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for. ESS is not an appropriate screening tool for OSA. Stop-
Bang, however, remains a useful screening tool, with the 
ability to detect patient with OSA in need of treatment. Fur-
ther study may benefit the development and implementation 
of a concise and more specific screening tool that considers 
high evidence-based risk factors for OSA, including male 
gender, greater age and raised BMI.
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Introduction

Sleep apnoea describes a phenomenon wherein a complete 
cessation of airflow occurs during sleep for more than 10 s. 
The cause falls into two categories: central or obstructive. 
In contrast to central sleep apnoea’s neurological cause, 
obstructive sleep apnoea (OSA) is defined by a lack of res-
piratory effort and airflow due to partial or complete upper 
airway obstruction [1, 2]. This is more likely in patients with 
structural abnormalities of the upper airway, commonly seen 
in obesity.

OSA carries a range of adverse consequences. In the 
acute setting, this includes fragmented sleep, hypoxia, and 
varying blood pressure and heart rhythm. These physiologi-
cal changes subsequently predispose cardiovascular [3], 
thrombotic, neurological and metabolic sequelae [2], likely 
to impair mood and quality of life, and increase the burden 
on hospital services [4]. Of greatest concern is these factors 
collectively increase the likelihood of premature death.

In 2010, the prevalence of OSA was estimated at 25% 
in the adult population, with a prevalence of around 45% 
in the obese [5–11]. More recent study reveals this figure 
to be as high as 71% among bariatric surgery patients, 
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with a predisposition towards male patients [12]. It is 
essential for OSA to be diagnosed in bariatric patients 
prior to surgery to avoid potentially life-threatening pre-, 
peri-, and post-operative complications [13–15]. Thus, 
there is a need to evaluate the methods used to diag-
nose OSA to allow for early therapeutic interventions, 
as necessary.

OSA is currently diagnosed using a combination of the 
clinical history and objective measures typically obtained 
from polysomnography. This is a sleep study measuring 
several factors including the patients breathing, heart 
rate, and oxygen saturations. There is a high cost for this 
test, and the associated waiting times involved for con-
duct and receiving results are drawbacks to obtaining an 
early diagnosis of OSA; particularly for those patients 
with a greater need for treatment. This leads to a question 
of efficacy for alternative screening tools, such as the 
Epworth Sleepiness Scale (ESS, Online Appendix 1) [16] 
and Stop-Bang model (Stop-Bang Questionnaire, Online 
Appendix 2) [17].

These two questionnaires provide measures of the risk 
of OSA, with ESS providing a subjective perspective. 
Several studies investigated the predictive probabilities 
of these models, with the majority finding ESS to have 
little impact in the diagnosis and characterization of OSA 
[18–20]. This is not surprising as ESS was designed to 
measure sleepiness [16], and ignores key predisposing 
factors for OSA such as body mass index (BMI), gender, 
and neck size [21–23]. Despite this, ESS is still used to 
screen for OSA in the UK.

Unlike ESS, Stop-Bang considers a few predisposing 
factors for OSA (i.e. BMI and gender), making it more 
suitable to identify OSA [24, 25], and there is evidence 
to support its implementation as a screening tool [26–29]. 
Of particular benefit is its use in pre-operative assess-
ments [30–32]. There are, however, aspects of the model 
that make it more difficult to use as a screening tool, for 
instance needing to have someone report if the patient has 
“witnessed apnoeas” or “loud snoring”.

Studies have looked into the performance of modified 
versions of the Stop-Bang model [33–35], which highlight 
the importance of variables such as age, BMI, gender and 
neck circumference in characterising OSA. In the UK, 
however, over at least the past 6 years, there have been 
no studies done to analyse or develop the performance of 
the Stop-Bang score as a screening too OSA.

The focus of this study is to ascertain the predictive 
abilities of ESS, Stop-Bang, and BMI for obstructive 
sleep apnoea (OSA), with particular interest in determin-
ing whether either can identify patients who could benefit 
from early intervention. Exploratory analyses including 
age and gender as covariates are included.

Method

Data were collected retrospectively for bariatric and non-
bariatric patients who attended the sleep clinic between 
February 2012 and July 2013. No patient had previously 
been diagnosed with OSA, and all underwent polysom-
nography regardless of ESS and Stop-Bang outcomes. 
Information collected included initial ESS and Stop-Bang 
scores (prior to polysomnography), age, gender, BMI and 
Apnoea–Hypopnoea Index (AHI). All data were collected 
as part of normal care and these routinely collected data 
were anonymous at the point of analysis, conforming to 
the Governance Arrangements for Research Ethics Com-
mittees (GAfREC) standards [36].

Apnoea Hypopnoea Index score, equivalent to OSA 
severity, was used to assign patient status group:

• “None”, for patients who do not have OSA (AHI < 5),
• “Notreat”, for those with OSA not requiring treatment 

(5 ≤ AHI ≤ 10),
• “Treat”, for patients with OSA requiring treatment 

(AHI > 10).

Multinomial logistic (MNL) regression analyses were 
performed setting independent variables ESS, SBM, and 
BMI, and dependent variable Patient Status group; tests 
were conducted at α = 0.05. The aim of the analyses were 
to determine whether a correlation existed between Stop-
Bang and ESS scores and the outcomes of polysomnogra-
phy, while accounting for BMI, age and gender.

Analysis and results

Data from 192 patients were included and analysed. This 
population consisted of 126 bariatric patients, and 66 non-
bariatric patients, with mean age 49 and mean BMI 44 

Table 1  Data collection summary, including patient demographics 
expressed as mean values with confidence intervals

Bariatric Non-bariatric Total

Total 126 66 192
Missing
 ESS 2 1 3
 SB 12 37 49

M:F 50 41:25 91:101
Age 48 (1.91) 52 (3.41) 49 (1.74)
Height (m) 1.67 (0.02) 1.71 (0.02) 1.68 (0.02)
Weight (kg) 132.45 (5.10) 102.53 (0.74) 122.27 (4.54)
BMI 48 (1.62) 36 (2.11) 44 (1.53)
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(Summaries of data collection; Tables 1, 2). There were 
some missing data such that the numbers in each patient 
status group alter between each analysis (ESS and Stop-
Bang data collected; Tables 3, 4; Online Appendix). A 
total of 49 SB scores and 3 ESS scores were missing. 
Analysis of the bariatric and non-bariatric groups by avail-
able covariates found no significant differences between 
the groups, and so were combined into a single data set. 
There was no collinearity between the predictor variables 
ESS, SBM, and BMI, as indicated by calculated variation 
inflation factors <1.4. Three univariable MNL regres-
sions were performed and one bivariable MNL regression, 
with the outcome as patient status group. Further triple-
variable MNL regressions were performed to assess the 
effects of age and gender. In all MNL regressions on this 
data set the reference group was the “treatment” outcome 
group. Of note, we are aware that BMI, age and gender 

are components of Stop-Bang, however, as there is no evi-
dence of problematic collinearity we perform sensitivity 
analyses which included them as co-variates. Our findings 
are summarised in Table 5.    

Table 2  Summary of data as per patient status group, expressed as 
mean values

Bariatric Non-bariatric

None
 N 32 21
 M:F 9:23 12:9
 Age 46 44
 Height (m) 1.66 1.7
 Weight (kg) 124.18 94.95
 BMI 45 34
 AHI 2.8 2.1
 ESS 9 10
 Stop-Bang 5 4

Don’t treat
 N 21 12
 M:F 6:15 6:6
 Age 48 53
 Height (m) 1.67 1.73
 Weight (kg) 129.37 97.34
 BMI 46 33
 AHI 7.2 6.3
 ESS 9 10
 Stop-Bang 5 5

Treat
 N 73 33
 M:F 35:38 23:10
 Age 48 56
 Height (m) 1.67 1.71
 Weight (kg) 136.97 109.45
 BMI 49 37
 AHI 31.3 33.9
 ESS 11 10
 Stop-Bang 5 5

Table 3  ESS data collected ESS None Notreat Treat

0 1 3 3
1 2 1 1
2 3 1 2
3 4 1 4
4 1 2 9
5 5 5
6 4 5
7 7 9
8 1 1 6
9 1 1 4
10 5 1 6
11 3 5 5
12 5 3 3
13 5 1
14 1 1 6
15 2 1 5
16 1 1 6
17 3 3 5
18 1 8
19 1
20 6
21 2 1 3
22 1
23
24 1
Total 52 33 104

Table 4  SB data collected

Stop-Bang None Notreat Treat

1
2 2 1
3 3 1 5
4 13 6 21
5 13 8 21
6 4 4 20
7 3 1 8
8 4 5
Total 38 25 80
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MNL regression (univariable predictor: ESS)

The model overall is not significant p = 0.132. There were 
a total of 189 observations.

MNL regression (univariable predictor: Stop‑Bang 
score)

Both the model and the variable Stop-Bang are significant 
(p = 0.034); the risk of the outcome falling into the com-
parison group relative to the referent (treatment) group 
decreases as the variable increases if the odds ratio (OR) is 
less than 1. The OR in this case is <1 meaning that as the 
Stop-Bang score increases one is more likely to be in the 
“treat” group as opposed to the “None” group (OR 0.671, 
CI 0.478–0.925). Stop-Bang, however, is not discrimina-
tory between the “notreat” and “treat” groups (0.966, CI 
0.690–1.351). Total of 192 observations. Nagelkerke’s 
pseudo r-square is 0.054, and overall correct classification 
is 55.9%.

MNL regression (univariable predictor: BMI)

The model and the variable are significant overall, p = 0.004; 
and as BMI increases one is less likely to be in the “none” 
group compared to the treatment group (OR 0.952, CI 
0.919–0.986) and less likely to be in the “notreat” compared 

to treatment group (OR 0.955, CI 0.917–0.995), with a total 
of 191 observations. Nagelkerke’s pseudo r-square is 0.065, 
and overall correct classification is 57.1%.

MNL regression (bivariable predictors: BMI, 
Stop‑Bang score)

The model is significant p = 0.001; BMI is significant 0.002; 
Stop-Bang maintains significance 0.016. Increasing BMI 
means less likely to be in “None” group compared to the 
treatment group (OR 0.629, CI 0.449–0.882); but does not 
discriminate “notreat” from the treatment group (OR 0.946, 
CI 0.895–1). Increasing Stop-Bang means less likely to be in 
“None” group compared to the treatment group (OR 0.925, 
CI 0.879–0.972); but does not discriminate “notreat” from 
the treatment group (OR 0.900, CI 0.637–1.272). 142 obser-
vations. Nagelkerke’s pseudo r-square is 0.150, and overall 
correct classification is 62.7%.

Controlling for demography

MNL regressions were performed with either Stop-Bang and 
BMI, with the inclusion of co-variates age and gender, to 
assess their effects and further analyze the previous signifi-
cant findings.

Table 5  Summary of main results of multinomial logistic (MNL) regressions, for the odds ratios the reference category was “treatment”, thus 
lower ORs indicate higher values of the predictor would result in “treatment”

The exception is for gender, which was coded as “1” for women and “2” for men, hence in model 6 women are 3.538 times more likely to be in 
the “None” group compared to the “treat” group

Model Number of valid 
observations

Model Signifi-
cance (p value)

Predictor variables 
in MNLR

Individual predictor 
significance (p value)

Odds ratios

1 189 >0.05 ESS – –
2 192 0.034 Stop-Bang 0.034 0.671, CI 0.487–0.925 (None vs Treat)

0.966, CI 0.690–1.351 (NoTreat vs Treat)
3 191 0.004 BMI 0.004 0.952, CI 0.919–0.986 (None vs Treat)

0.955, CI 0.917–0.995 (NoTreat vs Treat)
4 142 0.001 Stop-Bang 0.016 0.925, CI 0.879–0.972 (None vs Treat)

0.900, CI 0.6.37–1.272 (NoTreat vs Treat)
BMI 0.002 0.629, CI 0.449–0.882 (None vs Treat)

0.946, CI 0.895–1.000 (NoTreat vs Treat)
5 143 >0.05 Stop-Bang

Age
Gender

– –

6 191 <0.001 BMI <0.001 0.918, CI 0.880–0.958 (None vs Treat)
0.927, CI 0.884–0.972 (NoTreat vs Treat)

Age 0.003 0.951, CI 0.922–0.980 (None vs Treat)
0.981, CI 0.948–1.016 (NoTreat vs Treat)

Gender 0.001 3.538, CI 1.597–7.838 (None vs Treat)
3.893, CI 1.567–9.675 (Notreat vs Treat)
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MNL regression (tri‑variable predictors (Stop‑Bang 
score, age, gender)

Neither the model nor the variables are significant.

MNL regression (tri‑variable predictors BMI, age, 
gender)

The model is significant p < 0.001. All variables are sig-
nificant. Age p = 0.003; increasing age means less likely to 
be in “None” group compared to the treatment group (OR 
0.951 CI 0.922, 0.980); but does not discriminate “notreat” 
compared to treatment group (OR 0.981, CI 0.948, 1.016). 
BMI p < 0.001; increasing BMI means less likely to be in 
“None” group compared to the treatment group (OR 0.918 
CI 0.880, 0.958); and less likely to be in “notreat” compared 
to treatment group (OR 0.927, CI 0.884, 0.972). Gender 
p = 0.001; being female more likely to be in “does not have” 
group compared to the treatment group (OR 3.538, CI 1.597, 
7.838); and more likely to be in the “notreat” compared to 
treatment group (OR 3.893, CI 1.567, 9.675). Nagelkerke’s 
pseudo r-square is 0.204, and overall correct classification 
is 62.3%.

Discussion

This study set out to ascertain the predictive abilities of ESS 
and Stop-Bang, while assessing the influence of co-variates 
BMI, age and gender, to risk stratify patients. In common 
with previous literature [18–20, 37], ESS was not found to 
have predictive ability for OSA severity: ESS’s identifica-
tion of OSA is based upon the level of daytime somnolence, 
which is not invariably present with the condition and cor-
relates poorly with its severity [21, 38, 39]. Further, the 
questionnaire has a fairly low sensitivity when using the 
suggested cut-off of 10 [40]. The International Classification 
of Sleep Disorders has thus made it clear that the ESS is no 
longer important for the diagnosis of OSA [41].

The performance of Stop-Bang as a screening tool for 
OSA has been widely demonstrated, with recent studies 
emphasizing the ability of the questionnaire to effectively 
detect moderate-severe OSA [26, 27, 29, 35, 42, 43]. In par-
ticular, Chung et al. were able to validate use of the score 
in bariatric patients, and demonstrate high sensitivity and 
specificity for detecting severe OSA with a score of 4 and 
6, respectively [43]. In our study, a large relative propor-
tion of patients without OSA had a score of 4, whereas the 
“treat” group had the highest relative proportion of patients 
with a score of 6. While our findings demonstrate that a 
higher Stop-Bang score increases the risk of severe OSA, 
the score failed to differentiate between the two groups of 
patients diagnosed with the condition. Indeed, this requires 

investigation in a larger population of patients, however, 
it can be said that there remains the issue of distinguish-
ing severe from moderate-severity OSA, particularly with 
mid-range scores (i.e. 3–4) for which further classification 
is necessary [17, 27, 35].

There is no doubt that raised BMI, age and male gender 
are all important risk factors for OSA [6, 21]. From this 
study, it can be inferred that these variables contribute to 
the predictive power of the overall Stop-Bang score. Indeed, 
the Stop-Bang model failed to retain its significance when 2 
out of the 8 items included (age and gender) were controlled 
for statistically. Modifying the Stop-Bang questionnaire to 
provide weighting to these variables, particularly as continu-
ous as opposed to dichotomised measures, can improve its 
performance as a screening tool [33–35]. Nahepetian et al. 
compared the predictive abilities of the standard Stop-Bang 
questionnaire with two weighted versions and found that 
the specificity for classifying OSA patients with AHI ≥ 15 
was greatest when the model was weighted for continu-
ous variables BMI, age and neck circumference. The high 
sensitivity of the model remained preserved at around 93% 
[33]. Chung et al. demonstrated in a cohort of 516 patients 
that specific combinations of items in the Stop-Bang model 
could improve its specificity; this was seen in various com-
binations of a stop score ≥2 and BMI > 35, male gender 
and age >50. The specific combination of a Stop score ≥2, 
male gender and BMI > 35 was shown to yield the greatest 
increase in predictive power [34]. Given these findings, in 
combination with our own, one may postulate better pre-
dictive power of an alternative score, which only consid-
ers objective measures which relate to the identification or 
severity of OSA [44]. The recently developed DAS-OSA 
score, for example, comprises of five items, including Mal-
lampati Score (a measure of ease of endotracheal intuba-
tion), chin-thyroid distance, BMI, gender and neck cir-
cumference [45], and was shown to be more specific than 
Stop-Bang in predicting moderate-severe OSA and further 
sensitive in predicting severe OSA [46]. Extensive study, 
however, would be necessary to validate use of such a score 
over an already well established screening tool such as the 
Stop-Bang questionnaire.

Limitations

The study population overall was fairly small, yet sufficient 
to power regressions with ten events per variable (EPV) for 
the uni-variable and bi-variable analyses. However, in the 
analyses with age and gender, the EPV is reduced, and so the 
results should be treated as exploratory [47]. The low Nagel-
kerke’s values indicate unexplained variation. To assess the 
effect other variables, we would require more observations 
to provide sufficient EPV to power the analysis. The over-
all predictions were correct for just over half of the study 
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population, and thus despite statistical significance, there is 
a need for development before these models would be useful 
clinically. The relatively small sample size and the involve-
ment of a single centre mean our findings are unlikely to be 
representative of all patients with OSA in the UK. Further-
more, due to the retrospective nature of the study, almost a 
quarter of Stop-Bang scores were missing. Other data such 
as neck circumference and co-morbidities were not collected 
but could strengthen the models.

Strengths

As a retrospective study, no additional burden was placed 
on staff to collect data, which were obtained from hospi-
tal records. Rather than looking at a selected population of 
patients, all patients referred for sleep study over a year were 
included in this study, thus representing the reality of clini-
cal practice in the study centre.

Conclusion

ESS is not an appropriate screening tool for OSA. This study 
demonstrates the Stop-Bang model to be a useful screen-
ing tool for OSA; in particular, OSA requiring treatment. 
Age, gender and BMI are also shown to have equal predic-
tive significance. While studies have promoted the use of 
a “weighted” Stop-Bang model, further study may benefit 
the development and implementation of a concise and more 
specific screening tool that considers high evidence-based 
risk factors for OSA including male gender, greater age and 
raised BMI. This would be of particular benefit in bariatric 
patients who are at a high risk of the condition.
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