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acutely depressed patients (UD, n =  6; BD, n =  6) and 
10 neuropsychiatric healthy age- and gender-matched 
control subjects were analyzed using QUIN-immuno-
histochemistry. Hippocampal volumes were determined 
in order to assess possible neurotoxic or neurodegenera-
tive aspects. Microglial QUIN expression in the whole 
group of depressed patients was either comparable (left 
CA1, right CA2/3) or decreased (right CA1: p =  0.004, 
left CA2/3: p = 0.044) relative to controls. Post hoc tests 
showed that QUIN was reduced both in UD and BD in the 
right CA1 field (UD, p = 0.048; BD, p = 0.031). No loss 
of hippocampal volume was detected. Our data indicate 
that UD and BD are associated with a local reduction in 
QUIN-immunoreactive microglia in the hippocampus and 
underline the importance of the NMDA-R signaling in 
depressive disorders.
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Abstract  Disturbances of glutamatergic neurotransmis-
sion and mononuclear phagocyte system activation have 
been described uni- and bipolar depression (UD/BD). 
Linking the glutamate and immune hypotheses of depres-
sion, quinolinic acid (QUIN) is synthesized by activated 
microglia and acts as an endogenous N-methyl-D-aspar-
tate glutamate receptor (NMDA-R) agonist with neu-
rotoxic properties. Recently, we observed an increased 
microglial QUIN expression in the subgenual and supra-
callosal, but not in the pregenual part of the anterior cin-
gulate cortex in postmortem brains of suicide cases with 
severe depression. Since several hints point to a role of 
the hippocampus in depression, we extended our study 
and addressed the question whether microglial QUIN is 
also changed in subregions of the hippocampus (CA1 and 
CA2/3 areas) in these patients. Postmortem brains of 12 
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Introduction

Uni- (UD) and bipolar (BD) depression are common psy-
chiatric diseases. Neither their neurobiology nor their etiolo-
gies are understood in detail. Treatment failures frequently 
occur with existing therapies, indicating the need for a bet-
ter understanding of the mechanisms underlying depressive 
disorders. Disturbances of glutamatergic neurotransmission 
[1–3] and mononuclear phagocyte system activation [1, 4–8] 
have been associated with the pathogenesis of UD and BD. 
In this context, kynurenine metabolites generated via the 
pathway initiated by the enzyme indoleamine-2,3-dioxyge-
nase (IDO) are of particular interest, because they are link-
ing the glutamate and immune hypotheses and neurodegen-
eration hypothesis of depression [9, 10]. IDO is expressed by 
activated microglia and induces the production of quinolinic 
acid (QUIN), an endogenous N-methyl-D-aspartate receptor 
(NMDA-R) agonist with neurotoxic properties [11, 12]. It is 
still uncertain how QUIN induces neuronal damage. Since 
the neurotoxicity of QUIN is considerably greater than can 
be accounted by the activation of NMDA-Rs, it could act by 
mechanisms additional to the activation of NMDA-Rs, pos-
sibly involving lipid peroxidation [13].

We have previously shown an association between 
severe depression and increased expression of QUIN in 
two subregions of the anterior cingulate cortex (ACC) [13]. 
Depressed patients had an increased density of QUIN-
immunopositive microglia in the subgenual and supracal-
losal ACC compared to the pregenual ACC. These findings 
were seemingly in parallel to proton magnetic resonance 
spectroscopy (1H-MRS) studies which showed a relative 
reduction in pregenual ACC glutamate content that was 
related to the severity of depression [15–17].

The glutamatergic system has been implicated in 
depressive disorders since reports from patients with UD 
described elevated levels of glutamate in serum and plasma 
[18, 19]. This metabolite was also increased or normal in 
the cerebrospinal fluid (CSF) [20]. The first evidence that 
the kynurenine pathway (KP) of tryptophan (TRP) metabo-
lism is involved in the pathophysiology of depression was 
already published in 1970 [21]: Urinary kynurenine (KYN) 
was increased in patients suffering from major depression. 
However, these studies do not allow drawing conclusions 
on brain-regional differences regarding glutamatergic neu-
rotransmission and kynurenine metabolite (e.g., QUIN) 
expression in UD and BD.

1H-MRS is a noninvasive neuroimaging technique that 
facilitates the quantification of metabolites in the central 
nervous system in vivo, including glutamate-related ones 
such as glutamate, glutamine, GABA and other metabolites 
(termed Glx). Studies using 1H-MRS in depressive disor-
ders identified abnormalities in Glx also in the hippocam-
pus, where mainly a decrease in Glx level was described 

[2, 3, 22]. The hippocampus belongs to the most suscep-
tible brain areas to QUIN [23] and is considered to play 
an important role in the pathogenesis of depression. It is 
important for learning and episodic memory for contex-
tual fear conditioning and neuro-endocrine regulation [24]. 
Reduced hippocampal NMDA receptor-mediated neuro-
transmission may trigger the occurrence of cognitive defi-
cits in depression [25].

Therefore, we have extended our previous study [14] on 
the microglial QUIN expression in subregions of the hip-
pocampus. We addressed the question whether microglial 
QUIN is also changed in the hippocampal CA1 and CA2/3 
fields of patients with UD and BD, similar to the observed 
changes in glutamatergic neurotransmission which have 
been described by the above-mentioned 1H-MRS studies. 
Moreover, hippocampal volumes were determined in order 
to assess possible neurotoxic or neurodegenerative aspects.

Methods

Human brain tissue

Postmortem brains were obtained from the Magdeburg 
brain bank. Brain collection and scientific histopathological 
analyses have been approved by the local ethics commit-
tee in accordance with the ethical standards laid down in 
the 1964 Declaration of Helsinki and its later amendments. 
Written consent was obtained from the next of kin. The 
donors were acutely depressed patients (n = 12) who had 
committed suicide (mean age 49 years; 7 males, 5 females) 
and controls (n  =  10) with no neuropsychiatric illness 
(mean age 56 years; 5 males, 5 females). The cases showed 
no significant differences regarding age, gender, duration 
of disease and autolysis time (Table 1). Patients had been 
diagnosed with either unipolar depression (UD, n = 6) or 
bipolar depression (BD, n = 6).

The information used for clinical diagnoses was obtained 
by carefully studying the patients’ clinical records and by 
structured interviews with physicians involved in patients’ 
treatment and with persons who either lived with or had fre-
quent contact with the subjects before death. The DSM-IV 
axis I diagnosis was established using all available informa-
tion from interviews and clinical records. Brains with life-
time reports of substance abuse, dementia, neurological ill-
ness, severe trauma or chronic terminal diseases known to 
affect the brain were excluded. Additionally, neuropathologi-
cal changes due to tumors, inflammatory, vascular, traumatic 
processes or neurodegenerative disorders were excluded by 
an experienced neuropathologist (CM), using Nissl (cresyl 
violet)-, myelin (Heidenhain-Wölcke)- and hematoxylin 
eosin-stained sections as well as beta amyloid- and tau-
immunostainings (Braak staging). The determination of 
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suicide was made by a forensic pathologist (T.G.) and was 
verified based on the individual records. As summarized in 
Table  2, the mean daily doses of psychotropic medication 
taken by patients during the last 90 lifetime days were estab-
lished according to the clinical files [26–28].

Tissue preparation was performed as described pre-
viously [29]. Briefly, brains were fixed in 8  % phos-
phate-buffered formaldehyde (pH 7.0) for 3  months. 
Subsequently, after separation of the brainstem and the cer-
ebellum, the hemispheres were divided by coronal cuts into 
three bi-hemispherical coronal blocks comprising the fron-
tal lobe anterior to the genu of the corpus callosum (“ante-
rior” block), the fronto-temporo-parietal lobe extending the 
entire length of the corpus callosum (“middle” block) and 
the occipital lobe (“posterior” block). After embedding the 

brains in paraffin, serial coronal whole brain sections were 
cut (section thickness: 20 µm) and mounted.

Region selection

Within the hippocampal formation, we analyzed the poste-
rior part, spanning from the lateral geniculate nucleus to the 
level of the splenium of the corpus callosum. Subregions to 
be investigated separately were CA (cornu ammonis) 1 and 
2–3. According to the literature [30], CA2 and CA3 were 
lumped together because these small regions are difficult 
to separate on the microscopic level by histological criteria 
(Fig. 1a).

The exact thickness of each section was deter-
mined by focusing on the upper and lower surfaces of 

Table 1   Demographic data of patients with depression (n = 12) and healthy control subjects (n = 10)

BD bipolar disorder, UD unipolar depression, F female, M male, SD standard deviation
a  Chi-square test
b  t test (Control vs. Depression)
c  ANOVA (Control vs. UD vs. BD)

Case no. Diagnosis (DSM-IV) Gender Age (y) Autolysis time (h) Cause of death

1 Depression, UD F 53 47 Suicide by electrocution

2 Depression, UD F 46 48 Suicide by hanging

3 Depression, UD F 53 46 Suicide by hanging

4 Depression, UD F 60 24 Suicide by hanging

5 Depression, UD M 35 15 Suicide by wrist cutting

6 Depression, UD M 36 42 Suicide by hanging

7 Depression, BD M 42 12 Suicide by hanging

8 Depression, BD F 46 4 Suicide by intoxication

9 Depression, BD M 47 24 Suicide by wrist cutting

10 Depression, BD M 57 48 Suicide by strangulation

11 Depression, BD M 60 24 Suicide by hanging

12 Depression, BD M 53 24 Suicide by hanging

Depression (ratio/mean ± SD) 5F/7M 49 ± 8 29 ± 15

UD (ratio/mean ± SD) 4F/2M 47 ± 10 37 ± 14

BD (ratio/mean ± SD) 1F/5M 50 ± 7 22 ± 14

13 Control F 48 48 Status asthmaticus

14 Control F 50 72 Ruptured aortic aneurysm

15 Control F 61 8 Sudden death (reason unknown)

16 Control F 61 24 Heart failure (coronary heart disease)

17 Control F 63 24 Myocardial infarction

18 Control M 56 48 Retroperitoneal hemorrhage

19 Control M 47 24 Acute respiratory failure (aspiration)

20 Control M 54 35 Ruptured aortic aneurysm

21 Control M 63 48 Heart failure (after heart surgery)

22 Control M 54 24 Pulmonary embolism

Controls (ratio/mean ± SD) 5F/5M 56 ± 6 35 ± 18

Statistic (P value) 0.695a 0.050b 0.446b Control versus Depression

Statistic (P value) 0.204a 0.109c 0.259c Control versus UD versus BD
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the section and subtracting the z-axis coordinate of the 
lower surface from that of the upper surface. The move-
ments in the z-axis were measured with a microcator, 

part of the Leica DM RB microscope (Leica, Gießen, 
Germany).

Immunohistochemistry

As previously described [14], formalin-fixed tissue sec-
tions were deparaffinized, and antigen demasking was per-
formed by boiling the sections for 4 min in 10 mM citrate 
buffer (pH 6.0). Preincubation with 1.5 % H2O2 for 10 min 
to block endogenous peroxidase activity was followed by 
blocking non-specific binding sites with 10 % normal goat 
serum for 60 min and repeated washings with PBS. Next, 
a polyclonal rabbit QUIN antibody was used (ab37106, 
Abcam, Cambridge, UK) at a dilution of 1:150 for 72 h at 
4 °C. Sections were then incubated with a biotinylated goat 
anti-rabbit secondary antibody (Amersham, Little Chal-
ford, UK) for the streptavidin–biotin technique. Chromo-
gen 3,3′-diaminobenzidine (DAB) and ammonium nickel 
sulfate were used to visualize the reaction product [31]. 
The specificity of the polyclonal rabbit primary antibody 
was confirmed by a loss of signal after preabsorption of 
2 ml of the primary antibody solution (dilution 1:150) with 
1 mg QUIN (Sigma-Aldrich, Munich, Germany) for 24 h 
and by the supplier’s ELISA competition experiments with 
QUIN, kynurenic acid and phenylalanine.

Quantification

Immunopositive cells were counted in the delineated 
brain regions listed above at ×200 magnification (Olym-
pus BH2, Olympus, Hamburg, Germany) by experiment-
ers blind to the donors’ diagnoses (TG and GML). The 
counting area was measured with the graphical analysis 

Table 2   Mean daily doses of psychotropic medication taken by patients during the last 90 lifetime days

Annotations: none of these patients was treated with valproate or lamotrigine

n.a. Not available

Case no. Antidepressants (amitriptyline 
equivalents, mg)

Neuroleptics (chlorpromazine 
equivalents, mg)

Benzodiazepines (diazepam 
equivalents, mg)

Carbamazepine (mg) Lithium (mg)

1 67 0 0 0 0

2 124 109 0 0 0

3 0 0 0 0 0

4 100 400 0 0 0

5 0 0 0 0 0

6 0 0 0 0 0

7 95 47 18 0 30

8 133 327 3 0 558

9 20 0 0 0 0

10 n.a. n.a. n.a. n.a. n.a.

11 0 125 10 0 750

12 150 200 0 200 0

Fig. 1   Nissl (cresyl violet)- and myelin (Heidenhain–Wölcke)-
stained section for anatomical orientation; illustration of the analyzed 
hippocampal subregions (a). Ramified QUIN-immunopositive micro-
glial cell (b). Negative control staining after preabsorption of the pri-
mary antibody with QUIN (c)
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software Digitrace v. 2.10a (Imatec, Miesbach, Germany) 
using a SZX12 stereomicroscope (Olympus, Hamburg, 
Germany). The cytological classification of immunopo-
sitive cells as microglia, astrocytes, oligodendrocytes or 
neurons was performed according to established cytomor-
phological criteria [32]. Cells visibly located inside ves-
sels were classified as monocytes; only cells that were 
clearly outside the vessels and situated in tissue were 
evaluated. Cell densities were calculated by dividing the 
cell number by the counting area multiplied by the section 
thickness [cells/mm3].

Assessment of hippocampal volumes

The measurement of the hippocampal formation included 
the subiculum, the fascia dentata and the cornu ammonis. 
The hippocampal gyrus was separated from the hippocam-
pal formation at the most medial extent of the hippocam-
pus–parahippocampus junction.

The measurements of the cross-sectional areas of the 
structures were performed using a planimetry from four-
fold magnifications of the sections. The volumes were 
calculated by multiplying the cross-sectional areas by 
the distance between the sections and adding up volumes 
obtained by the procedure along the entire rostro-caudal 
axis. The volumes of the structures in the fixed brain were 
determined by multiplying the measured volumes of the 
respective structures in the paraffin block by the individual 
shrinkage factors for each brain.

Statistical analysis

Statistical analyses were performed with the SPSS 15.0 
program (Statistical Product and Service Solutions, Chi-
cago, IL, USA). Demographic data were compared by the 
Chi-square test, t test and analysis of variance (ANOVA). 
QUIN data were not normally distributed, as indicated by 
the Shapiro–Wilk test. Therefore, Spearman’s rank correla-
tion coefficient, the Kruskal–Wallis H test and the Mann–
Whitney U test were employed. These nonparametric tests 
were further used to explore potential confounds due to 
age, autolysis time, sex, duration of disease and medication 
dosage.

Results

Qualitative evaluation

Strong QUIN-immunoreactivity was observed in mono-
cytes, pericytes and microglial cells (Fig. 1b). In contrast, 
faint staining was only occasionally observed in fibers and 
other cell types, such as pyramidal neurons and astroglia.

Quantitative evaluation of QUIN‑positive cells

Comparing QUIN-immunopositive microglia between 
depressed patients and healthy controls revealed a region-
specific pattern with group effects in the right CA1 and left 
CA2/3 subregion of the hippocampus. Depressed patients 
had significantly decreased QUIN-positive cells in the right 
CA1 (p = 0.004) and left CA2/3 (p = 0.044). In contrast, 
QUIN-positive cell counts in the left CA1 (p = 0.539) and 
right CA2/3 (p  =  0.792) did not differ between groups 
(Fig. 2a).

Diagnostic subgroups were analyzed by Kruskal–Wallis 
H tests. As illustrated in Fig. 2b, significant differences of 
QUIN-positive cells densities between BD and UD patients 
and controls were only found in the right CA1 region 
(H Test: p =  0.017). Post hoc tests of this effect showed 
reduced QUIN-positive cells in the right CA1 subregion in 

Fig. 2   a Depressed patients had significantly decreased QUIN-pos-
itive cells in the right CA1 and left CA2/3. b Reduced QUIN-pos-
itive cells in the right CA1 subregion in BD compared to controls 
or in UD compared to controls. Annotation: The box plots show the 
median, interquartile range, sample minimum and sample maximum, 
*p < 0.05, **p < 0.01
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BD compared to controls (p =  0.031, corrected by Bon-
ferroni–Holm) or in UD compared to controls (p = 0.048, 
corrected by Bonferroni–Holm). The reported significant 
diagnosis-related effects were checked for the potential 
confounding factors of age, autolysis time, sex, duration of 
disease and medication dosage (Supplementary file).

Quantitative evaluation of the hippocampal volume

In contrast to the differences detected in the QUIN immu-
nostaining, we did not find any changes (left: p =  0.962;  
right: p  =  1.000) regarding the volume of this brain 
area between controls (mean hippocampal volume left: 
3,248  mm3; right: 3,550  mm3), UD patients (mean hip-
pocampal volume left: 3,346 mm3; right: 3,555 mm3) and 
BD patients (mean hippocampal volume left: 3,223 mm3; 
right: 3,565 mm3).

Discussion

In a recently published report, increased CSF levels of 
QUIN, but not KYNA, have been associated with gluta-
mate agonism in suicide attempters [33]. However, such 
glutamatergic abnormalities may be brain region-specific. 
The aim of the present study was to further contribute to 
clarify the role of microglial QUIN expression in the hip-
pocampal CA1 and CA2/3 fields of the postmortem brains 
of suicidal patients with UD and BD. A decrease in QUIN-
immunopositive microglia was detected in the CA1 right 
and the CA2/3 left subregions of the hippocampus with 
high NMDA-R densities. This decrease in QUIN-positive 
microglial cell densities was found in unipolar as well as in 
bipolar patients. However, we did not observe any signifi-
cant difference between UD and BD (Fig. 2b).

Neurotoxic effects of QUIN are caused by several 
mechanisms: It agonizes glutamate receptors sensitive to 
NMDA [34], has pro-oxidant capacities and exacerbates 
the neurotoxic effects by corticosterone and cytokines [35, 
36]. Additionally, QUIN acts pro-inflammatory by enhanc-
ing the IFNγ/IL-10 ratio and therefore further triggering 
an initiated inflammatory response [37]. Increased levels 
of QUIN, which is produced by microglia, macrophages 
and monocytes, have been found in the blood and CSF of 
patients with cytokine-induced depression or UD [38–40]. 
Therefore, an increase in microglial QUIN expression in 
suicidal UD patients could be linked with a systemic MPS 
activation during acute disease phases of depression [4, 7, 
41–43]. We had observed an increased microglial QUIN 
expression in two subregions of the ACC, namely the sub-
genual and supracallosal ACC, in postmortem brains of 
suicide UD and BD patients [14]. Unlike in these brain 
regions, we found a reduced QUIN-immunoreactivity in 

the hippocampus of these individuals. Notably, the present 
study showed an overlap of 21 out of 22 cases with the pre-
vious study (measures of QUIN-immunoreactivity in sub-
regions of the ACC) [14].

While some imaging studies showed a selective hip-
pocampal volume reduction in depressive disorders [44–
46], others were unable to find significant group differences 
between UD and control subjects [47–53]. The results in 
BD were also inconsistent, with reports of increased [54], 
decreased [55] and unchanged hippocampal volumes 
[56]. Most studies that reported hippocampal structural 
abnormalities have been restricted to certain subgroups of 
depressed subjects, such as patients with treatment resist-
ant depression [57–59], preferentially women [52], elderly 
depressed patients [45, 60] or patients with multiple depres-
sive episodes [61].

QUIN-induced neurodegenerative changes do not seem 
to play a major role in suicide patients with UD or MD in 
the present study, since no diagnosis-dependent differences 
regarding hippocampal volume were observed. Apart from 
depression, based on the glutamate hypothesis, schizophre-
nia may be caused by altered glutamate signalling. Notably, 
reduced microglial QUIN expression was also observed 
in the hippocampus of schizophrenia patients by our work 
group [29]. Similar to the present study, this finding was 
neither associated with diagnosis-related changes in hip-
pocampal volume nor differences in numerical density of 
human leukocyte antigen-DR/HLA-DR-expressing micro-
glial cells.

Kynurenine is mainly metabolized into QUIN when 
microglia is activated, otherwise the local induction of 
IDO expression could induce a negative feedback loop, 
potentially underlying the self-limitation of autoimmune 
inflammation in neurological disorders [62]. NMDA-Rs are 
expressed on neurons throughout the brain, their highest 
densities are found, e.g., in the hippocampus. Since QUIN 
acts directly as an agonist, an accumulation of QUIN is one 
of the events associated with depression or Alzheimer’s 
disease.

Since we observed reduced microglial QUIN-immuno-
reactivity in the hippocampus of depressed suicide cases 
without changes in hippocampal volume, we assume that 
local anti-inflammatory and neuroprotective compensa-
tory responses may play a role in these particular patients. 
It is difficult to connect these findings with previous MRI 
spectroscopy studies, suggesting a decreased Glx (glu-
tamate, glutamine and GABA mix) in the ACC and hip-
pocampus [22, 63, 64]. First, the human brain is not react-
ing uniformly and brain-regional differences may occur. 
Accordingly, our previous paper on QUIN-immunoreactive 
microglial cells did not observe an upregulated QUIN-
immunoreactivity in the whole anterior cingulate cortex 
(ACC), but only in the subgenual ACC (sACC) or anterior 
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midcingulate cortex (aMCC), and not in the pregenual ante-
rior cingulated cortex (pACC) subregion of the ACC. Sec-
ond, the used MRI techniques cannot be easily compared to 
our measures of microglial QUIN-immunoreactivity.

The present study has certain limitations that need to be 
considered: (1) Our findings are based on a relatively small 
number of UD and BD cases and must be confirmed in a 
larger sample size. (2) We used immunohistochemistry to 
determine QUIN-positive microglia. Protein expression or 
activity of the kynurenine pathway enzyme QUIN phospho-
ribosyltransferase which is involved in the degradation of 
QUIN may add important facts on QUIN-immunopositive 
cell densities. Future studies may focus on the expression 
of this enzyme. (3) It was not possible to track data on drug 
exposure or the history of inflammation and infection across 
the patients’ entire life spans, as we could only collect data 
on psychotropic medication in the 3 months prior to death; 
thus, we cannot completely exclude that patients’ medica-
tion has influenced our findings. (4) We did not find a signifi-
cant influence of age as interfering variable (Supplementary 
file). However, due to the observation of an age-dependent 
increase of QUIN (and decrease in QUIN phosphoribosyl-
transferase) in the brains of Wistar rats [65] and due to the 
trend toward an older age of the control cohort compared to 
the depression cohort in our presented study, we cannot com-
pletely exclude an influence of age on our results.

Summary

Here, we present data providing evidence that suicidal 
patients with UD or BD show decreased QUIN-immu-
noreactive cells in CA1 and CA2/3 along with unchanged 
hippocampal volume size. These results add a novel link 
regarding region specificity to the immune hypotheses of 
depression and underline the importance of the NMDA-R 
signaling in depressive disorders. Further work in this area 
could result in a better understanding of the pathophysiol-
ogy of depressive disorders.
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