were acquired from the Netherlands brain bank (NBB), Netherlands Institute for Neuroscience, Amsterdam. NBB committee approved the experiments. All materials have been collected from donors whose written informed consent for brain autopsy and the

use of the material and clinical information for research purposes has been obtained by the NBB. Donors fulfilled Diagnostic and Statistical Manual of Mental Disorders III-R criteria of major depressive disorder (MDD), which was confirmed by an experienced clinician (R.H.). DNA isolation from frozen PFC and HIP tissue specimens was carried out as previously reported [16]. Donors diagnosed with MDD were six individuals (4 females, 2 males) aged 76.3 ± 19.5 years (PFC) and 76.8 ± 19.6 years (HIP). The mean tissue pH values were 6.2 \pm 0.1 (PFC) and 6.0 \pm 0.9 (HIP), and the mean postmortem intervals were 5.6 ± 1.0 h (PFC) and 6.2 ± 1.6 h (HIP). Control tissue specimens had a mean tissue pH of 6.8 ± 0.3 and mean postmortem interval of 6.1 ± 0.7 h and were obtained from six healthy donors (4 females, 2 males) aged 78.8 \pm 14.2 years. Thus, we used PFC and HIP tissue samples from five donors with MDD (S01/168, S06/028, S07/135, S08/090, S08/242) and five healthy controls (S09/134, S09/244, S10/023, S10/109, S10/181). The remaining tissue samples were obtained from four different donors as follows: PFC, donor S97/170 (MDD) and donor *95/026 (control); HIP, donor S09/323 (MDD) and donor S09/007 (control) (Table 1).

Genome-wide DNA methylation analysis

For bisulfite conversion reaction, we used 1 µg of DNA. This leads to the deamination of unmethylated cytosines, which were converted to 6-sulfonyluracil. Then, they were desulfonated to uracil, which ultimately translated into thymidine, while methylated cytosines were not converted. Comparing this converted DNA to the original unconverted sequence enabled detailed evaluation of the location and abundance of methylated cytosine-phosphate-guanosine dinucleotide (CpG) sites. Specifically, DNA was treated with a ZymoResearch (Irvine, CA) bisulfite kit; 200 ng of bisulfite-treated DNA was analyzed using the Infinium Human Methylation 450 K bead arrays spanning approximately over 480,000 CpG sites/sample (Illumina Inc., San Diego, CA). Processing was done according to the manufacturer's protocol using an automated pipeline, and the arrays were scanned on an Illumina iScan platform (Illumina Inc., San Diego, CA) established at the Life & Brain Center (Bonn, Germany). We used Illumina GenomeStudio software (version 2011.1; Illumina Inc., San Diego, CA) for the extraction of DNA methylation signals from the arrays. Data were extracted as raw signals without background normalization. The methylation of CpG (cytosine guanosine dinucleotide) ranges from 0 (unmethylated, U) to 1 (fully methylated, M) on a continuous scale. The β -values were calculated from the intensity of the M and U alleles ratio of fluorescent signals: $\beta = Max (M, 0)/$ Max (M, 0) + Max (U, 0) + 100. Further data analysis was carried out along two parallel protocols: We followed

ID Sex Age PMI Diagnosis S97/170 F 81 5.25 MDD S09/323 F 845 MDD S09/323 F 845 MDD S01/168 M 45 7 MDD S01/168 M 45 7 MDD S06/028 F 60 No data MDD S06/028 F 60 No data MDD S07/135 M 88 6.37 MDD	egion Cause of death		
S97/170 F 81 5.25 MDD S09/323 F 84 MDD S09/323 F 84 MDD S01/168 M 45 7 MDD S01/168 M 45 7 MDD S01/168 M 45 7 MDD S06/028 F 60 No data MDD S06/028 F 60 No data MDD S07/135 M 88 6.37 MDD		Comorbidities	Psychiatric medication
S09/323 F 84 8.45 MDD S01/168 M 45 7 MDD S06/028 F 60 No data MDD S07/135 M 88 6.37 MDD	FC Pneumonia, dehydration	Multi-infarct dementia, atrium fibrillation	Rivotril, Haloperidol, CBZ
S01/168 M 45 7 MDD S01/168 M 45 7 MDD S01/168 M 45 7 MDD S06/028 F 60 No data MDD S07/135 M 88 6.37 MDD	IP Bladder carcinoma	Benign breast tumor 1956, Bell's palsy	Temazepam, Paroxetine
S01/168 M 45 7 MDD S06/028 F 60 No data MDD S06/028 F 60 No data MDD S07/135 M 88 6.37 MDD S07/135 M 88 6.37 MDD	FC Brain hemorrhage	Smoking 1 year prior to his death	Fluvoxamine
S06/028 F 60 No data MDD S06/028 F 60 No data MDD S07/135 M 88 6.37 MDD S07/135 M 88 6.37 MDD	IP		
S06/028 F 60 No data MDD S07/135 M 88 6.37 MDD S07/135 M 88 6.37 MDD	FC Mamma carcinoma	Uterus myomatosis	Haloperidol
S07/135 M 88 6.37 MDD S07/135 M 88 6.37 MDD	IP		
S07/135 M 88 6.37 MDD	FC Multiple epileptic seizures	Inguinal hernia, myocardial infarction	Amitriptyline, Venlafaxine, Lormetazepam
	IP		
S08/090 F 93 4.2 MDD	FC Pneumonia	Uterus extirpation, hypertension	Citalopram, Midazolam
S08/090 F 93 4.2 MDD	IP		
S08/242 F 91 5.2 MDD	FC Cachexia and pneumonia	Colon carcinoma, lupus erythematosus	Lorazepam, Citalopram
S08/242 F 91 5.2 MDD	IP		
*95/026 M 62 6.3 Control	IP Adenocarcinoma	Atelectasis left lung, metastases intracardial	Haldol, Rivotril
S09/007 M 62 6.3 Control	FC Perforated ulcus duodeni	Atelectasis left lung	
S09/134 F 84 6.5 Control	FC Myelodysplasia	Uterus extirpation, COPD, migraine	
S09/134 F 84 6.5 Control	IP		
S09/244 M 88 7 Control	FC Rectum/prostate carcinoma	Asthmatic bronchitis, PTCA, diverticulosis	Haloperidol
S09/244 M 88 7 Control	IP		Budesonide
S10/023 F 85 5.2 Control	FC End-stage COPD	COPD, emphysema, herpes zoster	Diazepam when necessary
S10/023 F 85 5.2 Control	IP		
S10/109 F 60 6.5 Control	FC Metastasized mamma CA	Cardiomyopathy, hypopituitary disturbance	Haloperidol
S10/109 F 60 6.5 Control	IP		Diazepam
S10/181 F 94 5.5 Control	FC Cachexia	Ischemic cerebrovascular accidents	Citalopram
S10/181 F 94 5.5 Control	IP		Temazepam

Fig. 1 Flow chart of methylation analysis. *Step 1* Epigenome-wide, sequencing-based microarray experiment. *Step 2* Differential methylation analysis using Illumina's GenomeStudio and the complete pipeline by J. Tost. *Step 3* PubMed-based in silico analysis of candidate genes identified in *step 2. Step 4* Selection of candidate genes for further evaluation using pyrosequencing

a recently proposed search algorithm which encompassed a sequence of operations including quality control, bead number filtering, probe filtering, signal correction (i.e., color-bias adjustment and background correction), subsetbased quantile normalization, Infinium I/Infinium II correction and exclusion of samples that potentially contain SNPs (single nucleotide polymorphism) (http://www.ncbi. nlm.nih.gov/SNP/) [17]. This approach was complemented by an additional analysis based on Illumina's GenomeStudio software. Methylation values were considered as differentially methylated when (1) the absolute difference between β -values means (delta-beta, $\Delta\beta$) between patients and controls was higher than 0.2, and (2) when adjusted p values were lower than .05. Those CpGs not annotated to a known protein were excluded. We then prioritized the resultant candidate genes for validation with pyrosequencing by applying the following selection criteria: (a) putative link to major depression or brain structure and function in general (PubMed database search); (b) detection of multiple differentially methylated CpG sites in a given gene; and (c) detection of differentially methylated CpG sites in both PFC and HIP (Fig. 1).

Notably, the GenomeStudio software-based analysis identified a hypermethylation of the gene (GRIN2A) encoding the NMDAR subunit epsilon-1 (NR2A), which was not documented following the algorithm-based analysis. Subsequent pyrosequencing confirmed the GenomeStudiobased results, thus supporting their validity.

Statistical analysis of normalized methylation data

Statistical analysis was performed with SPSS Statistical software program for Windows, version 20.0 (SPSS Inc., Chicago, IL). Values are indicated as mean \pm SD. Analysis of comparisons between groups was performed by Mann–Whitney *U* test. Levels of significance were set at *p* < .05 and *p* < .01, respectively. To assess the correlation between quantitative values, we determined the linear bivariate correlation coefficient (Pearson's R) with the corresponding two-tailed significance level (*p* < .01).

Validation analysis using pyrosequencing

In epigenetic DNA methylation studies, specific targets from genome-wide methylation patterns need to be validated. Pyrosequencing is an ideal validation platform because it rapidly quantifies single and multiple methylation sites. For target validation, we performed pyrosequencing as follows: The DNA from brain samples was amplified using 5 pmol primer each (GRIN2A-PF1: TTTTTGTGTTTTGTG GTGTAT AGATT, GRIN2A-PR1/Bio: ACACTAAAAAAT AAATAAATCACACCAAAT), 1 µl of bisulfite-treated DNA and 12,5 µl of Hotstar Plus master mix (Qiagen, Hilden, Germany) in a 25 µl reaction using the following cycler program: 5 min at 95 °C, 45 \times (40 s at 95 °C, 40 s at 58 °C, 40 s at 72 °C), and 5 min at 72 °C. For pyrosequencing, we used 20-25 µl of the PCR reaction, the primer GRIN2A-PS1 (GTATGATTTATTTTTTTGTGGTAG), and the Pyromark Q 24 Kit (Qiagen), and performed sequencing according to the manual. For the other targets, the following primers and annealing temperatures were used: OTX2-PF1 (GAAAATAGTTTGT TTTTGGATTTGTGT), OTX2-PR1 Bio (CACATTCAACCCCAACAATAAATAT), OTX2-PS1 (AACAAATCAAACTAAAACTCAA), 56 °C; LYNX1-PF1 (TGGTTGTATGTAGTTT GGAGTGT). LYNX1-PR1/Bio (CCCAAAACCATACCCCTACTACTA ATA), LYNX1-PS1 (GTTAGTTTAGTTAGGTTGGAA), 60 °C; MUC4-PF1 (GTTTTTATGGTTAGGTTGAAA TGTTATAGT), MUC4-PR1/Bio (CTCTCCCAACTACT TTCCTAAAC), MUC4-PS1 (TGA AATGTTATAGTTTGG TTATTTA), 60 °C; GPR111-PFI (TTTTAGGTTTAGGTT GATTTG TAAGAA), GPR111-PR1/Bio (ACACTAA AAAATAAATAAATCACACCAAAT), GPR111-PS1 (GT TTTTGTTTTTGTGAGAG), 56 °C. The degree of methylation at each CpG site was estimated using PyroMarkQ24 software (Qiagen, Hilden, Germany). The rationale for selection of genes to be validated with pyrosequencing from the set of genes identified as being differentially methylated in the microarray experiment was an in silico PubMed-based

Intinuelly Gase DP Care DP Care P Mean β -submed Difference (212) (222) (222) (222)			יוהדיהול לשון ווחופסבולםם חו	ιάι ευιτελ, (υ) πιρρυναιτιρια]			
Depression Depression Control (a) (b) (b) (b) (b) (c)	Illumina-ID ^a	Gene-ID ^b	Chr. ^c	Mean β -value ^d		Difference ^e	<i>p</i> value ^f
(a) (b) gg/230683 ACTN3 11 277 84.2 -56.5 gg/230683 ACTN3 11 277 84.2 -56.5 gg/2306456 CG10rf0 11 91.1 61.1 +73.2 gg/2306456 CG10rf0 11 91.1 61.1 +73.2 gg/2306456 CG1872 3 8.3 64.1 -55.8 gg/2306456 CG1872 3 8.3 64.1 -55.8 gg/2306456 CG1871 6 91.1 -45.0 -45.0 gg/2306456 CG181 12 90.7 66.9 -47.7 -55.8 gg/230558 CHR133 12 91.3 -77.7 -53.9 -77.7 gg/230568 CHR133 12 91.3 -77.1 -77.7 -73.9 gg/230588 MTUS 13 67.1 91.8 -77.1 -73.9 gg/230588 MTUS 13 67.1 91.8 -77.1 -73.9 <th></th> <th></th> <th></th> <th>Depression</th> <th>Control</th> <th></th> <th></th>				Depression	Control		
qd120668 ACN3 11 277 842 565 gd38071 C10rdM 1 913 914 913 914 913 913 914 913 914 913 <td< td=""><td>(a)</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	(a)						
eg0011065 ASB18 2 89.7 64.1 +25.5 eg354671 C10ref0 1 91.1 10.9 +47.2 eg2594586 CGR5 3 91.5 64.1 +25.5 eg2594586 C10rrN7 4 78.8 29.1 +47.2 eg2595458 C10rrN7 4 78.3 -46.0 -31.9 eg2595458 C10rrN2 1 4 66.5 -45.0 eg1755647 C10rrN2 1 4 4 -31.9 eg16701618 CPR13 12 66.7 91.8 -77.7 eg16701618 CPR13 12 66.7 91.8 -77.7 eg1670507 CPR13 12 66.7 91.8 -77.7 eg1670508 CPR13 12 66.7 91.8 -77.7 eg1670508 CPR13 12 67.7 91.8 -77.7 eg1670508 CPR13 12 67.7 91.8 -77.7	cg12208638	ACTN3	11	27.7	84.2	-56.5	0.009
QCRNIM C10rd/0 11 91.1 663 74.2 QCS09206 CQNNT 4 76.8 29.1 74.2 QCS09208 CUNTA 4 76.8 29.1 -45.0 QCS09208 CLSTN2 3 8.3 441 -55.8 QCS09208 CLSTN2 3 12 66.1 -45.0 QCS09208 CLSTN2 12 90.3 64.1 -53.8 QCR17381 CRN111 0 14 91.8 -77.1 QCR17585 GRN113 12 76.0 51.2 -53.8 QC17586 GRN113 12 69.3 51.2 -53.6 QCR1585 MTUC4 3 54.1 75.0 -73.3 QC05050 GRN113 12 69.3 -73.1 -73.3 QC05050 GRN1701 NTMC4 3 9.3 -23.9 -23.9 QC05050 GRN1702 OTX2 14 16.0 -23.1	cg00111665	ASB18	2	89.7	64.1	+25.5	0.001
gg/93402 C(0TNF) 4 76.8 29.1 47.7 gg/93403 CCCS 3 9.3 64.3 -43.0 gg/93464 CCS 3 8.3 44.1 -53.8 gg/9173647 CTF701 0 14.1 9.18 -77.7 gg/9173647 CFF113 12 76.6 51.2 -45.1 gg/910168 CTF713 12 90.7 68.9 -77.7 gg/9101892 GFR133 12 90.7 68.9 -77.3 gg/905376 GFR13 12 90.7 68.9 -77.3 gg/905376 GFR133 12 90.7 68.9 -72.4 gg/905376 MT04 13 8.3 9.3 -72.3 gg/905376 MT04 13 8.3 9.3 -72.4 gg/905376 MT04 14 2.2 -23.9 -23.6 gg/905376 MT04 11 48.6 24.4 -22.6 gg/905	cg15845071	C11orf40	11	91.1	16.9	+74.2	0
qq2398436 CCB3 3 19,5 64,5 -650 qq2398438 CL3STNQ 3 3 3	cg25924602	C1QTNF7	4	76.8	29.1	+47.7	0.032
q2500203 CLSTN2 3 8.3 4.1 -558 q205127821 CTN2 1 0 14.1 0.60 -31.9 q06173781 GPRL11 6 14.1 0.83 -45.1 -55.8 q04701618 GPRL13 12 76.6 51.2 +25.4 -77.7 q04701618 GPRL13 12 90.7 64.0 -51.8 -77.7 q04701618 GPRL133 12 90.7 64.6 -23.9 -25.8 q05065858 MTUC4 3 67.7 94.4 +25.1 -23.9 q05065756 MTV01 11 48.6 24.4 +24.2 -25.6 q05065756 NTV01 11 48.6 24.4 +24.2 -25.6 q156065756 NTV01 11 48.6 24.4 +24.2 -25.6 q15606575 NTV01 11 48.6 24.4 +24.2 -25.6 q15606575 OTY2 14 27.4	cg22984586	CCR5	ç	19.5	64.5	-45.0	0.044
q6017721 CYP36C1 10 141 460 119 q60177221 CYP36C1 10 141 460 119 q201701687 GPN111 6 141 123 129 q201701872 GPN133 12 007 68.9 +21.8 q20101892 GPN133 12 69.5 44.4 +25.4 q20101802 GPN133 12 69.5 44.4 +25.1 q20101802 GPN133 12 69.5 44.4 +25.1 q20101802 GPN136 NTOL 13 53.1 +27.5 q20966014 NTOL6 13 53.2 23.1 +27.5 q20966014 NTOL6 13 53.3 23.1 +27.5 q20966014 NTOL6 13 53.3 23.1 +27.5 q2011381 OTX2 14 66.6 42.7 -26.9 q201381 OTX2 14 27.4 27.4 27.4 <t< td=""><td>cg25692928</td><td>CLSTN2</td><td>ς.</td><td>8.3</td><td>44.1</td><td>-35.8</td><td>0.045</td></t<>	cg25692928	CLSTN2	ς.	8.3	44.1	-35.8	0.045
ge[175847] GPUII 6 141 918 -777 ge[070168 GPUI3 12 766 13.2 +25.4 ge[0703682 GPU133 12 90.5 +4.4 +25.1 ge[0708682 GPU133 12 60.5 44.4 +25.1 ge[0708682 GPU133 12 60.7 96.5 +23.0 ge[0708682 GPU133 12 60.7 94.4 +23.1 ge[0906604 MTUC4 3 59.3 32.1 +23.0 ge[09066035 GTT3 11 48.6 24.4 +24.2 ge[09066035 MTM 11 48.6 24.4 +24.2 ge[09066035 MTM 11 48.6 24.4 -24.2 ge[09066035 MTM 14 16.0 36.6 -21.7 ge[0905730 0TX2 14 27.4 32.3 -24.2 ge[0507302 0TX2 14 27.4 32.3 -21.4	cg05127821	CYP26C1	10	14.1	46.0	-31.9	0.0007
eg04701618 GFR133 12 76.6 51.2 +25.4 eg06701892 GFR133 12 90.7 66.9 +21.8 eg06701892 GFR133 12 90.7 66.9 +21.8 eg06701892 GFR133 12 90.7 66.9 +21.8 eg050504 MTUG4 3 67.7 94.5 -23.9 eg056504 NTMC4 3 67.7 94.5 -23.9 eg056504 NTM 11 48.6 32.1 +27.5 eg056504 NTM 11 48.6 24.4 +24.2 eg0565131 OTX2 14 16.0 36.6 -2.0.9 eg056510 OTX2 14 27.4 42.7 -2.0.9 eg0565130 OTX2 14 27.4 42.7 -2.0.9 eg1560762 OTX2 14 27.4 42.7 -2.0.9 eg1560763 OTX2 14 27.4 27.4 2.1.7 <td< td=""><td>cg11758647</td><td>GPR111</td><td>9</td><td>14.1</td><td>91.8</td><td>-77.7</td><td>0</td></td<>	cg11758647	GPR111	9	14.1	91.8	-77.7	0
eg06701892 GPR133 12 907 689 +218 eg19026888 MICH 3 541 780 -239 eg19026888 MICH 3 673 12 695 444 +551 eg19026888 MICH 3 673 59.5 780 -239 eg1906604 MYO16 13 59.5 32.1 +27.5 -26.8 eg0966074 NYM 11 486 24.4 +24.2 -0.09 eg0966075 NYM 11 486 24.4 +24.2 -0.09 eg0966076 NYM 11 486 24.4 +24.2 -0.09 eg0966077 OYX2 14 16.6 36.6 -0.01 -20.1 eg1507072 OYX2 14 27.4 49.1 -21.7 -26.9 eg1841942 OYX2 14 27.4 49.1 -21.7 -26.9 eg1841942 OYX2 14 27.4 49.1	cg04701618	GPR133	12	76.6	51.2	+25.4	7.93E + 09
ge[902602 GR133 12 69.5 44.4 +25.1 eg05053858 MTUIS2 13 54.1 78.0 -23.9 eg05053858 MTUIS2 13 54.1 78.0 -23.9 eg0506204 MYO16 13 59.5 54.1 +74.2 -23.9 eg0966204 MYO16 13 59.5 52.3 21.1 +75.5 eg0966204 NYM 11 48.6 24.4 +14.2 -20.6 eg0966204 NYM 11 48.6 24.4 +14.2 -20.6 eg0966376 OTX2 14 16.6 4.27 -20.6 -20.6 eg1313381 OTX2 14 27.4 49.1 -21.7 -20.6 eg1841942 OTX2 14 27.4 49.1 -21.7 -20.6 eg1821902 OTX2 14 27.4 49.1 -21.7 -20.6 eg1821902 OTX2 14 27.4 41.1 -21.7	cg06701892	GPR133	12	90.7	68.9	+21.8	1.11E + 02
eg0502888 MTUS2 13 54.1 78.0 -23.9 cg1871367 MUC4 3 67.7 94.5 -26.8 cg1871367 NUC4 3 67.7 94.5 -26.8 cg0966044 NYO16 13 8.3 59.5 32.1 +27.5 cg0966051 NTSDC2 3 8.3 29.3 -20.0 -26.6 cg0571016 NTSDC2 14 16.6 24.4 +24.2 -20.6 cg0508537 OTX2 14 16.6 42.7 -20.6 -20.6 cg1500752 OTX2 14 27.4 49.1 -21.7 -20.6 cg1515002 OTX2 14 27.4 55.9 -26.6 -26.6 cg15305027 OTX2 14 27.4 55.9 -26.6 -27.8 cg1515002 OTX2 14 27.4 55.9 -26.6 -27.8 cg1530502 OTX2 14 27.4 55.9 -26.6 <	cg19026802	GPR133	12	69.5	44.4	+25.1	0.050
cg1871367 MIC4 3 6/7 945 -268 g9966504 MYO16 13 59.5 32.1 +27.5 g9966504 NYTSDC2 3 59.5 32.1 +27.5 g99665736 NYTM 11 48.6 2.44 +24.2 g010657361 NYTM 11 16.0 36.6 -20.6 g1500702 0YX2 14 16.6 42.7 -26.0 g1500702 0YX2 14 27.4 49.1 -21.7 g20998537 0YX2 14 27.4 49.1 -21.7 g21592500 0YX2 14 27.4 85.2 -21.7 g158203030 </td <td>cg02628858</td> <td>MTUS2</td> <td>13</td> <td>54.1</td> <td>78.0</td> <td>-23.9</td> <td>0.009</td>	cg02628858	MTUS2	13	54.1	78.0	-23.9	0.009
qg096604 MY016 13 59.5 32.1 +27.5 qg27210716 NTSDC2 3 8.3 20.3 -0.09 qg0965736 NTM 11 48.6 24.4 +24.2 qg0965736 NTM 11 48.6 24.4 +24.2 qg09557 OTX2 14 16.0 36.6 -20.6 qg1834972 OTX2 14 27.4 49.1 -21.7 qg1834972 OTX2 14 27.4 49.1 -21.7 qg2699857 OTX2 14 27.4 49.1 -21.7 qg2699857 OTX2 14 27.4 49.1 -21.7 qg2699857 OTX2 14 27.4 32.3 -20.9 qg18290306 SDK1 7 64.4 35.2 -20.7 qg1752998 ZIC1 3 52.6 30.8 +21.7 qg1753028 ZIC4 3 60.1 -22.6 92.7 qg17430329 <td>cg18713687</td> <td>MUC4</td> <td>ę</td> <td>67.7</td> <td>94.5</td> <td>-26.8</td> <td>0.034</td>	cg18713687	MUC4	ę	67.7	94.5	-26.8	0.034
cg2710716 NTSDC2 3 8.3 29.3 -20.9 cg0663736 NTM 11 48.6 24.4 +24.2 cg0663736 NTM 11 48.6 24.4 +24.2 cg0663736 OTX2 14 16.0 36.6 -20.6 cg15807672 OTX2 14 27.4 42.1 -26.0 cg18241942 OTX2 14 27.4 42.1 -26.0 cg18241942 OTX2 14 27.4 42.1 -26.0 cg1825030 OTX2 14 27.4 55.9 -28.2 cg26998337 OTX2 14 32.3 60.1 -7.17 cg1852005 OTX2051 14 32.3 60.1 -7.17 cg1732998 ZIC1 3 52.6 30.8 +21.17 cg0569327 ZIC4 3 61.8 85.2 -20.6 cg0585505 ZIC4 3 61.8 52.3 -20.6 cg056	cg09966204	MY016	13	59.5	32.1	+27.5	7.19E + 07
cg0065736NTM1148.6 24.4 $+24.2$ cg013381OTX21416.0 36.6 -20.6 cg15807672OTX21416.0 36.6 -20.6 cg1821942OTX214 16.6 36.6 -20.6 cg182305739OTX214 27.4 49.1 -21.7 cg2698537OTX214 27.4 49.1 -21.7 cg182305790OTX214 27.7 55.9 -20.6 cg13230579OTX214 27.7 56.9 -28.2 cg13230579OTX214 27.7 56.9 -28.2 cg13230579OTX214 27.7 56.9 -28.2 cg1330579OTX214 27.7 56.9 -26.9 cg1330570OTX214 32.3 60.1 -27.8 cg1332998ZIC13 84.7 62.7 $+21.7$ cg0569327ZIC43 84.7 60.7 29.7 cg0530290ZIC43 84.7 60.7 29.7 cg0530329ZIC43 84.7 60.7 29.7 cg0530329ZIC43 84.7 60.7 29.7 cg0530329ZIC43 84.7 60.7 29.7 cg0530329ZIC43 84.7 62.7 $+22.0$ cg0530329ZIC43 84.7 62.7 $+22.0$ cg0530329ZIC43 84.7 62.7 $+22.0$ cg0530	cg22710716	NT5DC2	ç	8.3	29.3	-20.9	0.007
cg0121331 OTX2 14 16.0 36.6 -20.6 cg15607672 OTX2 14 16.6 42.7 -26.0 cg15607672 OTX2 14 27.4 49.1 -21.7 cg15807672 OTX2 14 27.4 49.1 -21.7 cg15807573 OTX2 14 27.7 55.9 -28.2 cg25998537 OTX2 14 27.4 51.9 -21.7 cg2599853739 OTX2 14 27.4 52.3 -26.9 cg1575002 OTX2OS1 14 25.4 52.3 -20.7 cg1573098 SDK1 7 64.4 85.2 -20.7 cg15732998 ZIC4 3 84.7 60.1 -21.7 cg05690372 ZIC4 3 84.7 62.7 +21.2 cg05690329 ZIC4 3 84.7 62.7 +21.2 cg0585917 ZIC4 3 60.7 22.7 +21.2 <td< td=""><td>cg09663736</td><td>NTM</td><td>11</td><td>48.6</td><td>24.4</td><td>+24.2</td><td>0.009</td></td<>	cg09663736	NTM	11	48.6	24.4	+24.2	0.009
cgl560/67OTX21416.6 4.7 -26.0 cgl580/67OTX214 27.4 49.1 -21.7 cgl8241942OTX214 27.7 55.9 -28.2 cgl8241942OTX214 27.7 55.9 -28.2 cg26998537OTX214 27.7 55.9 -28.2 cg253365739OTX214 27.7 55.9 -26.9 cg1823030OTX214 32.3 60.1 -77.8 cg18203030SDK17 64.4 85.2 -20.7 cg18230302ZIC13 84.7 60.7 -27.8 cg0539329ZIC43 84.7 60.7 -27.8 cg0539329ZIC43 84.7 60.7 -27.8 cg0539329ZIC43 84.7 60.7 29.7 cg0539329ZIC43 84.7 60.7 29.7 cg0539329ZIC43 84.7 60.7 27.8 cg0539329ZIC43 84.7 60.7 29.7 cg0539329ZIC43 90.7 27.8 42.13 cg0539329ZIC43 90.7 27.8 42.13 cg0539329ZIC43 90.7 27.7 42.12 cg0539329ZIC43 90.7 71.5 42.78 cg0539359ZIC43 90.7 77.8 42.85 cg0539359ZIC43 90.7 77.4 cg18857216C10	cg01213381	OTX2	14	16.0	36.6	-20.6	0.001
cg18241942OTX214 27.4 49.1 -21.7 cg2698537OTX214 27.7 55.9 -28.2 cg26998537OTX214 27.7 55.9 -28.2 cg26098537OTX214 27.7 55.9 -28.2 cg2335739OTX214 25.4 55.9 -26.9 cg12152002OTX20S114 32.3 60.1 -27.8 cg125303SDK17 64.4 85.2 -20.7 cg12732998ZIC1 3 52.6 30.8 $+21.7$ cg12330329ZIC1 3 84.7 60.7 -27.8 cg05369377ZIC4 3 84.7 60.7 $+20.8$ cg05365917ZIC4 3 84.7 62.7 $+21.7$ cg05355917ZIC4 3 84.7 62.7 $+21.7$ cg05355917ZIC4 3 60.7 29.7 $+21.7$ cg05355917ZIC4 3 60.7 29.7 $+21.7$ cg05355917ZIC4 3 60.7 29.7 $+21.7$ cg12892506ZIC4 3 60.7 29.7 $+21.7$ cg12892506ZIC4 3 60.7 29.7 $+27.8$ (h) $+27.8$ (h)	cg15607672	OTX2	14	16.6	42.7	-26.0	$3.09E \pm 06$
eg2698537 $OTX2$ 14 27.7 55.9 -28.2 $eg269853739$ $OTX2$ 14 25.4 55.9 -28.2 $eg2335739$ $OTX2$ 14 25.4 52.3 -26.9 $eg12152002$ $OTX20S1$ 14 32.3 60.1 -27.8 $eg12152002$ $OTX20S1$ 14 32.3 60.1 -27.8 $eg12530365$ $SDK1$ 7 64.4 85.2 -20.7 $eg12330329$ $ZIC1$ 3 52.6 30.8 $+21.7$ $eg06369327$ $ZIC4$ 3 84.7 62.7 $+22.0$ $eg05363937$ $ZIC4$ 3 84.7 62.7 $+21.2$ $eg053653517$ $ZIC4$ 3 84.7 62.7 $+22.0$ $eg053655917$ $ZIC4$ 3 84.7 62.7 $+21.2$ $eg053655917$ $ZIC4$ 3 84.7 62.7 $+22.0$ $eg053655917$ $ZIC4$ 3 84.7 62.7 $+22.0$ $eg053655917$ $ZIC4$ 3 84.7 62.7 $+22.0$ $eg053655917$ $ZIC4$ 3 60.7 32.9 -27.8 $eg053655917$ $ZIC4$ 3 39.1 97.6 -58.5 $eg036365666C10ef12713.130.6-27.4eg09636756C10ef12713.130.6-27.4eg0536542892C70ef50771.5-48.8eg05428926C7650771.5-48.8$	cg18241942	OTX2	14	27.4	49.1	-21.7	0.011
cg2336739OTX214 25.4 52.3 -26.9 cg13152002OTX2OS114 32.3 60.1 -27.8 cg1215202OTX2OS114 32.3 60.1 -27.8 cg1215202SDK17 64.4 85.2 -20.7 cg13650306SDK17 64.4 85.2 -20.7 cg13650305ZIC13 52.6 30.8 $+21.7$ cg03636327ZIC43 84.7 60.7 20.9 $+20.8$ cg03636359ZIC43 84.7 60.7 20.7 $+22.0$ cg03835917ZIC43 84.7 62.7 $+22.0$ cg03835917ZIC43 84.7 62.7 $+22.0$ cg03835917ZIC43 84.7 62.7 $+22.0$ cg03835917ZIC43 84.7 62.7 $+22.0$ cg03855917ZIC43 90.7 29.7 $+22.0$ cg12892506XIP9B18 39.1 97.6 -58.5 cg1885716Clorf1271 3.1 30.6 -58.5 cg18857216Clorf1271 3.1 30.6 -58.5 cg26542892C70rf507 71.5 38.4 $+33.1$ cg26542822C70rf507 71.5 38.4 $+33.1$ cg26542822C70rf507 71.5 57.4 -48.8 cg26542825C70rf507 71.5 57.4 -48.8	cg26998537	OTX2	14	27.7	55.9	-28.2	4.05E+05
cg13152002OTX20S11432.360.1-27.8cg13152005SDK1764.485.2-20.7cg18620306SDK1352.630.8+21.7cg1232928ZIC1364.785.2-20.7cg05639327ZIC4384.70.9+20.8cg0539329ZIC4384.70.9+21.2cg0539329ZIC4384.76.2.7+22.0cg0239329ZIC4360.729.7+21.2cg02395506ZIC4360.729.7+21.2cg12892506ZIC4360.729.7+21.2cg03855917ZIC4360.729.7+21.2cg03855916ZIC4360.729.7+21.2cg03855506ZIC4360.729.7+27.8cg18857216CIOrf12713.130.6-58.5cg0565758CTOrf12713.130.6-27.4cg26542892CTOrf120771.538.4+33.1cg26542892CTOrf120318.667.4-48.8	cg23365739	OTX2	14	25.4	52.3	-26.9	0
cg1860306SDK17 64.4 85.2 -20.7 cg1850303ZIC13 52.6 30.8 $+21.7$ cg05369327ZIC43 41.8 20.9 $+20.8$ cg05369327ZIC43 84.7 62.7 $+20.8$ cg05369329ZIC43 84.7 62.7 $+20.8$ cg05365917ZIC43 51.0 29.7 $+22.0$ cg05355917ZIC43 60.7 29.7 $+22.0$ cg05355917ZIC43 60.7 29.7 $+27.8$ cg12390320ZIC43 60.7 32.9 $+27.8$ cg12392506ATP9B18 39.1 97.6 -58.5 cg09636756ATP9B18 31.1 30.6 -27.4 cg09636756Clorf1271 3.1 30.6 -27.4 cg26542892CTorf507 71.5 38.4 $+33.1$ cg25384586CCR53 18.6 67.4 -48.8	cg12152002	OTX20S1	14	32.3	60.1	-27.8	0.0006
cg1273298ZIC1352.630.8 $+21.7$ cg03636327ZIC4341.820.9 $+20.8$ cg03636329ZIC4384.762.7 $+22.0$ cg03555917ZIC4351.029.7 $+22.0$ cg05855917ZIC43 60.7 29.7 $+21.2$ cg05855917ZIC43 60.7 29.7 $+21.2$ cg05855917ZIC43 60.7 29.7 $+21.2$ cg12892506ZIC43 60.7 29.7 $+21.2$ cg12892506ZIC43 39.1 97.6 -58.5 cg18857216CIorf1271 3.1 30.6 -27.4 cg26542892CTorf50771.5 38.4 $+33.1$ cg2284586CCR5 3 18.6 67.4 -48.8	cg18620306	SDK1	L	64.4	85.2	-20.7	4.49E + 08
cg06369327 $ZIC4$ 3 41.8 20.9 $+20.8$ $cg02390329$ $ZIC4$ 3 84.7 62.7 $+21.2$ $cg02390329$ $ZIC4$ 3 51.0 29.7 $+21.2$ $cg05855917$ $ZIC4$ 3 60.7 29.7 $+21.2$ $cg12892506$ $ZIC4$ 3 60.7 29.7 $+21.2$ $cg12892506$ $ZIC4$ 3 60.7 29.7 $+21.2$ $cg18857216$ $ZIC4$ 3 60.7 32.9 -58.5 $cg0636756$ $ATP9B$ 18 39.1 97.6 -58.5 $cg08636756$ $CIorf127$ 1 3.1 30.6 -27.4 $cg08636756$ $Crof50$ 7 71.5 38.4 $+33.1$ $cg26542892$ $C7orf50$ 7 18.6 67.4 -48.8	cg12732998	ZIC1	ŝ	52.6	30.8	+21.7	0.013
cg0230329ZIC43 84.7 62.7 $+22.0$ cg02355917ZIC43 51.0 29.7 $+21.2$ cg05855917ZIC43 51.0 29.7 $+21.2$ cg12892506ZIC43 60.7 32.9 $+21.8$ (b) ATP9B1 8 39.1 97.6 -58.5 cg0636756ATP9B1 3.1 97.6 -58.5 cg0636756Clorf1271 3.1 30.6 -27.4 cg26542892C7orf507 71.5 38.4 $+33.1$ cg22984586CCRS 3 18.6 67.4 -48.8	cg06369327	ZIC4	ç	41.8	20.9	+20.8	0.047
cg08855917ZIC4351.0 29.7 $+21.2$ cg12892506ZIC4360.7 32.9 $+27.8$ cg12892506ZIC43 60.7 32.9 $+27.8$ (b) -58.5 cg0636756ATP9B18 39.1 97.6 -58.5 cg0836756Clorf1271 3.1 30.6 -27.4 cg18857216Clorf1271 3.1 30.6 -27.4 cg26542892C7orf507 71.5 38.4 $+33.1$ cg22984586 CCRS 3 18.6 67.4 -48.8	cg02390329	ZIC4	ç	84.7	62.7	+22.0	1.65E + 08
cg12892506ZIC4360.732.9 $+27.8$ (b) (b) (b) (c)	cg05855917	ZIC4	c.	51.0	29.7	+21.2	0.0007
	cg12892506	ZIC4	ç	60.7	32.9	+27.8	0.0004
cg00636756ATP9B1839.197.6-58.5cg18857216C1orf12713.130.6-27.4cg26542892C7orf50771.538.4+33.1cg226542866CCRS318.667.4-48.8	(q)						
cg18857216 C1orf127 1 3.1 30.6 -27.4 cg26542892 C7orf50 7 71.5 38.4 +33.1 cg22984586 CCRS 3 18.6 67.4 -48.8	cg09636756	ATP9B	18	39.1	97.6	-58.5	0.0004
cg26542892 C7orf50 7 71.5 38.4 +33.1 cg22984586 CC Rs 3 18.6 67.4 -48.8	cg18857216	C1 orf127	1	3.1	30.6	-27.4	0.005
cg22984586 CCR5 3 18.6 67.4 -48.8	cg26542892	C7 or f50	L	71.5	38.4	+33.1	0.027
	cg22984586	CCR5	3	18.6	67.4	-48.8	0.023

 $\underline{\textcircled{O}}$ Springer

Table 2 continued						
Illumina-ID ^a	Gene-ID ^b	Chr.°	Mean β -value ^d		Difference ^e	<i>p</i> value ^f
			Depression	Control		
cg06386482	GPR111	9	42.4	63.8	-21.4	0.002
cg11758647	GPR111	9	19.0	93.0	-74.0	0
cg03876548	HCG4P6	9	51.3	27.2	+24.1	0.012
cg11989343	LECT1	13	66.2	27.3	+38.9	2.72E-07
cg16120147	IXNXI	8	70.9	33.1	+37.7	0.043
cg18713687	MUC4	ŝ	69.0	95.4	-26.4	0.004
cg18918831	MUC4	С	38.6	76.0	-37.3	0.035
cg14128040	RGS19	20	75.3	54.5	+20.8	3.62E - 06
^a Signature of CpG di	inucleotide according to Illum	iina 450 K microarray ann	otation			
^b UCSC reference gei	ne name. Overlap of PFC and	HIP candidate genes is m	arked gray			
^c Chromosome						
^d Methylation beta-va	alue ranging from 0.0 to 1.0 (C)–100 %); and \pm SD				

🙆 Springer

analysis. Only targets with a known reasonable association with CNS or neuronal functions were selected. Based on these criteria, five genes from the initial microarray experiment qualified for subsequent validation analysis.

Results

Epigenome-wide methylation in brain specimens

In total, we compared 12 specimens of PFC and HIP postmortem tissue obtained from six donors with and without MDD and identified 40 significantly differentially methylated CpG sites in MDD patients that match the above defined selection criteria. More specifically, our results revealed 28 differentially methylated sites in PFC (hypermethylated, 13; hypomethylated, 15) and 12 in HIP (hypermethylated, 5; hypomethylated, 7) (Table 2a, b). All CpGs showed large methylation differences with $\Delta\beta$ -values ranging from 20.6 to 74.2. The distribution of CpGs indicated association with specific gene loci. In PFC, five CpGs were linked to orthodenticle homeobox 2 (OTX2), four CpGs to Zinc finger family member four (ZIC4) and another four in G protein-coupled receptor 133 (GPR133); in HIP, two CpGs were linked to cell surface-associated Mucin 4 (MUC4) and two to GPR111 (Table 2a, b). Interestingly, all CpGs lying within a specific gene locus were either hypermethylated or hypomethylated. Moreover, three loci (MUC4, CPR111 and CCR5) were consistently hypomethylated in both PFC and HIP.

Heat map

Difference between mean beta-value of control or MMD group. Positive prefix indicates hypermethylation of depression group. Negative prefix indicates hypomethylation of depression group

Adjusted p value generated by complete pipeline algorithm according to J. Tost et al., for details see "Materials and methods"

in comparison to control

All CpG sites differing between MDD patients and controls were graphically illustrated using a heat map (Fig. 2a, b). Hierarchical clustering analysis revealed clear separation of patients and controls in both regions of interest. One patient who had received treatment with a 1,200-mg dose of carbamazepine over the past 3 years (S97/170) exhibited a slightly different methylation pattern relative to the mean of the patient sample (Fig. 2b).

Pyrosequencing in brain samples

Pyrosequencing-based validation of the five resultant targets from genome-wide methylation patterns identified three CpGs linked to GRIN2A as significantly hypermethylated in both PFC (sum score: MDD, 26.1 ± 4.93; controls, 18.8 ± 2.31; p = .037) and HIP (sum score: MDD, 31.0 ± 5.73 ; controls, 22.5 ± 2.91 ; p = .025) (Fig. 3). On the single CpG level, differences between patients and controls remained significant, with p values ranging from .037 to .016. CpG site No. 1 was identically annotated on the Fig. 2 Heat map displays highly methylated loci in red and sparsely methylated loci in blue. Hierarchical clustering of the samples after normalization revealed a clear separation of patients versus controls in PFC (a) and HIP (b). *CTL* controls, *HIP* hippocampus, *MDD* major depressive disorder, *PFC* prefrontal cortex

applied methylation chip, no. 2–3 were not annotated on the chip, but were newly designed for pyrosequencing and were located adjacent to no. 1. The results of the pyrosequencing confirmed the values of the corresponding CpG (No. 1) on the array. Pyrosequencing of MUC4, LYNX1, OTX2 and GPR111 also corroborated the different methylation levels of those CpGs identically annotated on the microarray (Fig. 3). Moreover, several CpGs not annotated on the microarray were detected as differentially methylated when comparing patients and controls (Fig. 3). Only in one case, pyrosequencing failed to reproduce the microarray data: In HIP, CpG 1 of MUC4 was hypomethylated on the array, but not in the pyrosequencing analysis.

Correlation of microarray with pyrosequencing data

As mentioned above, DNA methylation values of the target genes were additionally evaluated by an independent validation method using pyrosequencing. Here, the microarray data of MUC4, LYNX1 and OTX2 showed high correlation with the pyrosequencing data ranging from 0.92 to 0.94 (Pearson's correlation). Weaker correlations were found for the methylation values of GRIN2A in HIP (0.8; Pearson's correlation).

Discussion

Our epigenome-wide DNA methylation analysis in postmortem HIP and PFC specimens confirmed our hypothesis of differential DNA methylation profiles in MDD. Based on our analysis algorithm (Fig. 1), we identified five genes as potentially informative targets for replication of our microarray data with pyrosequencing. Due to the fact that we applied stringent criteria for the statistical analysis of our array data, the number of significant CpGs was rather small. Since we investigated whole-brain samples including different cell types, further potential targets might have escaped our analysis. An alternative approach comparing neuronal versus non-neuronal profiles might have detected some additional CpGs.

From a functional perspective, the observed intragenic methylation changes in GRIN2A may be most relevant due to their key role in determining NMDA receptor function. In general, promoter sequence methylation is thought to downregulate expression of the gene product, whereas gene body methylation is positively correlated with expression activity [18]. This suggests that the observed hypermethylation of the GRIN2A gene body may lead to overexpression of NR2A [19]. Consistent with this, elevated expression of NR2A has indeed been documented in the amygdala and locus coeruleus (LC) of MDD patients, but not in the hippocampus or PFC, which may have methodological reasons [20-23]. Notwithstanding these discrepancies, different combinations of specific NR2 subunits are known to result in NMDA receptors with different functional characteristics [22]. For instance, NMDA receptors containing NR2A subunits mediate faster glutamate neurotransmission than NR2B-containing NMDA receptors [24]. Potential overexpression of GRIN2A may thus promote vulnerability for MDD via up-regulating NMDA receptor-dependent glutamatergic signaling. This

Fig. 3 DNA methylation analysis using pyrosequencing with bisulfite-treated DNA obtained from brain. Pyrosequencing confirmed CpG methylation differences in genes nominated from microarray analysis. Underscored numbers denote CpGs corresponding to

hypothesis is in accord with findings that functional inactivation of NR2A in knockout mice reduced anxiety- and depression-related behaviors [25]. Related to this, functional inhibitors of NMDA receptor activity including the non-competitive antagonist ketamine [13, 14, 26–28] or the glycine transporter-I antagonist sarcosine (*N*-methylglycine) [29] have been identified as rapid-acting antidepressants in controlled trials, further supporting a putative

annotation of the microarray; those CpG sites not underscored were not annotated on the microarray and evaluated by pyrosequencing additionally. *CTL* controls, *HIP* hippocampus, *MDD* major depressive disorder, *PFC* prefrontal cortex

proximal contribution of GRIN2A overexpression to the pathophysiology of MDD.

From a mechanistic perspective, GRIN2A overexpression due to stress-induced glutamatergic overactivity may interfere with a plethora of neuroplastic processes including the formation and maintenance of dendritic spines [30]. Furthermore, GRIN2A receptor was found up-regulated in human PFC of MDD patients [31]. This is consistent with recent proposals based on preclinical studies that blockade of NMDA receptors with ketamine is synaptogenic and induces synaptic plasticity within 30 min, thus rapidly reversing the deleterious changes caused by depressogenic stress [15, 32, 33].

Notably, candidate gene approach-based population and family association studies have also implicated GRIN2A in mood disorders [34], and experiments in rodents have identified NR2A-containing NMDA receptors as additional molecular target of the serotonin reuptake inhibitor (SSRI) fluoxetine [35]. Depressogenic stress has been shown to increase GRIN2A expression in rodent HIP, an effect that was normalized after treatment with the dual serotoninnoradrenaline reuptake inhibitor (SNRI) duloxetine [19]. Thus, activity at NMDA receptors may contribute to the mechanism of action of many commonly used antidepressant treatments [25]. One intriguing hypothesis is that the latency of antidepressant drug effects (ranging from hours for ketamine and deep brain stimulation, to weeks for monoamine reuptake inhibitors) is determined by how proximal these agents influence, and interact with, synaptogenesis and synaptic plasticity in HIP and PFC. Another important implication of our findings is that directly targeting the NR2A subunit with selective antagonists could have instantaneous efficacy as first line or adjunct therapy of MDD.

Among the five candidate genes replicated via pyrosequencing was also OTX2, which encodes a transcription factor that is involved in forebrain development and represents a key regulator of brain plasticity even in the mature forebrain [36]. Polymorphisms located in the OTX2 gene may confer vulnerability for mood disorders [37]. Little is known about the specific contribution of OTX2 to the pathophysiology of MDD, but our findings of six hypomethylated CpG sites within this gene strongly support a potential role in the neuroplastic changes associated with the disorder.

Another replicated candidate was LYNX1, which encodes a protein that enhances nicotinic acetylcholine receptor (nAChR) function in the presence of acetylcholine and regulates cortical plasticity. In rodents, expression of LYNX1 maintains stability of mature cortical networks in the presence of cholinergic innervation [38] and is enriched in interneuron populations in visual cortex. These interneurons are thought to regulate the convergence of GABAergic and nicotinic systems, which is known to be affected in psychiatric disorders [39]. The observed hypermethylation signature of this gene in the HIP may interfere with episodic memory formation and thus contribute to the cognitive impairments associated with MDD [40].

Regarding GPR111 and GPR113 (G Protein-Coupled Receptor 111 and 113, respectively), their possible contribution to the pathophysiology of MDD remains elusive. However, at least in mice, the loss of Gpr111 or Gpr115 function did not result in detectable abnormalities, suggesting that genes of this GPR group could perhaps function redundantly [41]. Thus, the differential methylation of GPR111 observed in our study may be functionally irrelevant due to compensation by GPR115. In this context, we note that gastric and duodenal neuroendocrine tumors show significant overexpression of GPR113 compared with normal tissue [42], but studies of GPR113 expression in MDD are still lacking.

We did not perform an additional analysis of our main findings on the protein level to show that the observed methylation changes lead to altered expression levels. This represents a limitation of our study. Another limitation of our study is the small sample size of postmortem brains and the fact that in two cases PFC and HIP were not obtained from the same donor.

A comparison of our five targets to those identified by candidate gene approach-based meta-analyses [2] yielded no overlap in any of the suggested sites. This is perhaps not surprising, given that the GWAS studies published to date also failed to replicate any of candidate variants proposed by these meta-analyses [2]. On the other hand, the data incorporated in these genetic studies were all derived from peripheral DNA as opposed to the present study, which carried out an epigenome-wide analysis of cerebral DNA isolated from HIP and PFC, thus having the chance of unravelling putative pathophysiological pathways much more directly.

Previous epigenetic studies, which have largely focused on neurotrophic pathways in bipolar disorder, have yielded rather conflicting results, with one study reporting a hypermethylation of the BDNF gene promoter region in PFC [43] and another study yielding no evidence for altered methylation profiles in this particular region [44]. Consistent with the latter, our analysis also detected no methylation changes in this specific locus. While such discrepancies between studies may likely reflect the heterogeneity of clinical phenotypes and underlying etiologies [1], there is also evidence for potential pharmacotherapy-related effects. For instance, Asai et al. [45] identified a diverse pattern of carbamazepine-induced CpG hypermethylations and hypomethylations. Among these, we found no overlap with our candidate CpGs. The only carbamazepine-treated patient included in our study exhibited three hypomethylated CpGs and one hypermethylated CpG compared to the sample mean, which might be related to a possible influence of medication.

In conclusion, our epigenome-wide profiling of postmortem HIP and PFC specimens identified widespread methylation changes, five of which were selected for replication using pyrosequencing. Among these candidates, GRIN2A is of particular functional relevance as it encodes the NMDAR subunit epsilon-1 (NR2A) and is involved in a plethora of synaptogenesis and synaptic plasticity-related regulatory processes probably disturbed in MDD. An important implication of our findings is that targeting the NR2A subunit with selective antagonists might have rapid efficacy as first line or adjunct therapy of MDD.

Acknowledgments R.H. was supported by a Starting Independent Researcher Grant ("NEMO–Neuromodulation of Emotion") jointly provided by the Ministry of Innovation, Science, Research & Technology of the German State of North Rhine-Westphalia (MIWFT) and the University of Bonn

Conflict of interest The authors report no competing biomedical financial interests or personal affiliations in connection with the content of this manuscript.

Ethical standard This study has been approved by the local ethics committee and has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All persons gave their informed consent prior to their inclusion in the study.

References

- Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455:894–902
- Flint J, Kendler KS (2014) The genetics of major depression. Neuron 81:484–503
- Henikoff S, Matzke MA (1997) Exploring and explaining epigenetic effects. Trends Genet 13:293–295
- 4. Gibney ER, Nolan CM (2010) Epigenetics and gene expression. Heredity 105:4–13
- Vialou V, Feng J, Robison AJ, Nestler EJ (2013) Epigenetic mechanisms of depression and antidepressant action. Annu Rev Pharmacol Toxicol 53:59–87
- Dulawa SC (2014) Epigenetic programming of depression during gestation. BioEssays 36:353–358
- Jiao J, Opal MD, Dulawa SC (2013) Gestational environment programs adult depression-like behavior through methylation of the calcitonin gene-related peptide gene. Mol Psychiatry 18:1273–1280
- Fuchikami M et al (2011) DNA methylation profiles of the brainderived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One 6:e23881
- Tadić A (2013) Methylation of the promoter of brain-derived neurotrophic factor exon IV and antidepressant response in major depression. Mol Psychiatry. doi:10.1038/mp.2013.58
- Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 60:1650–1657
- Bartanusz V (1995) Stress-induced changes in messenger RNA levels of *N*-methyl-D-aspartate and AMPA receptor subunits in selected regions of the rat hippocampus and hypothalamus. Neuroscience 66:247–252
- Fitzgerald LW, Ortiz J, Hamedani AG, Nestler EJ (1996) Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J Neurosci 16:274–282
- Berman RM et al (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

- 14. Zarate CA Jr et al (2006) A randomized trial of an *N*-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864
- Zarate C (2013) New paradigms for treatment-resistant depression. Ann NY Acad Sci 1292:21–31
- Kaut O, Schmitt I, Wüllner U (2012) Genome-scale methylation analysis of Parkinson's disease patients' brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1. Neurogenetics 13:87–91
- Touleimat N, Tost J (2012) Complete pipeline for Infinium Human Methylation 450 K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics 3:325–341
- Hellman A, Chess A (2007) Gene body-specific methylation on the active X chromosome. Science 315:1141–1143
- Calabrese F, Guidotti G, Molteni R, Racagni G, Mancini M, Riva MA (2012) Stress-induced changes of hippocampal NMDA receptors: modulation by duloxetine treatment. PLoS One 7(5):e37916
- 20. Karolewicz B (2009) Elevated levels of NR2A and PSD-95 in the lateral amygdala in depression. Int J Neuropsychopharmacol 12:143–153
- Karolewicz B, Stockmeier CA, Ordway GA (2005) Elevated levels of the NR2C subunit of the NMDA receptor in the locus coeruleus in depression. Neuropsychopharmacology 30:1557–1567
- 22. Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B (2009) Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry 33:70–75
- Beneyto M, Meador-Woodruff JH (2008) Lamina-specific abnormalities of NMDA receptor-associated postsynaptic protein transcripts in the prefrontal cortex in schizophrenia and bipolar disorder. Neuropsychopharmacology 33:2175–2186
- Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327–335
- Boyce-Rustay JM, Holmes A (2006) Genetic inactivation of the NMDA receptor NR2A subunit has anxiolytic-and antidepressant-like effects in mice. Neuropsychopharmacology 31:2405–2414
- Diazgranados N et al (2010) A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry 67:793–802
- Murrough JW et al (2013) Neurocognitive effects of ketamine in treatment-resistant major depression: association with antidepressant response. Psychopharmacology (Berl) Epub ahead of print 2013 Sep 11. PubMed PMID:24022236
- Murrough JW et al (2013) Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry 170:1134–1142
- 29. Huang CC et al (2013) Inhibition of glycine transporter-I as a novel mechanism for the treatment of depression. Biol Psychiatry 74:734–741
- Akashi K et al (2009) NMDA receptor GluN2B (GluR epsilon 2/ NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses. J Neurosci 35:10869–10882
- Goswami DB, Jernigan CS, Chandran A, Iyo AH, May WL, Austin MC, Stockmeier CA, Karolewicz B (2013) Gene expression analysis of novel genes in the prefrontal cortex of major depressive disorder subjects. Prog Neuropsychopharmacol Biol Psychiatry 43:126–133
- 32. Li N et al (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964

- Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338:68–72
- 34. Cherlyn SY et al (2010) Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci Biobehav Rev 34:958–977
- Kiss JP et al (2012) GluN2B-containing NMDA receptors as possible targets for the neuroprotective and antidepressant effects of fluoxetine. Neurochem Int 60:170–176
- Spatazza J et al (2013) Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Rep 3:1815–1823
- 37. Sabunciyan S et al (2007) Polymorphisms in the homeobox gene OTX2 may be a risk factor for bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 144B:1083–1086
- Morishita H, Miwa JM, Heintz N, Hensch TK (2010) Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science 330:1238–1240
- Demars MP, Morishita H (2014) Cortical parvalbumin and somatostatin GABA neurons express distinct endogenous modulators of nicotinic acetylcholine receptors. Mol Brain 27:75

- Millan MJ et al (2012) Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov 11:141–168
- 41. Prömel S, Waller-Evans H, Dixon J, Zahn D, Colledge WH, Doran J, Carlton MB, Grosse J, Schöneberg T, Russ AP, Langenhan T (2012) Characterization and functional study of a cluster of four highly conserved orphan adhesion-GPCR in mouse. Dev Dyn 241:1591–1602
- Sherman SK, Maxwell JE, Carr JC, Wang D, O'Dorisio MS, O'Dorisio TM, Howe JR (2014) GIPR expression in gastric and duodenal neuroendocrine tumors. J Surg Res 190:587–593
- 43. Rao JS, Keleshian VL, Klein S, Rapoport SI (2012) Epigenetic modifications in frontal cortex from Alzheimer's disease and bipolar disorder patients. Transl Psychiatry 2:e132
- Mill J et al (2008) Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 82:696–711
- Asai T et al (2013) Effect of mood stabilizers on DNA methylation in human neuroblastoma cells. Int J Neuropsychopharmacol 16:2285–2294