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Abstract The translocator protein (18kD) (TSPO) plays a

crucial role for the synthesis of neurosteroids by promoting

the transport of cholesterol to the inner mitochondrial

membrane, which is the rate-limiting step in neurosteroi-

dogenesis. Neurosteroids are allosteric modulators of

GABAA receptor function, which plays an important role

in the pathophysiology of anxiety disorders. The TSPO

ligand XBD173 enhances GABAergic neurotransmission

by promoting neurosteroidogenesis without direct effects at

the GABAA receptor. In humans, XBD173 shows potent

antipanic efficacy without sedation and withdrawal after

7 days of treatment. XBD173 therefore appears to be a

promising compound for rapid anxiolytic efficacy with a

favorable side-effect profile. Furthermore, TSPO ligands

show neuroprotective and antiinflammatory effects in

experimental models of peripheral neuropathies and trau-

matic brain injury. These compounds might therefore also

be valuable for the treatment of neurologic diseases with

inflammation-related pathophysiology.
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TSPO (18 kDa): structure, distribution, function

and specificity

TSPO is localized in the outer mitochondrial membrane [1,

2]. It was formerly called the peripheral-type or mito-

chondrial benzodiazepine receptor because the benzodiaz-

epine (BZD) diazepam can bind to this protein. TSPO

consists of a 169-amino acid sequence arranged as a five

transmembrane helix structure [3] (Fig. 1). Other specific

mitochondrial proteins, such as, the voltage-dependent

anion channel (VDAC) and the adenine nucleotide trans-

porter (ANT), are associated with TSPO [4–6]. TSPO

shows highest expression levels in tissues that contain

steroid-synthesizing cells, for example, adrenal, gonadal

and brain cells [1, 7]. Within the central nervous system

(CNS), TSPO is expressed in glia, microglia [8, 9] and

reactive astrocytes [10, 11]. TSPO mediates various mito-

chondrial functions, including cholesterol transport and

steroid hormone synthesis, mitochondrial respiration,

mitochondrial permeability transition pore opening, apop-

tosis and cell proliferation [7–9, 12–14].

The steroid biosynthesis pathway results in the formation

of many steroid hormones [15–17] including neuroster-

oids such as allopregnanolone and allotetrahydrodeox-

ycorticosterone (3a, 5a-THDOC). TSPO mediates the

translocation of cholesterol to the inner mitochondrial

membrane, which is the rate-limiting step in the synthesis of

pregnenolone, the precursor of all other neurosteroids [1, 7,

18] (Fig. 1).

The synthesis of neurosteroids is brain region specific

and depends on the relative amount of TSPO as well as on

the expression of specific neurosteroidogenic enzymes. The

5a-reductase and 3a-hydroxysteroid dehydrogenase, which

catalyze the synthesis of allopregnanolone and 3a, 5a-

THDOC (positive allosteric modulators of the GABAA
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receptor), have been detected in type 1 and type 2 astro-

cytes and oligodendrocytes [19–21] and principal output

neurons, whereas these enzymes are almost absent in tel-

encephalic or hippocampal GABAergic interneurons [22].

In psychiatric disorders, TSPO expression is reduced in

peripheral blood cells of anxious subjects [23, 24], patients

suffering from generalized anxiety disorder [25], social

anxiety disorder [26], post-traumatic stress disorder [27]

and panic disorder in the presence of adult separation

anxiety disorder [28]. In schizophrenia, an association of

reduced TSPO expression with anxiety, distress and

aggression has been postulated [29].

Pharmacological treatment of anxiety disorders

The pharmacological treatment of anxiety disorders is still

a challenge, because an anxiolytic compound without

severe disadvantages has not yet been developed. BZDs

exert rapid anxiolytic effects by enhancing (GABA)ergic

neurotransmission [30, 31]. However, they are sedating,

and their continuous use may induce tolerance effects and

abuse liability [31]. Antidepressants (such as SSRIs and

SNRIs) lack tolerance development and abuse liability

[32], but they have a delayed onset of anxiolytic action

[33].

Neurosteroids are synthesized in the brain and act as

endogenous modulators of GABAA receptors [16, 34, 35].

Especially, 3a-reduced metabolites of the steroids proges-

terone and deoxycorticosterone are potent positive allo-

steric modulators of GABAA receptors even though they

occupy a binding site different from that of BZDs [16, 35].

TSPO plays an important role for the synthesis of neu-

rosteroids, thereby representing a putative novel target for

anxiolytic compounds.

TSPO (18 kDa) ligands

Cholesterol, which is the substrate for the formation of

neurosteroids, binds to the cytosolic carboxy terminus

containing a conserved CRAC (cholesterol recognition

amino acid consensus) domain [36, 37]. Currently, it is

assumed that all other drug ligands bind to a region within

the amino terminus [36, 38, 39].

Classical synthetic ligands of TSPO are the isoquinoline

carboxamide PK 11195 and the BZD Ro5-4864 [40]. PK

11195 binds exclusively to TSPO, whereas Ro5-4864 also

requires other mitochondrial protein components to reveal

full binding capacity. Synthetic TSPO ligands are impor-

tant tools for the scientific characterization of TSPO

function, for example, as neuroimaging agents [41].

However, some TSPO ligands might also have a thera-

peutic potential.

Etifoxine

The first TSPO ligand that showed anxiolytic effects in a

clinical trial was the benzoxazine etifoxine [42]. This

compound turned out to exert anxiolytic efficacy compa-

rable with the BZD lorazepam in patients suffering from

adjustment disorders with anxiety [42]. Etifoxine enhanced

tonic inhibition in hypothalamic neurons mediated by ex-

trasynaptic GABAA receptors, an effect that could partially

be inhibited by the 5a-reductase inhibitor finasteride [43].

For these reasons, an enhancement of neurosteroidogenesis

appears to contribute to the anxiolytic efficacy of etifoxine

[44]. However, etifoxine is also a weak direct GABAA

receptor enhancer [43]. Etifoxine has been approved in

France for the treatment of anxiety disorders since 1982.

Fig. 1 Modified according to [40]. TSPO and neurosteroidogenesis.

TSPO is primarily localized in the outer mitochondrial membrane; it

consists of a 169-amino acid sequence arranged as a five transmem-

brane helix. Associated proteins are the voltage-dependent anion

channel (VDAC) and the adenine nucleotide transporter (ANT).

Cholesterol binds to the cytosolic carboxy terminus containing a

conserved CRAC (cholesterol recognition amino acid consensus)

domain; all other drug ligands bind to a region within the amino

terminus. TSPO mediates the transport of cholesterol to the inner

mitochondrial membrane, which is the rate-limiting step in neuros-

teroidogenesis. In the mitochondrial matrix, cholesterol is converted

to pregnenolone and then, after diffusion into the cytoplasm, further

into the neurosteroids, allopregnanolone and 3a, 5a-THDOC, which

are positive allosteric GABAA receptor modulators with anxiolytic

properties
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Xbd173

XBD173 (AC-5216, emapunil) is a phenylpurine with high

and rather selective affinity to TSPO, which has recently

been investigated for the treatment of anxiety disorders [45,

46]. XBD173 enhances neurosteroidogenesis in the brain,

thereby exerting anxiolytic properties in animal models and

in humans [46]. The amplitude and duration of GABA-

mediated inhibitory postsynaptic currents (IPSCs) in mouse

prefrontal cortical neurons were potentiated by XBD173,

an effect that could be prevented by finasteride [46]

(Fig. 2). In contrast to BZDs, XBD173 did not directly

enhance GABAA receptor-mediated chloride currents [46].

XBD173 counteracted pharmacologically induced panic

attacks in rodents without exerting sedative effects [46]. In

healthy male volunteers, the antipanic efficacy of XBD173

was comparable to the BZD alprazolam during pharma-

cologically induced panic by cholecystokinin tetrapeptide

(CCK-4) [46] (Fig. 3). This placebo–controlled, parallel

group-proof of concept study included subjects with a

sufficient panic response after CCK-4 application. Seventy-

one subjects were randomized to a 7-day treatment with

placebo, 10, 30 or 90 mg/day XBD173 or 2 mg/day

alprazolam. At the end of the study, subjects underwent a

second CCK-4 challenge. The difference in the acute panic

inventory (API) (area under the time curve; AUC) between

the first and the second CCK-4 challenge relative to the

effects of placebo was defined as readout for anxiolytic

efficacy. For both alprazolam and the highest dose of

XBD173, a significant difference from placebo could be

demonstrated. Interestingly, the XBD173 groups did not

suffer from sedation or withdrawal symptoms after

the 7-day treatment in contrast to alprazolam treated

subjects.

Role of TSPO in neurologic disorders

After peripheral nervous system injuries, TSPO has been

shown to be upregulated in Schwann cells, macrophages

and neurons [47–49]. With regard to therapeutic efficacy,

TSPO ligands seem to reveal neuroprotective effects in

experimental models of peripheral neuropathies, thereby

indicating a key role of TSPO in the pathophysiology also

Fig. 2 Modified according to [46]. Effect of XBD173 on GABAergic

neurotransmission. Whole-cell recordings and minimal stimulation

were used to monitor the effect of XBD173 in mouse medial

prefrontal cortex slices. The mean amplitude of all inhibitory

postsynaptic currents (IPSCs) in the absence of compounds was

26.0 ± 2.7 pA (decay time constant s: 27.8 ± 2.8 ms); the mean

charge was 1.5 ± 0.7 pC (mean ± SEM of n = 54). Data were

analyzed by the t test for paired samples, *P \ 0.05, as compared to

control experiments. The left diagrams show individual response

amplitudes during the course of one representative recording. The

middle diagrams show the averaged traces from all consecutive IPSCs

for control experiments and in the presence of 5 lM XBD173 or

10 lM finasteride/5 lM XBD173. The right diagrams show the

averaged data of all experiments (mean ± SEM of n = 6–8).

a XBD173 increases amplitude and charge of IPSCs. b Antagonism

of the effect of XBD173 by finasteride
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of peripheral nervous system disorders [50–52]. Especially

for the management of neuropathic pain, for example,

diabetes or chemotherapy-induced pain, TSPO ligands

appear to be a promising therapeutic approach. In this

context, the modulation of inflammatory cytokines appears

to play an important role [53]. With regard to brain damage

due to cerebral infarction or injury, TSPO ligands might

rather support the prevention of secondary pathophysio-

logical consequences of such diseases [54, 55]. In neuro-

degenerative disorders, only few studies exist, investigating

potential beneficial effects of TSPO ligands. However,

there are hints that TSPO levels in astrocytes are altered in

different models of neurodegeneration and Alzheimer’s

disease [56].

Conclusion

The need for alternative compounds with anxiolytic

and neuroprotective efficacy is obvious. Potentially,

the indirect modulation of GABAA receptor function

via neurosteroidogenesis and the mediation of

antiinflammatory effects within the CNS by TSPO ligands

could be a promising approach. Nevertheless, such emerg-

ing compounds will have to prove their utility under clinical

conditions.
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