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Abstract
Purpose  Behavioral evaluation of language development is an important index for the usefulness of cochlear implantation. 
However, it could not apply to infants and very young children. It is useful to adopt an objective measure to examine speech 
discrimination in this population. Thus, the current study aimed to predict the different behavioral language performance 
(good versus poor) in cochlear implant (CI) recipients through the auditory cortical assessment of speech discrimination 
with mismatch negativity (MMN).
Methods  The study comprised 40 CI children who were divided into two groups according to their behavioral language 
evaluation outcomes: 20 good and 20 poor CI performers. They were age, gender, and socioeconomically matched. The MMN 
was examined and compared between both groups with finding out the relationship between MMN and different variables.
Results  MMN existed in all good performers and 87.5% of the poor performers. There were significantly shorter latency, 
larger amplitude, and a larger area of MMN in the good performers. The MMN results correlated with a significant predic-
tive effect on the behavioral measures of language evaluation.
Conclusion  The MMN is a clinically applicable objective measure of speech discrimination proficiency. Hence, it could be 
useful in CI programming and auditory cortical monitoring during rehabilitation.
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Introduction

It has been clearly shown that longstanding congenital deaf-
ness is difficult to reverse into normal hearing performance. 
Sensory deprivation causes a permanent effect on the devel-
opment of the entire central auditory system [1]. However, 
early cochlear implantation represents a dramatic solution to 
children with severe hearing impairment. The primary goal 
of cochlear implantation is to permit speech perception and 
production [2].

Speech abilities in cochlear implant (CI) recipients are 
variable and questionable, with the same device and same 

circumstances [3, 4]. The recovery of auditory abilities after 
implantation shows a considerable individual variability. 
In particular, speech intelligibility is extremely variable 
across individuals [5]. Speech performance scores can reach 
70–80% for sentence recognition in a quiet environment but 
for some CI users, speech perception may remain challeng-
ing [6].

Variance in CI outcomes could be attributed to multiple 
factors. Duration of hearing deprivation and residual hearing 
was reported to be highly predictive factors related to the 
variability in speech perception [3, 7]. In addition, hearing 
aid (HA) use, age of implantation, intelligence quotient (IQ), 
preoperative radiological assessment showing the survival 
of spiral ganglion cells, device-related factors, and surgical 
factors [7, 8]. However, these factors were found to rep-
resent only a limited portion of CI outcome variability. A 
great proportion (up to 80%) could be related to central fac-
tors beyond these personal and behavioral features [4, 7]. A 
comprehensive study of these central factors could provide a 
thorough understanding of mechanisms underlying the vari-
ability in CI outcomes.
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Auditory cortical processing of the CI recipients revealed 
an association with auditory performance outcomes [9]. 
Clinically, event-related potentials can be used to assess the 
central mechanisms underlying speech perception in those 
individuals objectively. Mismatch Negativity (MMN), in 
particular, may provide insight into the fine discrimination 
abilities of the central auditory pathway [10]. The measures 
of MMN were found to have a correlation with psychometric 
test scores of language development in children [11]. It was 
reported that MMN amplitude in CI users with good lan-
guage performance was similar to that of adults with normal 
hearing [12, 13].

Moreover, psychoacoustic measures may not suitable 
for difficult-to-test subjects such as infants and very young 
children especially with the tendency for early implantation. 
Using an objective electrophysiological method to evalu-
ate cortical auditory processing of speech would be more 
appropriate to cope with this population. Restricted data are 
available about the MMN as an objective tool for speech 
evaluation in CI children with different behavioral language 
performance [14].

Consequently, the current study aimed to explore the 
results of MMN in CI children with good versus poor behav-
ioral outcomes to find out the contributing role of auditory 
cortical processing to individual variability in CI perfor-
mance. In addition, the study aimed to find out the relation-
ship between both MMN and behavioral measures, yielding 
some declarative data for the objective evaluation of variable 
speech discrimination abilities to be applied for CI children 
who cannot administer behavioral tests.

Methods

Subjects

This comparative cross-sectional study included 40 Arabic-
speaking monaural CI children of both genders with an 
age range of 5–10 years old and variable behavioral per-
formance. The CI recipients were selected pre-operatively 
following the CI candidacy criteria of the Department of 
Health, Western Australia [15]. There were absent response 
on the tonal free field, speech free field audiometry, otoa-
coustic emissions, and auditory brainstem response. Aided 
thresholds were higher than the average normal speech spec-
trum with poor spoken language development despite proper 
amplification and adequate auditory training over at least 6 
months of hearing aid fitting. In addition, high-resolution 
imaging was studied to determine any anatomical deformi-
ties and to examine the patency of the cochlear turns that 
could interfere with electrode insertion.

All CI recipients fulfilled the following criteria to be 
involved in the study: a pre-lingual hearing loss with no 

other disabilities; an average IQ as tested by Stanford-Binet 
Intelligence Scale; 4th edition [16]; surgery was performed 
within the critical period for language development [17]; 
an average aided CI-threshold not exceeding 25 dB HL in 
the frequency range 0.5–4 kHz; and an implant use duration 
of 36–60 months with proper CI programming and speech 
therapy.

Psychoacoustic speech performance scores were used as 
an index to divide the CI children into good and poor per-
formers following a clinically accepted criterion [13]. Indi-
viduals with correct scores equal to or better than 65% using 
PBKG were considered as good performers (G1: n = 20). 
Poor performers (G2: n = 20) were defined as having less 
than 65% correct Word Recognition Score (WRS) on the 
Arabic Phonetically Balanced Kindergarten (PBKG) words 
[18] or when they gave no response except on other speech 
measures including the Arabic Word Intelligibility by Pic-
ture Identification (WIPI) test [19] or simple verbal com-
mand using simple orders as pointing to body parts, raising 
a hand, or opening the mouth.

Procedure

The study started with obtaining a detailed history; the 
socio-economic status (SES) of both CI subgroups using 
the Socioeconomic Status Scale [20]; the Arabic translated 
Meaningful Auditory Integration Scale (MAIS) inventory 
[21, 22]; the aided CI-threshold in the frequency range 
0.5–4 kHz, using a calibrated audiometer (Orbiter 922 v. 
2; Madsen, Taastrup, Denmark); psychoacoustic speech 
evaluation; and objective evaluation of speech discrimina-
tion using MMN. Other tests were performed including the 
Stanford-Binet Intelligence Scale (4th edition) to assess IQ 
and the Arabic edition of “Modified Preschool Language 
Scale-fourth” (PLS-4) for language evaluation [23].

The Arabic translated Meaningful Auditory 
Integration Scale (MAIS) questionnaire

This scale included ten questions examining the listening 
behavior and speech skills of the CI recipients in real-life 
situations. The parents answered these questions that were 
modified by the examiner. Each question scored from 0 to 
4 where: 0 indicates never; = 1 indicates rarely; 2 indicates 
occasionally; 3 indicates frequently; and 4 indicates always 
with a 40 total score [21].

Psychoacoustic speech evaluation

Behavioral evaluation of speech discrimination proceeded 
according to the child performance using the WRS test, 
the Arabic WIPI test, and then responding to simple verbal 
order:
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•	 The WRS is an open set speech test of 25 PBKG 
monosyllabic words suitable for children vocabulary 
[18]. The child seated in a sound-treated booth facing 
a loudspeaker located one meter, zero azimuths from 
the child’s head and conducted speech at 40 dB SL. 
Correct word recognition was given a score of 4% with 
total correct responses were added together.

•	 The Arabic WIPI test [19] is formed of six lists of 
25 monosyllabic words within the child’s vocabulary. 
Each word is represented graphically in one of 25 
pages. Each page contained six pictures from which 
the child selected the picture representing the target 
word. A test list was presented at an average conver-
sational level in a face-to-face condition, outside a 
sound-booth. The children were asked to point to the 
correct picture. The examiner turned the pages as the 
child made a selection. A practice item was presented 
before testing to ensure that each child understood the 
task. Correct picture identification was scored by 4%. 
Number of correct identification were added together 
to calculate the final score.

•	 Responding to the simple verbal command using sim-
ple orders as pointing to body parts, raising a hand, or 
opening the mouth.

Mismatch negativity (MMN)

The auditory evoked system, OtoAccess (v 1.3; Eclipse 
25; Assens, Denmark) was used to examine the MMN 
cortical response in a sound-treated room. Two stimuli 
were presented as an odd-ball paradigm with a frequent 
tone-burst of 750 Hz and a deviant tone-burst of 1000 Hz, 
with a probability of 80% and 20%, respectively. The 
sound was delivered through a loudspeaker located one 
meter at zero azimuth from the subject’s head, at a level 
of 70 dB nHL. Responses were obtained with a non-
inverting electrode placed in the middle of the forehead, 
an inverting electrode placed over the mastoid of the non-
implanted ear to avoid electric artifact from the CI and a 
ground electrode placed on the forehead just below the 
non-inverting one.

Recording was carried out while the child was watch-
ing a movie on a laptop placed above the loudspeaker 
to distract his/her attention to the stimulus. The picked-
up potentials were filtered with a band-pass filter of 
0.83–33 Hz and presented in a time window of 600 ms 
with a pre-stimulus interval of − 50 ms. The MMN was 
presented as a negative trough in the difference wave 
obtained by subtracting the frequent from the deviant 
responses. Response parameters involved latency, ampli-
tude, duration, and area of the negative trough located 
nearly after 250 ms [22].

The modified Preschool Language Scale fourth 
(PLS‑4); Arabic edition

The modified PLS-4 was used to examine several aspects of 
the receptive and expressive language skills were evaluated, 
including attention, play, gesture, vocal development, social 
communication, vocabulary, concepts, language structure, 
integrative language skills, and phonological awareness. 
Scoring involved age-related subscales: receptive, expres-
sive, and total language age (TLA) with an upper limit of 
language development of 6 years and 11 months (83 months) 
[23].

Statistical analysis

The data were analyzed using the SPSS 22.0 software. 
The normality of different variables was assessed using 
Shapiro–Walk test. The continuous data were presented as 
mean ± Standard deviation (SD) while the categorical data 
were presented as frequencies and percentages. The nor-
mally distributed data were compared using the parametric 
tests (t test and one-way ANOVA test) whereas the abnor-
mally distributed data were compared using the non-para-
metric test (Mann–Whitney (U) test and Kruskall–Wallis H 
test). The distribution of categorical variables was compared 
using χ2 or Fisher’s exact tests when appropriate.

Correlation coefficient was performed with Person’s cor-
relation test for parametric testing and with Spearman’s cor-
relation test for non-parametric testing. Linear regression 
analysis was applied to find out the predictor effect of dif-
ferent significantly correlated variables on MMN. The level 
of significance (p) was set at < 0.05. To ensure the validity 
of the statistical analysis and the strength of significance, the 
degrees of freedom (df) and Effect size (ES) were evaluated, 
respectively.

Results

Table 1 represents the personal and CI device criteria of both 
study groups. The good and poor CI performers were match-
ing in age, sex, and SES. Chi-square test revealed a signifi-
cantly different distribution of the causes of hearing loss, but 
with a small ES (0.03). The heredofamilial etiology was the 
commonest among the two groups. Other etiologies such as 
meningitis and hypoxia dominated in the poor CI perform-
ers. Both groups had a comparable duration of HA usage, 
age at implantation, duration of implant, and distribution of 
the CI devices and speech strategies.

As shown in Table 2, the two groups exhibited equivalent 
average aided response and IQ. Other behavioral measures 
including WRS, MAIS, and language age were significantly 
higher with df = 38 and large ES in the G1 group. In both 
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study groups, the different behavioral measures of language 
evaluation and IQ revealed significant inter-correlations 
(Table 3).

Figure  1 represents the MMN incidence in both 
groups and revealed a non-significant difference (Fisher’s 
exact = 0.154, p > 0.05). There were significantly shorter 
latency, larger amplitude, and a larger area of MMN with 
df = 38 and large ES in G1 as compared to the G2 group, 

but the MMN duration did not differ significantly (Table 4). 
Figure 2 illustrates examples of MMN response from a good 
CI performer with shorter latency (panel a) versus a poor CI 
performer (panel b).

On studying the relationship between different factors 
and MMN outcomes (Table 5); personal and implantation 
features did not show any significant relationship in both 
groups; aided response had a significant correlation with all 

Table 1   Personal data of good (G1) versus poor (G2) CI performers

*Significant value

Personal data G1
n = 20

G2
n = 20

Test value (p) df

Age (mean ± SD years) (months) 7.22 ± 1.60 (86.66 ± 19.19) 7.45 ± 1.29 (89.38 ± 15.45) 0.471 (0.64) 38
Gender [n(%)]
 Male 14 (58.33) 7 (43.75) 0.520 (0.37) 1
 Female 10 (41.66) 9 (56.25)

SES (mean ± SD%) 57.8 ± 6.48 55.75 ± 6.24 1.019 (0.16) 38
Causes of hearing loss [n(%)]
 HF 22 8 11.389 (0.01)* 3
 Meningitis 0 4
 Hypoxia 0 2
 Neuropathy 2 2

Duration of HA use (mean ± SD years) (months) 2.21 ± 0.81 (26.54 ± 9.68) 1.75 ± 0.68 (21.00 ± 8.20) 1.946 (0.06) 38
Age at implantation (mean ± SD years) (months) 3.50 ± 0.94 (42.04 ± 11.32) 3.90 ± 1.00 (46.88 ± 12.10) 1.270 (0.21) 38
Duration of implant use (mean ± SD years) (months) 3.74 ± 0.89 (44.88 ± 10.63) 3.55 ± 0.75 (42.50 ± 9.00) 0.760 (0.45) 38
CI device [n (%)]
 AB 13 8 0.079 (0.961) 2
 MedEl 8 6
 Cochlear 3 2

Speech strategy [n (%)]
 HiRes 0 4 8.460 (0.13) 5
 HiRes 120 9 2
 HiRes Optima 4 2
 FS4 6 4
 FS4P 2 2
 ACE 3 2

Table 2   Comparison of 
behavioral measures between 
both study groups

*Significant value

G1 G2 Test value (p) ES

Average aided response 
(mean ± SD) dB HL

22.52 ± 2.78 22.50 ± 2.50 191 (0.98) 0.01

IQ (mean ± SD) 101.46 ± 5.32 99.13 ± 2.09 1.278 (0.07) 0.5
WRS% (mean ± SD) 75.83 ± 5.59 35.71 ± 22.10 8.513 (< 0.001)* 2.76
MAIS (mean ± SD) 34.17 ± 2.32 28.63 ± 2.00 7.822 (< 0.001)* 2.52
PLS-4 (mean ± SD) (months)
 Receptive 52.88 ± 10.24 32.25 ± 10.80 6.090 (< 0.001)* 1.97
 Expressive 44.21 ± 8.29 30.13 ± 9.47 4.971 (< 0.001)* 1.60
 TLA 47.96 ± 8.94 32.63 ± 10.34 4.993 (< 0.001)* 1.61
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MMN measures except the duration in G1 group; and other 
behavioral measures (WRS, IQ, MAIS, and language age) 
exhibited significant correlations with most of the MMN 
measures in the two groups. Linear regression analysis was 
applied to the significant correlations and revealed an overall 
significant predictive effect of the MMN outcomes on the 
aided response (in G1) and behavioral measures (in both 
groups) (p < 0.001).

Discussion

Psychoacoustic language evaluation in CI children

The behavioral measures of language development are 
the fundamental modalities that provide a comprehensive 
description of linguistic skills and auditory performance. 

Despite the comparable age, audibility, auditory experience, 
intelligence, and SES of the study groups, the behavioral 
measures of language evaluation were significantly lower in 
poor than good performers. Previous behavioral studies 
showed similar findings in CI users [24, 25]. The significant 
inter-correlation among these measures reflects the parallel 
central auditory maturation integrated with the peripheral 
auditory stimulation through CIs.

Auditory cortical processing in good 
versus poor‑performing CI children

This study aimed to investigate the cortical auditory pro-
cessing of speech in CI children with different behavioral 
language outcomes. The inclusion criteria of the participants 
of both study groups established analogous personal and 
implantation factors. Therefore, it would be possible to esti-
mate a confined contribution of central auditory processing 
to language development in CI children. In this study, MMN 
recorded in all good CI performers and 87.5% of poor CI 
performers. The literature presented the incidence of MMN 
with considerable variability.

Some investigators used tonal contrasts to elicit MMN in 
good versus poor CI performers to examine the auditory cor-
tical processes consistent with their speech discrimination. 
In postlingual hearing-impaired adults with CI, the MMN 
existed in five out of six ears (83.3%) with good performance 
and in only one out of six ears (16.7%) with moderate-to-
poor performance [26]. Kelly [27] reported a reduced or 
absent MMN in poor (n = 4) as compared to good perform-
ers (n = 8) using a two-deviant tonal paradigm in 12 adults 
with CI.

Table 3   Correlation matrix 
[r(p)] of different behavioral 
language evaluation and IQ 
measures in both study groups

*Significant value

G1

IQ WRS% MAIS TLA

IQ 0.822 (< 0.001)* 0.481 (0.02)* 0.790 (< 0.001)*
WRS% 0.913 (< 0.001)* 0.419 (0.04)* 0.877 (< 0.001)*
MAIS 0.588 (< 0.001)* 0.916 (< 0.001)* 0.544 (0.006)*
TLA 0.846 (< 0.001)* 0.875 (< 0.001)* 0.883 (< 0.001)*
G2

Fig. 1   Incidence of MMN in good (G1) versus poor (G2) CI perform-
ers

Table 4   MMN test results in 
both CI groups

*Significant value

MMN measures Good Poor U (p) ES

Latency 347.54 ± 59.47 427.21 ± 27.81 39.5 (< 0.001)* 1.61
Amplitude 18.44 ± 6.62 6.40 ± 3.27 12 (< 0.001)* 2.17
Duration 109.13 ± 39.02 89.79 ± 24.34 120 (0.15) 0.57
Area 1993.10 ± 957.94 630.08 ± 462.60 25 (< 0.001)* 1.70
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More complex stimulus paradigms were also used to 
record MMN in CI users with different behavioral speech 
outcomes. Kraus et al. [10] and Groenen et al. [12] pre-
sented a speech paradigm that elicited MMN in all adult 
CI participants with preferable speech outcomes but not in 
any of the poor performers. In 35 CI children (7–17 years), 
speech stimuli produced MMN in 80–85% of good perform-
ers and in 15–20% of poor performers [28]. Using a two-
deviant speech paradigm, Turgeon et al. [13] recorded MMN 
from all adults with CI, either good (n = 10) or poor (n = 10) 
performers; however, the MMN in the poor performers had 
smaller amplitude and longer latency.

The different findings in these studies may be due to the 
variability in age, sample size, stimulus parameters, and 
equipment used. Despite the different outcomes, there was a 
general agreement that the CI users with proficient behavio-
ral speech results showed a prevalent MMN response. Those 
with poor behavioral results presented a degraded or even 
absent MMN. Consequently, the incidence of MMN repre-
sents the underlying neurophysiologic mechanisms responsi-
ble for speech discrimination that reflect and go parallel with 
the outcomes of psychoacoustic speech evaluation.

Additional findings in this study were significantly 
shorter latency, larger amplitude, and a larger area of MMN 
in good versus poor CI children. These data are consistent 
with previous studies, which have shown a tendency of good 
CI performers to exhibit larger MMN amplitude, approxi-
mating that of normal-hearing individuals [15, 26, 27, 29]. 
The significant differences of MMN measures between good 
and poor performers suggest different pre-attentive speech 
discrimination capabilities that are impaired in the poor per-
formers. Hence, MMN can be used as an objective measure 
to categorize speech discrimination dexterity in CI subjects 
especially in those who are difficult to test behaviorally [28, 
30].

Factors determining the proficiency of language 
development in CI children

Despite the comparable personal and implantation criteria, 
CI users in the current study had variable language skills 
(good versus poor) as revealed with the behavioral and 
MMN measurements. Researchers suggested several fac-
tors that determine the proficiency of language development 
in CI individuals. Longstanding hearing impairment prior 
to cochlear implantation causes auditory deprivation with 
a negative impact on language development, especially in 
the pediatric population [31, 32]. The auditory deprivation 
interferes with proper auditory cortical maturation [26] and 
cognitive function evolution [33–35]. Previous studies pro-
vided evidence of cross-modal auditory cortical reorganiza-
tion following a prolonged auditory deprivation where other 
sensations such as vision [4, 29, 36] and touch [37] replace 
the hearing sensation. Thus, the ability to process auditory 
cues provided with the CI is markedly impaired within the 
reduced auditory temporal cortex [38].

Eppsteiner et al. [39] suggested that the gene mutations 
in genetic hearing loss could affect the proficiency of lan-
guage outcomes in CI recipients. They reported TMPRSS3 
gene mutations in the spiral ganglion of a poor performer 
and LOXHD1 gene mutations in the membranous labyrinth 
of two good performers. Further, bacterial meningitis can 
impair the auditory performance in CI individuals due to 
different cochlear and central auditory lesions, depth of 
electrode insertion, and number of active electrodes [40]. It 

Fig. 2   Example of (a; upper trace) MMN from a 7-year-old boy with 
right-sided CI and good language results, and (b; lower trace) MMN 
from a 10-year-old girl with right-sided CI and poor language results. 
Each trace contains three waves: the upper (f) is a response to a fre-
quent stimulus; the middle (r) is a response to rare stimulus; the lower 
is a difference wave (MMN)
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is the case in this study where the meningitis is among the 
causes of hearing loss in the poor CI performers.

Relationship between different variables 
and auditory cortical processing in the CI subgroups

Another important aim of this study was to find out the rela-
tionship between different subjective criteria and MMN. The 
different personal and implantation data showed no signifi-
cant association with the outcomes of MMN recording. This 
could be attributed to the inclusion criteria of the studied 
CI children involving a limited range of implantation age, 
implantation duration, and appropriate rehabilitation. Some 
investigators found significant relationships between the 
MMN latency and subjects’ age [41], MMN latency and 
age at implantation [32], and MMN latency and amplitude 
and duration of HA use [42]. These differences in outcomes 
relative to that of the current study could be attributed to the 
recording of MMN early after implantation [41, 42] and to 
different stimulus parameters (e.g. smaller frequency devi-
ance [32].

The aided response correlated with MMN parameters in 
good performers but not in poor ones. This indicates the 
presence of factors contributing to impaired performance 
other than the impaired cortical auditory processing in poor 
performers as mentioned in the previous section. The MMN 
results correlated with a significant predictive effect on IQ 
and behavioral measures of language evaluation. Similar 
findings were also reported in the previous studies [13, 41, 
43, 44]. Thus, MMN could provide an objective indicator of 
speech discrimination for proper CI programming, central 
auditory plasticity monitoring, and follow-up during audi-
tory rehabilitation.

Conclusion

This study showed that the assessment of cortical auditory 
processing could reflect the behavioral language outcomes 
in CI children. There was a tendency of good CI perform-
ers to have a shorter latency, larger amplitude, and a larger 
area of MMN than the poor ones. These results suggested 
that the electrophysiological MMN recording provided an 
objective assessment of speech discrimination. Hence, it 
could be an easily applied determinant of CI proficiency in 
difficult-to-test subjects such as infants and young children. 
Given the predictive effect of MMN on the behavioral tests 
of a language evaluation, it could be a clinically useful tool 
in CI programming, monitoring, and follow-up during reha-
bilitation programs.
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