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Abstract Despite the high prevalence of marijuana use

among pregnant women and adolescents, the impact of can-

nabis on the developing brain is still not well understood.

However, growing evidence supports that the endocannabi-

noid system plays a major role in CNS patterning in structures

relevant for mood, cognition, and reward, such as the meso-

corticolimbic system. It is thus clear that exposure to cannabis

during early ontogeny is not benign and potential compensa-

tory mechanisms that might be expected to occur during

neurodevelopment appear insufficient to eliminate vulnera-

bility to neuropsychiatric disorders in certain individuals. Both

human longitudinal cohort studies and animal models strongly

emphasize the long-term influence of prenatal cannabinoid

exposure on behavior and mental health. This review provides

an overview of the endocannabinoid system and examines

the neurobiological consequences of cannabis exposure in

pregnancy and early life by addressing its impact on the

development of neurotransmitters systems relevant to neuro-

psychiatric disorders and its association with these disorders

later in life. It posits that studying in utero cannabis exposure in

association with genetic mutations of neural systems that have

strong relationships to endocannabinoid function, such as

the dopamine, opioid, glutamate, and GABA, might help to

identify individuals at risk. Such data could add to existing

knowledge to guide public health platform in regard to the use

of cannabis and its derivatives during pregnancy.
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Abbreviations

2-AG 2-Arachidonoyl glycerol

5HT3 5-hydroxytryptamine 3 receptor

AAT Adenosine-adenosine-thymine

ABHD4 Alpha/beta hydroxylase-4

AEA Anandamide

AMPA Alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid

CB1R Cannabinoid receptor type 1

CB2R Cannabinoid receptor type 2

CNR1 Cannabinoid receptor type 1 gene

CNS Central nervous system

COMT Catechol-O-methyltransferase

D1 Dopamine receptor type 1

D2 Dopamine receptor type 2

DAGL Diacylglycerol lipase

eCB Endocannabinoid

FAAH Fatty acid amide hydrolase

GABA Gamma-aminobutyric acid

GABA-B Gamma-aminobutyric acid type B

receptor
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GDE1 Glycerophosphodiester

phosphodiesterase 1

GluR1 Glutamate receptor type 1

GluR2/3 Glutamate receptor type 2 and 3

GPCR G protein-coupled receptor

GPR55 G-protein coupled receptor 55

GTPcS Guanosine gamma thio-phosphate

IQ Intelligence quotient

MAPK Mitogen-activated protein kinase

Met Methionine

MGL Monoglyceride lipase

MHPCD Maternal Health Practices and Child

Development Project

mRNA Messenger ribonucleic acid

NAPE-PLD N-acyl-phosphatidylethanolamine-specific

phospholipase D

NRG1 Neuregulin 1

OPPS Ottawa Prenatal Prospective Study

THC D9-tetrahydrocannabinol

TRPV1 Transient receptor potential vanilloid 1

Val Valine

WIN55,212-2 R(?)-[2,3-Dihydro-5-methyl-3-[(morpho-

linyl)methyl]pyrrolo [1,2,3-de]1,4-benzo-

xazinyl]-(1-naphthalenyl) methanone

mesylate

Introduction

Approximately 4% of women in the United States report

using illegal drugs with marijuana being by far the illicit

drug most commonly abused during pregnancy (75%)

[164; Fig. 1]. The prevalence of prenatal cannabis expo-

sure is also between 2 and 5% in European countries [38,

43, 112], reaching even up to 13% in high-risk populations

[196]. One-third of D9-tetrahydrocannabinol (THC), the

major psychoactive component of cannabis [143], under-

goes cross-placental transfer upon cannabis smoking [100],

raising important concerns about the potential impact of

maternal cannabis use on the developing fetus. A number

of studies have reported increased rates of fetal distress,

growth retardation, and adverse neurodevelopmental out-

comes with prenatal cannabis exposure [28, 50, 100]. The

pathogenic impact of phytocannabinoids on the CNS is

underscored by several epidemiological and clinical studies

documenting impulsive behavior, social deficit, cognitive

impairment, consumption of addictive substances, and

psychiatric disorders (e.g., schizophrenia, depression, and

anxiety) in adult individuals with in utero and early ado-

lescent marijuana exposure [6, 57, 98, 101, 139, 150, 153].

Despite documented adverse outcomes, there is limited

information regarding the neurobiological consequences of

cannabis exposure during human fetal brain development.

As outlined below, recent evidence suggests that perinatal

THC exposure alters fundamental developmental pro-

cesses, and particularly impairs the establishment of con-

nectivity between brain regions that play a role in mood,

motivation, and cognition. These mesocorticolimbic neu-

ronal circuits remain vulnerable to dysfunction later in life

and thus could be sensitive to developmental events and

environmental stressors that themselves can influence the

onset and course of neuropsychiatric disorders. This review

provides an overview of the endocannabinoid (eCB) sys-

tem, the primary molecular target of THC and an important

modulator of neurotransmission, and examines the neuro-

biological consequences of cannabis exposure in pregnancy

and early life. This is achieved by addressing THC’s

impact on the development of neurotransmitters systems

relevant to neuropsychiatric disorders and its association

with these disorders later in life. Although this review

focuses on human studies, findings from animal models are

also discussed in order to fill present gaps of knowledge

given the limited neurobiological studies in human.

Moreover, many experimental rodent studies have reca-

pitulated findings in human suggesting evolutionary con-

servation of the eCB system at least in mammalian species

[121]. The consequences of developmental cannabinoid

exposure in animal models are summarized by Schneider

et al. in this special issue.

Neurobiology of the endocannabinoid system

and relevance to the developing brain

A fundamental role of eCB signaling is at the synapse with

a clear continuum of action from synapse establishment

during early neurodevelopment to synaptic function in the

Fig. 1 Percentage of current illicit drug use in pregnant women

showing cannabis as the most commonly used drug, followed by non-

medical use of medication and cocaine [163]
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adult brain [84]. Endocannabinoids [e.g., anandamide

(AEA), 2-arachidonoyl glycerol (2-AG)], endogenous

cannabinoid receptor agonists, and THC, a phytocannabi-

noid that mimics eCB action, exert most of their effects via

the cannabinoid CB1 [69, 120] and CB2 [77, 132] receptors

as well as the novel orphan G-protein coupled receptor

GPR55 [105, 161]. The CB1 receptor (CB1R) belongs to

the Gi/o family of seven transmembrane G protein-coupled

receptors (GPCRs) that can signal through several trans-

duction pathways, including adenylate cyclase, MAPK and

ion channels [97]. Recruitment of the signaling pathways is

context-dependent based on the requirements of distinct

developmental stages determining a cell’s identity: stem

cell proliferation, lineage commitment, neuronal morpho-

genesis, and axon patterning [85].

CB1R is one of the most abundant GPCRs in the adult

brain and is localized in regions important for movement

(e.g., basal ganglia: striatum and substantia nigra), cognition

and attention (e.g., cerebral cortex), as well as emotion and

memory (e.g., amygdala, hippocampus) [14, 72, 90, 92, 117,

144]. The CB1R emerges during very early stages of brain

development [8, 22, 158]. Its receptors are localized in white

matter areas and cell proliferative regions [13, 158, 191], and

are intricately involved in neurodevelopmental events such

as proliferation, migration, and synaptogenesis of neuronal

cells [9, 10, 45, 64, 83, 194]. The CB1R is detected from

gestation day 11 in the murine CNS (comparable to around

5–6 weeks in the human embryo) with gradually increasing

levels for both mRNA and receptor density throughout the

prenatal period [10, 13, 45, 65, 191]. We characterized the

expression pattern of the CB1R mRNA in the midgestation

(17–22 weeks) human fetus and demonstrated that in con-

trast to the adult brain, in which the CB1R is widely

distributed, high CB1R expression is restricted during early

to midgestational development to limbic structures such as

the amygdaloid complex (primarily the basal nuclear group)

and hippocampus (in particular the CA2,3 regions). In

contrast, only moderate to low CB1R expression was seen in

other regions such as the medial/ventral striatum, thalamus,

cerebral cortex, and subventricular zone [131, 191; Figs. 2

and 3]. CB1R sites expressed in the fetal brain [72, 116] are

functional as evidenced by WIN55,212-2, a cannabinoid

receptor agonist, significantly stimulating [35S]GTPcS

binding in both the rodent [gestational day 16; 12] and

human fetal brain [34, 119, 191].

In addition to the CB1R, THC and eCBs also function as

ligands for other receptors. One such receptor target,

CB2R, is primarily restricted to the peripheral immune

system. However, circumstantial evidence also suggests

that the CB2R may be expressed in microglia cells of the

CNS [5, 189] as well as in the rodent brainstem, cortex, and

cerebellum in low levels [137, 183]. This, however, has

remained controversial since some studies failed to detect

the CB2R in the rodent [32] or the human fetal [191] brain.

THC and several eCBs also bind to GPR55 [105, 161],

which has been identified in the striatum of the human

adult brain [165]. Many questions remain regarding the

GPR55 receptor, including its expression during develop-

ment, pharmacology, and signaling capabilities, but the

data is unequivocal that THC directly activates GPR55

[105]. Other lipid receptors that sense eCBs and exogenous

cannabinoids are currently being explored. For example,

THC and AEA, but not 2-AG, have been shown to be

agonists at the transient receptor potential vanilloid 1

(TRPV1), a non-selective cation channel [160, 174].

Interestingly, cannabidiol, an apparent neuroprotective

Fig. 2 Schematic overview of

CB1R mRNA expression in

selective regions of the adult

(left) and fetal (right) human

brain in relation to behavioral

and cognitive functions. Cb
cerebellum, VTA ventral

tegmental area, SN substantia

nigra, Hipp hippocampus, Amg
amygdala, DS dorsal striatum,

VS ventral striatum, Ctx cortex
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component of cannabis, also binds TRPV1 [16]. This might

have important implications for the developing brain: the

expression pattern of TRPV1 during human fetal devel-

opment has yet, however, to be determined, but TRPV1 has

been identified in the cerebral cortex of adult human brain

and in mesocorticolimbic- and basal ganglia-related areas

of the adult rat brain [27, 124].

The ontogeny of the eCB system has been described in

recent reviews [83, 84] and by Galve-Roperh et al. in this

special issue. The evidence is clear that eCBs (in particular

2-AG), their associated enzymes [2-AG: synthesized by sn-

1-selective diacylglycerol lipase (DAGL) alpha and beta

and degraded by monoglyceride lipase (MGL); AEA:

likely synthesized by alpha/beta hydroxylase-4 (ABHD4)

and glycerophosphodiester phosphodiesterase 1 (GDE1),

and inactivated by fatty acid amide hydrolase (FAAH)] and

receptors (CB1R and CB2R, GPR55, TRPV1) are expressed

from very early life and are tightly related to the regulation

of neuronal generation, maturation, and cell specification

within neuronal networks. Interestingly, the CB1R is

localized from early gestation to developing axonal pro-

jections of glutamatergic neurons in the cerebral cortex and

hippocampus, with expression during late gestation

observed in GABAergic interneurons on axons and axonal

growth cones [9, 10, 84, 85, 131]. In fact, CB1R expression

levels peak as synaptic connectivity is established by cor-

tical pyramidal cells [131] and GABAergic interneurons

[10]. Hence, cannabis exposure, which induces a supra-

physiological modulation of the eCB system and disrupts

the temporal precision of eCB signaling, has the potential

to alter synaptogenesis and the development of several

neuronal circuitries.

Impact of cannabinoid exposure on the maturation

of neurotransmitter systems

Given that cannabis is the most commonly abused illicit

drug among pregnant women and that prenatal cannabis

use is associated with cognitive, behavioral, and neuro-

psychiatric deficits, it is important to understand the impact

of prenatal cannabis exposure on the maturation of neu-

rotransmitter systems, which play key roles in mood,

motivation, and reward. Few investigations have directly

examined the human fetal brain given the obvious chal-

lenges of conducting such studies. We developed a post-

mortem human fetal brain collection of midgestational

subjects with maternal cannabis use [100] that has begun to

provide the first insights into the molecular and biochem-

ical alterations associated with in utero cannabis exposure

on human neurodevelopment. This section summarizes

some of our observations from this human fetal population,

which had a sufficient sample size to enable the ability to

tease out cannabis-related effects from other substances

such as alcohol and cigarettes used by the mothers. The

human information is integrated with findings from

experimental animal studies in which neurobiological

alterations can be more definitively linked to cannabinoid

exposure and temporal fluctuations can be monitored.

Unfortunately, the existing literature does not currently

allow the ability to decipher the complexity of this topic in

regard to time- and brain region-dependent alterations in

neurotransmitter systems or sexual dimorphic differences

as a consequence of developmental cannabinoid exposure.

However, some consistent themes are beginning to emerge

and will be briefly reviewed below.

Fig. 3 CB1R mRNA

expression in rostral to caudal

levels of the human adult (top)

and midgestational (week 20)

fetal brain (bottom). B basal

amygdaloid nucleus, Cl
claustrum, CN caudate nucleus,

Dg dentate gyrus, Gpe external

globus pallidus, I insula cortex,

L lateral amygdaloid nucleus,

NAc nucleus accumbens,

Pu putamen, RN red nucleus,

S subiculum, SN substantia

nigra, STN subthalamic nucleus,

Th thalamus. Scale bar = 1 cm.

Adapted from Wang et al. [191]
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Endocannabinoid system

As mentioned above, the eCB system is critical for the

hardwiring of the developing brain. Recently eCBs have

been shown to aid in the establishment of long-range

axonal connections [131] and to act as local axon guidance

cues for GABAergic interneurons in the developing cere-

brum [9, 10]. Given that developmental events such as

postsynaptic target selectivity and functional differentia-

tion of developing axons take place early in the prenatal

period and need to be carefully orchestrated to ensure

proper patterning of the brain, the introduction of cannabis

during this critical period has the potential to alter neuronal

connectivity.

Surprisingly, few studies have investigated the effects of

developmental cannabis exposure on the eCB system. Most

of the available data are related to THC effects on the CB1R.

Our study in the midgestation human brain failed to detect

significant alterations in CB1R mRNA expression in the

striatum, hippocampus, and amygdala or other cortical

regions examined (parietal, temporal, insula, and parahip-

pocampal) as a consequence of in utero cannabis exposure

[192]. Perinatal THC exposure in rodent models also failed

to alter CB1R mRNA levels or receptor binding in the basal

ganglia and limbic-related structures examined in adulthood

[67]. However, other studies have shown that perinatal THC

exposure induces subtle sex-dependent alterations in CB1R

activity such as decreased receptor binding in the cerebral

cortex of adult male, but not female rats [67]. The lack of

marked disturbance of the CB1R mRNA and receptor

binding in association with cannabinoid exposure is perhaps

not surprising considering that THC administration in adult

rats only results in a transient alteration of CB1R mRNA

levels in, e.g., the hippocampus and caudate-putamen, which

normalizes in approximately 3 weeks after ceasing THC

treatment [159, 198]. Thus, the observations in the human

midgestation fetuses could reflect normalized CB1R mRNA

expression since the mothers repeatedly used marijuana

during pregnancy [100]. However, it is impossible to dis-

count potential impairment of the functional coupling of the

CB1R because though CB1R mRNA expression normalizes

following repeated administration to THC, the drug pro-

duces time-dependent and region-specific down-regulation

and desensitization of brain CB1Rs, consistent with toler-

ance [21, 198]. Overall, there is still limited knowledge

regarding the developmental ontogeny of the intracellular

signaling pathways relevant to eCB functioning which

confound predictions as to the impact of THC exposure

during the different developmental stages.

No studies to date have evaluated the effects of prenatal

THC exposure on AEA and 2-AG, the two predominant

eCBs. However, it has been demonstrated that adolescent

THC exposure increases AEA concentrations in the

nucleus accumbens during early adolescence and alters the

normal correlation that exists between AEA and 2-AG

concentrations in the striatum and prefrontal cortex [40].

Additional work is clearly needed to determine the effects

of developmental THC exposure on the enzymes involved

in the synthesis and degradation of the eCBs as well as on

other cannabinoid-sensing receptors such as GPR55 and

TRPV1.

Dopamine

Dopamine plays a critical role in regulating behaviors that

are disrupted as a consequence of developmental THC

exposure. Two major components of the dopamine system

are the mesocorticolimbic and nigrostriatal dopamine

pathways. Each of these pathways is distinct in its anatom-

ical connectivity and modulates different behavioral func-

tions. The mesocorticolimbic pathway, which originates in

the ventral tegmental area and projects to the cerebral cortex,

as well as to mesocorticolimbic structures such as the

amygdala and nucleus accumbens, participates in the control

of emotion and reward, whereas the nigrostriatal pathway,

which originates in the substantia nigra pars compacta and

projects to the dorsal striatum, is associated with motor

control [80, 99]. Dopaminergic neurons in the ventral teg-

mental area and substantia nigra pars compacta are present

in the human fetal brain at an early developmental stage

[around the 5th through 6th embryonic week; 186] and have

neurotrophic actions on the maturation of their target neu-

rons. CB1Rs are not expressed on midbrain dopamine neu-

rons in adult [91] but instead on inhibitory GABAergic

interneurons and glutamatergic terminals that indirectly

regulate dopaminergic cells [114, 156]. In contrast, TRPV1

are directly localized to dopamine cells [124]. In the adult

brain, THC and cannabinoid agonists enhance striatal and

mesocorticolimbic dopamine levels, which directly regulate

motor function, cognition, motivation, and emotional pro-

cesses [18, 41, 118].

Developmental cannabinoid exposure affects the matu-

ration of the dopamine system. Many studies have exam-

ined cannabinoid-induced changes in the activity of

tyrosine hydroxylase, the rate-limiting enzyme in dopa-

mine synthesis. Tyrosine hydroxylase is expressed in

growing axons before they contact their neuronal targets

and is thought to aid in establishing the functional con-

nections between neurons. Most studies have found that

perinatal cannabinoid exposure disrupts tyrosine hydroxy-

lase activity, but the direction of change varies. For

example, prenatal administration with a moderate dose of

THC decreased striatal tyrosine hydroxylase activity in

adolescent offspring [157, 190], but increased activity has

also been reported following perinatal cannabinoid expo-

sure [17, 94]. Despite the various discrepancies as to
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cannabinoid-mediated effects on tyrosine hydroxylase in

rodent models, potentially due, e.g., to differences in the

time period and duration of drug exposure and time of

testing, the studies all emphasize a significant impact on

the activity of this enzyme, which could influence the

maturation of dopaminergic target structures.

THC exposure during early development also alters

dopamine receptors. Of the five known dopamine receptor

subtypes, D1 and D2 have been most studied. In our human

fetal population, maternal cannabis use was selectively

associated with decreased D2 mRNA expression levels in the

amygdala, an effect that was most prominent in male sub-

jects [192; Fig. 4]. The reduction of amygdala D2 mRNA

levels was directly correlated with the degree of maternal

marijuana intake reported during pregnancy such that

moderate and high maternal marijuana use was associated

with the lowest expression of mRNA levels (Fig. 4). Similar

cannabis-associated reduction of D2 mRNA expression was

also evident in the fetal striatum. Maternal cannabis use was

not, however, associated with alterations of the D1 mRNA

levels in either the amygdala or striatum in the human fetal

brain though it was influenced by maternal use of other

substances such as alcohol [192]. These observations are

intriguing given the apparent relationship that exists

between the eCB and D2 at various levels of regulation. For

example, stimulation of the D2, but not D1, receptor activates

in vivo AEA release [71]. Moreover, CB1R heterodimerizes

with the D2 receptor which changes the normal CB1R Gi/o

coupling to a Gs intracellular signaling cascade [102].

Altogether, the various lines of evidence suggest a strong

interaction between the eCB system and D2 receptor, which

is highly implicated in the pathophysiology of drug addic-

tion [133, 188], schizophrenia [167], and depression [104],

neuropsychiatric disorders that are significantly vulnerable

to neurodevelopmental insults.

Opioid system

There is overwhelming evidence in support of a strong

interaction between the eCB and opioid systems, especially

in relation to reward and addictive behaviors [26, 70, 181].

Of the major endogenous opioid neuropeptides, dynorphin

and enkephalin have been most studied. These neuropep-

tides are enzymatically produced from separate precursors,

proenkephalin and prodynorphin, which are encoded by

preproenkephalin and preprodynorphin genes, respectively

[for review see 1]. Enkephalins have high affinity for mu and

delta opioid receptors and are associated with reward [7,

168], whereas dynorphins preferentially bind to kappa opi-

oid receptors and are linked to dysphoria and negative mood

states [7, 145]. Opioid ligands and receptors are expressed

early in development. In the human brain, prodynorphin-

and proenkephalin-positive neurons are present in the stri-

atum from at least 12 weeks of development [20], and opioid

Fig. 4 a Dopamine D2 mRNA

expression levels in the

amygdala (Amy) in relation to

the amount of maternal

marijuana intake reported

during pregnancy. No no report

of cannabis use, Low light use

(average daily joints = 0.4),

Mod moderate cannabis use

(0.4–0.89 joints/day), High
heavy maternal marijuana use

(0.89 joints/day), Pu putamen. b
Dopamine D2 mRNA

expression levels

(mean ± SEM) in the basal

amygdala nucleus of control and

cannabis-exposed male and

female fetuses (approximately

20 gestational weeks);

*P \ 0.05. c Distribution

pattern of the D2 mRNA

expression in the amygdala of a

control and cannabis-exposed

20-week male subject. Modified

from Wang et al. [192]
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receptors are apparent at 20–21 gestational weeks [115, 179,

193].

Proenkephalin containing neurons appear to be more

sensitive to prenatal THC exposure than cells containing

prodynorphin. In our human fetal population, proenkeph-

alin mRNA levels were decreased in the striatum, whereas

prodynorphin levels were not significantly related to

maternal cannabis use [193]. In rats, prenatal THC expo-

sure also decreased proenkephalin mRNA levels in the

nucleus accumbens at a similar ontogenic period of neu-

rodevelopment as that studied in the human fetal brain at

midgestation [173]. A number of THC rodent studies also

confirm alterations in proenkephalin expression in the

dorsal striatum and cerebral cortex [141], with no signifi-

cant effect on prodynorphin mRNA levels in males [142].

A particularly intriguing observation is the fact that THC-

induced disturbances of enkephalin persist into adulthood

[39, 173]. These data suggest selective sensitivity of pro-

enkephalin containing neurons in relation to prenatal THC

exposure. This observation is interesting given that pro-

enkephalin is colocalized with D2 receptor in the striatum,

which was also selectively decreased in our fetal popula-

tion in association with prenatal THC exposure. Together

the data suggest that the striatal enkephalin/D2 receptor, but

not the dynorphin/D1 receptor-containing neuronal popu-

lation is vulnerable to prenatal cannabis exposure.

Developmental cannabinoid exposure also influences

the expression and activity of opioid receptors. In the

midgestation human fetus, prenatal cannabis exposure was

associated with increased mu receptor expression in the

amygdala [193]. There are no reports from animal studies

regarding the effects of prenatal cannabinoid exposure on

mu opioid receptor expression during fetal development.

However, prenatal THC exposure has been shown to affect

mu opioid receptors changes in adulthood [185], an effect

that depends on brain region and sex, with disturbances

evident in the striatum and amygdala as well as other

mesocorticolimbic structures such as the prefrontal cortex.

In addition to the mu opioid receptor in human fetal sub-

jects, cannabis exposure was also associated with discrete

effects on the kappa receptor which contrasted the pattern

of alterations related to maternal alcohol use that was

associated with widespread disturbance of the kappa

receptor in various brain areas [193; Fig. 5]. Instead, in

utero cannabis was specifically associated with reduced

kappa receptor mRNA levels in the mediodorsal thalamus

[193], the limbic-related thalamic nucleus that connects

subcortical structures such as the nucleus accumbens and

amygdala with the prefrontal cortex. Taken together, these

data suggest that cannabis exposure during early ontogeny

influences specific components of the endogenous opioid

system, especially within limbic structures, and that these

disturbances endure into adulthood.

Serotonin

Although dysfunction of the serotonergic system is not

thought to fully explain mood disorders, it is recognized

as a major entity in the genesis of depression [134].

Notably, the raphe nuclei, the primary source of serotonin

in the forebrain, is critically implicated in depression

[125]. Experimental animal studies have shown that

manipulation of serotonergic transmission during the

perinatal period induces profound alteration of anxiety-

like and drug-seeking behaviors in adults [47, 135, 184].

In the mature brain, dorsal raphe neurons express CB1R

[127] and FAAH [35, 36], but this anatomical organiza-

tion has not yet been characterized during early ontogeny.

If CB1R is expressed in serotonergic cells of the raphe or

in forebrain regions that co-express CB1R and serotonin

receptors during perinatal development, as evident in

adulthood, then early cannabis exposure would have the

potential to impact behaviors linked to serotonergic dys-

function. It has recently been documented that interneu-

rons in the hippocampal CA region identified by 5HT3

receptor expression do indeed express the CB1R in the

developing mouse brain [187]. No study to date has

examined the influence of developmental cannabis expo-

sure on maturation of the serotonin system in the human

brain, but animal studies indicate significant effects of

perinatal THC exposure [128]. Interestingly, maternal

exposure to THC decreases serotonin levels in the raphe

nuclei and ventral hippocampus of both genders and in the

rostral striatum in male offspring [129]. Long-lasting

impairment of serotonergic transmission induced by pre-

natal cannabis exposure could thus potentially contribute

to mood dysregulation and risk of depression disorders in

later life.

Fig. 5 Prenatal cannabis exposure decreases proenkephalin (PENK)

but not prodynorphin (PDYN) mRNA expression levels in the human

fetal striatum. *P \ 0.05. Modified from Wang et al. [193]
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Glutamate and GABA

Glutamate and GABA are the major excitatory and inhibi-

tory transmitters, respectively, driving neuronal activity in

the mature brain, and are also critical for proliferation,

migration, differentiation, and survival processes during

neural development. In addition to instructing GABAergic

interneuron development [9, 10], eCB signaling influences

the acquisition of the glutamatergic neuronal phenotype

during corticogenesis [131, 187]. The impact of in utero

cannabis exposure on GABA and glutamate neurotrans-

mission has yet to be examined in humans. In rats, prenatal

THC exposure induces long-term reduction of glutamate

neurotransmission by down-regulating GluR1 and GluR2/3

subtypes of AMPA glutamate receptors and by reducing

expression of glutamine synthetase (a major glutamate

precursor) in the cerebellum [175–177]. In addition, THC

appears to disrupt expression of glutamatergic genes

involved in synaptic transmission in the prefrontal cortex of

adults [23]. Moreover, postnatal glutamate output is also

lower in the frontal cortex and hippocampus of rats exposed

to the CB1R/CB2R but not GPR55 receptor agonist

WIN55,212-2 during the prenatal period, and some of the

glutamatergic alterations correlate with long-term cognitive

impairment and emotional reactivity [3, 4, 23, 123]. The

frontal cortex and the hippocampus mediate cognition [79,

170] and the cerebellum, which is well-known to coordinate

balance and motor control, has more recently been impli-

cated in processing specific domains of cognitive function

and emotional regulation through corticocerebellar circuits

[75]. Given that a glutamatergic tone is instrumental for

cognition and learning and memory [155], the aforemen-

tioned long-lasting alterations of glutamatergic neurotrans-

mission may be relevant to cognitive deficits reported in

association with developmental cannabis exposure.

GABA is the main inhibitory neurotransmitter in the

mature brain, but it may serve as an excitatory neuro-

transmitter in early life [108]. Several lines of evidence

suggest a significant impact of eCB disturbance during

development on GABAergic function. For example, low

dose prenatal THC exposure selectively increases the

density of CB1R-positive, but not CB1R-negative, GAB-

Aergic interneurons in neonatal hippocampus, which

would alter the inhibitory drive on pyramidal cells thereby

inducing aberrant excitatory output from hippocampal

circuitries [9]. Electrophysiological studies have also

demonstrated that CB1R controls GABA-driven neuronal

activity in the hippocampus such that overactivation of

CB1R by exogenous cannabinoid agonists during early

development disrupts network activity [11]. Intriguingly,

the effects of elevated eCB tone and CB1R activation on

GABAergic postsynaptic activity are specific to the early

stage of neurodevelopment because they are not seen in

hippocampal tissues of older animals (4). Moreover, the

finding that perinatal THC exposure increases the motor

inhibition induced by activation of GABA-B receptors,

which control GABA release in adult rats, [66] further

emphasizes the potential for early developmental distur-

bance of the eCB system to have enduring impact into

adulthood on GABAergic function that is relevant to var-

ious neurobiological mechanisms.

Consequences of developmental cannabis exposure

on behavior and cognition

Several epidemiological and longitudinal studies have

documented specific long-term behavioral and cognitive

abnormalities in offspring of women who used marijuana

during pregnancy even when accounting for maternal use of

other psychoactive substances, socioeconomic status, and

other environmental variables. Two longitudinal cohort

studies in particular have been insightful regarding the

impact of in utero cannabis exposure on CNS development

and behavioral consequences. The Maternal Health Prac-

tices and Child Development Project (MHPCD) has been

underway since 1982 and has examined the effects of pre-

natal marijuana and alcohol exposure in a low-income,

African-American population in Pittsburgh, Pennsylvania

[74]. The Ottawa Prenatal Prospective Study (OPPS), which

was initiated in 1978, has assessed the neurobehavioral and

developmental effects in association with prenatal exposure

to cigarettes and cannabis in a low-risk, Caucasian, pre-

dominantly middle-class cohort in Canada [62].

Though not unequivocal, the majority of studies have

observed that newborns and infants born to cannabis users

have increased tremors, exaggerated startle response, and

poor habituation to novel stimuli [49, 53, 58]. As children

age, there are increasing reports of neurobehavioral dis-

turbances so by age ten, prenatal marijuana-exposed chil-

dren have increased hyperactivity, inattention, and

impulsive symptoms [60, 73]. It has also been reported that

these children show increased delinquency and external-

izing behavioral problems as compared to age-appropriate

non-exposed children [73].

Given the important role of cannabinoid receptors and

eCB system in the development of the cerebral cortex,

hippocampus, and basal ganglia, a natural question is to

what extent maternal cannabis use affects cognitive func-

tion in their offspring. Studying cognitive outcomes in

relation to prenatal cannabis exposure is complex since

such measures are influenced by multiple factors including,

e.g., the time of examination, the intensity of maternal use,

the trimester during which exposure occurs, and the spe-

cific cognitive domain that is assessed [29, 52, 74, 78].

Using oversimplified outcome such as overall intelligence
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have led to conflicting results [52, 74], suggesting that this

measure may not be accurate to describe the multifaceted

impact of prenatal cannabis exposure on cognitive perfor-

mance. A detailed overview of the developmental neuro-

behavioral and cognitive outcomes that are influenced by

numerous variables is beyond the scope of this article, but

has been previously reviewed elsewhere [51, 52, 98].

Despite a lack of consistency in some studies as to the

impact of in utero cannabis during the first few years of life

[55, 56, 153], at approximately age three the data are more

congruent. They show that children of regular cannabis

users are impaired on short-term memory, abstract/visual

reasoning and verbal outcomes measures [29, 56, 59, 60,

62, 74]. Based on their detailed examination of the OPPS

cohort as well as other investigations, Peter Fried and

colleagues proposed that the impact of prenatal cannabis

exposure was associated with behaviors and cognitive

abilities aligned to ‘‘executive function’’, a multistage

process with different cognitive functions maturing at dif-

ferent ages [68, 110, 195] which requires the integrity of

the prefrontal cortex and connectivity with other structures

such as the hippocampus and cerebellum [33, 126]. Alto-

gether, the existing literature points to significant deficits

associated with prenatal cannabis exposure on domains

such as attentional behavior, cognitive flexibility, and

planning [42, 54, 73, 106, 154].

In utero cannabis exposure appears to be associated with

distinct disturbances of top-down processes that requires

integration, analysis, and synthesis of events in comparison

to prenatal exposure to other substances such as cigarettes

that affects IQ and more fundamental domains of cognition

(e.g. basic visuoperceptual skills) [54]. Impairment of top-

down integrative processes can have significant relevance

for normal adaptive behaviors important for decision-

making and inhibitory control. This is particularly

intriguing considering that animals exposed prenatally to

THC have selective disturbance of the frontostriatopallidal

proenkephalin/D2 dopamine receptor circuit, which maps

onto inhibitory control behavior [48]. Moreover, it has

been repeatedly observed that maternal marijuana use is

predictive of impulsive behavior in their offspring, evident

from childhood, throughout adolescence and into young

adulthood [29, 78, 106]. Using functional magnetic reso-

nance imaging, increased neural activity has been observed

in the prefrontal cortex of subjects with in utero cannabis

exposure during a Go/NoGo task, which is routinely used

to assess inhibitory control [171]. Increased activation was

also noted in the parahippocampal gyrus and cerebellum

during the task [172]. Interestingly, adolescent cannabis

exposure is also associated with a similar pattern of brain

activation during inhibitory processing and spatial working

memory tasks even after a few weeks of abstinence [138,

166, 178], but no residual cognitive impairment is apparent

at that time period [61, 63]. The contrasting findings in

regard to long-lasting cognitive outcome following prena-

tal and adolescent cannabis exposure could suggest that

any compensatory remodeling of neural systems involved

in cognition may not be sufficient when cannabis exposure

occurs during the prenatal period.

Cognitive performance related to cannabis use has been

primarily studied in adulthood and the long-term impact of

such exposure remains controversial [113, 147, 148]. The

extant literature supports a similar negative impact of

cannabis on cognitive performance in adolescents, notably

on psychomotor speed, complex attention, planning and

sequencing ability, executive functions, and working

memory [86, 122, 146]. These acute effects of cannabis on

cognitive function appear more deleterious during adoles-

cence than in adulthood [25, 136, 151]. Studies conducted

in adults who still actively use cannabis also showed that

users with an early onset of cannabis exposure have worse

cognitive outcomes [37, 103]. Some of these alterations are

still detectable in early-onset heavy users after 4 weeks of

abstinence [149], but not after protracted abstinence of

3 months or more [61, 63]. These results suggest that

cannabis exposure has a delirious impact on cognition,

particularly when exposure begins early in adolescence, but

this effect may be reversible with long-term abstinence.

However, prenatal marijuana exposure predicts poorer

performance on memory tasks in preteens and adolescents

[154], again emphasizing the important enduring impact of

exposure during the prenatal period.

Prenatal cannabis exposure in relation

to neuropsychiatric disorders

It is now acknowledged that most psychiatric disorders are

developmental in nature, thus the significant role of the

eCB system in CNS development suggests that cannabis

exposure during the prenatal period could potentially

contribute to neuropsychiatric illnesses later in life. Neu-

ropsychiatric disorders that have been primarily examined

in regard to developmental cannabis exposure include drug

addiction, mood and anxiety disorders, and schizophrenia.

There remain, however, critical questions as to a direct

causal relationship between cannabis exposure and these

disorders. Similar to the observations regarding cognitive

and behavioral abnormalities, the findings suggest that

psychiatric vulnerabilities may depend on early versus late

cannabis developmental exposure.

Drug addiction

Considering the importance of the eCB system to syna-

ptogenesis and synaptic plasticity, an obvious concern is
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the extent to which developmental cannabis exposure

contribute to addiction, a disorder epitomized by neuro-

plastic dysfunction. Both the OPPS and MHPCD longitu-

dinal studies have reported a significant association

between prenatal cannabis exposure and cannabis use in

adolescents and young adults [30, 150]. Maternal cannabis

use predicted early onset and increased frequency of use

among adolescent offspring. This developmental associa-

tion remained evident even when controlling for multiple

variables including the use of other substances and the

home environment. Animal studies have confirmed a cau-

sal relationship between prenatal cannabinoid exposure and

increased long-term vulnerability for drug use behavior in

later life. Using a self-administration paradigm where

animals directly control their own drug intake behavior,

prenatal THC exposure increased impulsivity for heroin

intake with shorter latency to press the first drug lever,

induced a greater response for low heroin doses, and

enhanced heroin seeking during drug extinction and con-

ditions that involved mild stress in adult rats [173]. Gender-

dependent effects have also been noted by other investi-

gators with decreased opioid intake [15] and increased

cocaine self-administration [95] in females as compared to

male rats following perinatal administration of CB1R

agonists. These behaviors were associated with alteration

in brain metabolic activity in the frontal and amygdala/

entorhinal cortical regions [95]. The endogenous opioid

and dopamine systems mediate reward, motivation and

goal-directed behavior and preclinical animal studies have

repeatedly documented perinatal cannabinoid interference

on rodent ontogenic processes, particularly on enkephalin-

[39, 141, 173, 185] and dopamine-related [39, 93, 173]

neuronal systems. Our studies in the human fetal brain also

substantiate a preferential disturbance of proenkephalin,

mu opioid receptor and dopamine D2 receptors in subjects

exposed in utero to cannabis [192, 193].

A provocative genetic study has also suggested an

important interaction between individual developmental

disturbances of eCB signaling and drug abuse. A single

nucleotide polymorphism in the human FAAH gene, 385A,

was strongly associated with drug use in a large Caucasian

population [169] and a predominant African-American

cohort [46]. Subjects homozygous for the FAAH 385A/

385A genotype have significantly higher frequency of

street drug use and problem drug/alcohol use [169]. This

observation raises a number of intriguing questions since

the FAAH 385A variant significantly increases sensitivity

to proteolytic degradation of the enzyme [169], which

would result in lower FAAH levels and increased AEA

tone. As such supraphysiological modulation of eCB sig-

naling, as would be mimicked by cannabis exposure during

development, could be speculated to contribute in part to

individual risk to drug-related disorders.

Mood and anxiety disorders

The strong expression of the CB1R in the human amygdala

during early development [191], the amygdala disturbances

evident in the midgestational human fetuses with maternal

cannabis use [192], and the serotonergic impairments

associated with prenatal THC exposure would suggest a

potential long-term impact of in utero cannabis exposure

on mood and emotional regulation. Very limited data is,

however, available regarding the effect of prenatal canna-

bis exposure on depression and anxiety symptoms. Of the

existing data, Gray et al. [76] reported that cannabis

exposure during the first and third trimesters was associated

with a significant increase in the levels of depressive

symptoms among 10-year-old children. Marijuana expo-

sure during gestation was also marginally observed to

predict depression and anxiety at age ten in the MHPCD

cohort [107].

In contrast to the prenatal developmental exposure

period, there is a growing body of evidence to suggest that

cannabis exposure during adolescence is linked to the

subsequent development of symptoms that characterize

mood and anxiety disorders [44, 87, 139]. An important

longitudinal study examined the frequency of cannabis use

and psychosocial outcomes in adolescent/young adults in

New Zealand over a 21-year period [44]. Cannabis use was

associated with an increase in depressive-like symptoms

including suicidal ideation. Furthermore, there was a rela-

tionship between age and the strength of the association

between cannabis use and psychosocial outcome, with

younger (14–15 years old) users being more affected by

regular cannabis use than older (20–21 years old) users.

Not all investigations though have reported a similar

association between cannabis and major depression [6, 82,

140], but there is still evidence even in some of those

studies that adolescent cannabis used is associated with,

e.g., later suicidal thoughts and attempts [6, 82, 140].

Overall, most investigations suggest that cannabis use in

adolescence is related to subthreshold depressive and

anxiety symptoms in adulthood. This association is stron-

gest in girls, and the relationship is inconsistent when it

includes major depressive disorder diagnosis as the out-

come [44, 87, 139].

Schizophrenia

The pathogenesis of schizophrenia has yet to be deter-

mined, but a growing body of evidence posits that neuro-

developmental factors, both genetic and environmental,

contribute substantially to the liability for developing the

disease. Longitudinal studies have repeatedly identified

adolescent cannabis use as one of the predictive factors

associated with schizophrenia. This relationship is
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particularly strong when the exposure occurs early in

development and over a prolonged period [2, 6, 81]. The

association between prenatal cannabis exposure and

schizophrenia has not, however, been truly examined. The

fact that subjects in the MHPCD and OPPS prenatal lon-

gitudinal studies are now in young adulthood when onset of

schizophrenia would normally occur should potentially

begin to provide some insights about such interactions.

However, the relatively small population size of these

cohorts might be a limitation to directly address this

question given that the risk of schizophrenia is approxi-

mately 0.7% of the population [162]. Moreover, genetics is

an important contribution to schizophrenia and the cohort

populations in the longitudinal studies might not reflect

gene mutations relevant to the liability of the disorder.

Genetic vulnerability is particularly important given that

the vast majority of individuals who use cannabis in ado-

lescence and young adulthood do not develop schizophre-

nia. Moreover, young people with a genetic susceptibility

for schizophrenia appear vulnerable to psychological

symptoms such as disorganization and hyperactivity/inat-

tention induced by cannabis use [96].

A number of genes have already been identified as

potential candidates in association with schizophrenia.

Some of these candidates initially focused on dopamine

since dysfunction in dopaminergic signaling had been

implicated in the pathophysiology of schizophrenia. Hy-

perdopaminergic transmission in the mesolimbic circuitry is

associated with positive psychotic symptoms of schizo-

phrenia, whereas hypodopaminergic transmission in the

prefrontal cortex is linked to negative psychotic symptoms

[152]. Since activation of the eCB system is known to alter

dopamine transmission in these key brain regions, the

interaction between cannabis exposure and genes linked to

the dopamine transmission may be relevant to the patho-

genesis of schizophrenia [182]. Functional polymorphism in

the catechol-O-methyltransferase (COMT) gene, which is

involved in the metabolism of catecholamines such as

dopamine, has been repeatedly observed to predict the

emergence of adult psychosis with adolescent-onset canna-

bis use. Specifically, individuals carrying the COMT Val

allele, which is associated with high COMT activity and thus

low dopamine tone in the prefrontal cortex, were more likely

to exhibit psychotic symptoms and to develop schizophrenia

if they used cannabis than individuals carrying the Met/Met

genotype [24, 88, 89]. Additionally, a single nucleotide

polymorphism in the CNR1 gene, which codes for the CB1R,

has been associated with schizophrenia in a French Cauca-

sian population [109], and the AAT triplet repeat in the 3’

region of this gene has been associated with schizophrenia in

a Japanese population [180]. The association between early

cannabis exposure and schizophrenia outcomes may also be

related to cannabinoid-induced changes in CB1R activity

since schizophrenics have increased CB1R expression in the

prefrontal cortex [31]. However, one study failed to find a

similar interaction effect of the CNR1 and COMT genes with

cannabis use in regard to psychosis risk [197]. The age at

onset of cannabis use was not systematically evaluated in all

subjects in that investigation, which might underline the

importance of the specific timing of cannabis exposure

regarding psychosis vulnerability. Relatively few studies

have investigated the relevance of other eCB-related genes

and no significant association was found thus far between,

e.g., polymorphism of the FAAH and schizophrenia [130]. It

has been demonstrated that variation in neuregulin 1

(NRG1), a gene related to schizophrenia, modulates sensi-

tivity to the behavioral effects of cannabinoids [19]. NRG1

is involved in axonal guidance and connectivity patterning,

e.g., in the thalamocortical track [111], so disrupting NRG1

signaling may have direct consequences on postnatal cog-

nitive functions that may be relevant to predisposition to

schizophrenia. Altogether, the existing data does suggest

that interactions between gene and early environmental

cannabis exposure are relevant to schizophrenia liability, but

data is lacking regarding specific contributions of prenatal

cannabis exposure.

Conclusions

Despite the high prevalence of marijuana use among women

of childbearing age, the potential impact of cannabis on the

developing brain and the long-term influence on behavior

and mental health are still not understood due to the paucity

of scientific studies that have been directed toward this

critical question. However, knowledge garnered to date

unequivocally documents that the eCB system plays a piv-

otal role in CNS patterning by modulating cell fate decisions

in neural progenitor cells and by influencing migration,

survival, and differentiation of committed neurons. More-

over, there is a strong mesocorticolimbic relationship

between the eCB developmental organization and neuronal

systems relevant for mood, cognition, reward, and goal-

directed behavior—cannabinoid receptors are predomi-

nantly expressed in mesocorticolimbic cell populations in

the midgestation human fetal brain (Fig. 2) and the eCB

system is integral to the formation of projection pathways

and local interneuronal circuits within mesocorticolimbic

structures. There remain numerous unanswered questions as

to the exact consequence of prenatal cannabis exposure on

human neurodevelopment and future mental health.

However, it is clear that exposure to cannabis during early

ontogeny is not benign and potential compensatory mecha-

nisms that might be expected to occur during neurodevel-

opment appear insufficient to eliminate vulnerability

to neuropsychiatric disorders in certain individuals. Both
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human longitudinal cohort studies and animal models

strongly emphasize the enduring impact of prenatal can-

nabinoid exposure on behavior in later life. Discrete neu-

ronal disturbances on, e.g., striatopallidal circuits

(proenkephalin and dopamine D2 receptor) evident in the

human fetal brain are mimicked in animal models and may

underlie impulsivity and enhanced drug use disturbances

seen in adults with maternal cannabis use (Fig. 6). Given the

significant relevance of gene 9 environment associations

with early adolescent cannabis use for psychiatric liability,

the role of such interactions needs to be explored in relation

to prenatal cannabis exposure. Based on the current

knowledge regarding the organization of the eCB system,

future studies focused on in utero cannabis exposure in

association with genetic mutations of neural systems that

have strong relationships to endocannabinoid function, such

as the dopamine, opioid, glutamate, and GABA, might help

to identify individuals at risk.

While ongoing and future studies will no doubt add

more definitive insights, the existing data already begins to

establish a foundation on which a public health platform

can be built in guiding women about the potential impact

of cannabis use during pregnancy on the mental health

outcome of their offspring. This platform should not only

focus on the population of young women who might still

consider cannabis to be a safe drug, but even directed

towards medical practioners who consider prescribing

cannabinoid drugs as anti-emetic medication to pregnant

women.
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