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Abstract Surface electromyography (sEMG) is a well-

established procedure for recording swallowing-related

muscle activities. Because the use of a large number of

sEMG channels is time consuming and technically

sophisticated, the aim of this study was to identify the most

significant electrode positions associated with oropharyn-

geal swallowing activities. Healthy subjects (N = 16) were

tested with a total of 42 channels placed in M. masseter, M.

orbicularis oris, submental and paralaryngeal regions. Each

test subject swallowed 10 ml of water five times. After

having identified 16 optimal electrode positions, that is,

positions with the strongest signals quantified by the

highest integral values, differences to 26 other ones were

determined by a Mann–Whitney U test. Kruskal–Wallis

H test was utilized for the analysis of differences between

single subjects, subject subgroups, and single electrode

positions. Factors associated with sEMG signals were

examined in a linear regression. Sixteen electrode positions

were chosen by a simple ranking of integral values. These

positions delivered significantly higher signals than the

other 26 positions. Differences between single electrode

positions and between test subjects were also significant.

Sixteen most significant positions were identified which

represent swallowing-related muscle potentials in healthy

subjects.

Keywords sEMG � Surface electromyography �
Swallowing � Oropharyngeal � Dysphagia

Introduction

Surface electromyography (sEMG) provides real-time

spatiotemporal information about muscle activities related

to the oropharyngeal swallowing. Nowadays, due to its

non-invasive character, sEMG is often used in clinical

routine and research.

The idea to obtain swallowing-related information by

EMG recording is not a new one. In 1956, Doty and Bosma

published among the first an electromyographic analysis of

reflex deglutition in an animal trial [1]. Whereas the first

EMG studies on swallowing were predominantly con-

ducted even in humans with needle and hook-wired elec-

trodes [2, 3], the development of sEMG increased the

attractiveness of this method for diagnostic and rehabili-

tation purposes.

Although the swallowing-related muscles are often

small in size and overlap in fibers, sEMG turned out to

deliver constant results in respect to frequency and

amplitude values [4], even if sEMG, in contrast to EMG

recordings using needle electrodes, is not able to record

activities of single swallowing muscles. Also, sEMG was

reliable in repetitive recordings over multiple days in

comparison with simultaneous intramuscular recordings, at
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least in masticatory muscles such as masseter [5, 6].

Moreover, muscle activity of the M. orbicularis oris, M.

masseter and the submental muscle group correlated reli-

ably with videofluoroscopy results [7]. Biomechanical

correlates could be found between sEMG and separate

swallowing functions such as hyoid elevation, constriction

of pharyngeal muscles, and opening of the upper oeso-

phageal sphincter [4].

Due to this link between sEMG signals and muscle

activities, sEMG can provide information on the physiology

of swallowing [8–11], which can be utilized for biofeedback

interventions in therapeutic settings [12–16]. The placement

of sEMG electrodes is one of the most important factors

associatedwith themeasurement accuracy andminimization

of possible misinterpretations of electromyography results

[17–20]. However, electrode placement is still more based

on practice of diverse study groups and laboratories than on

results of empirical studies [19, 21].

Some studies focus on isolated regions such as masti-

catory muscles [6, 22, 23], submental [2, 16, 24, 25] and

hyolaryngeal regions [26, 27] or a combination of those

[7, 11, 28] in healthy test subjects [7, 29] and patients

[30–32]. Topics of interest for sEMG research included,

apart from swallowing, other issues such as voice [32, 33]

or playing trumpet [34–36]. However, despite the existing

abundance of sEMG research, it is hard to compare study

results in respect to benefit, application or even recording

recommendations for both clinicians and investigators

because of different study designs used, including different

electrode placement sites.

Given the paucity of empirically based recommendations

regarding sEMG conduction, the aim of the present study

was the identification of optimal electrode placement sites

for sEMG recording of swallowing-related activities by

means of a systematic analysis of a large number of avail-

able placement positions. Because common commercial

recording systems are predominantly equipped with no more

than 16 sEMG channels and also because the use of large

sets of sEMG channels is both time consuming and techni-

cally sophisticated, the purpose of the study was to find 16

most significant positions out of a total of 42, which were

located as densely as possible in the four swallowing-related

regions of (1) M. masseter, (2) M. orbicularis oris, (3)

submental and (4) paralaryngeal regions. Due to the limi-

tations of sEMG in recording pharyngeal muscle activity,

this region was not in the focus of the present study.

Materials and methods

Sixteen healthy subjects without swallowing dysfunctions,

five males and 11 females aged 21;1–62;5 years (median

27;2 years), were included in the study. Neurological

diseases, anomalies of oropharyngolaryngeal structures as

well as factors that might affect swallowing such as cold,

tooth and throat pain or other medical and medication

problems were negated by all participants. There was no

attempt to constitute a homogeneous group, as far as

gender, age, race or other demographical factors are con-

cerned. Informed written consent was obtained from all

participants prior to initiating data collection.

Ethics approval was granted by the health ethics review

board of University Hospital of Frankfurt/Main, Germany

(# 393/13).

sEMG was recorded with 42 surface electrodes placed

as densely as possible in the (1) M. masseter, (2) M.

orbicularis oris, (3) submental and (4) paralaryngeal

regions using a bipolar technique with the reference elec-

trode at mid-forehead (see Fig. 1). The surface electrode

pairs (NeoLead; Neotech Products, Valencia, USA) were

placed on a cleaned, dry skin with an interelectrode center-

to-center distance of 4 mm, parallel orientated to muscle

fiber direction to obtain the maximum of spatial potential

gradient [37]. Neolead electrodes are pre-wired, made of

latex and phthalate/DEHP and have very compact dimen-

sions (100 9 3/800) allowing high placement density. The

sEMG signals were recorded with a 16-channel amplifier

(Buck Elektromedizin, Bad Rappenau, Germany; sampling

rate: 500 Hz; sample quantification: 8 bit for a voltage

range of between -500 and ?500 lV, amplification

10,000; high-pass filter about 80 Hz, low-pass filter about

300 Hz), preamplified and band-pass filtered (3–250 Hz)

with sufficiently high signal-to-noise ratio (about 34 dB at

the level of 50 Hz).

The 16-channel amplifier was connected to the notebook

Compaq 160 (Hewlett-Packard Development Company,

L.P.; Palo Alto, USA) running the sEMG software ‘‘B-F-

EAT’’ (Buck Elektromedizin, Bad Rappenau, Germany).

For the measurements, subjects were instructed to sit

upright, with head in a neutral position, without moving

and using mimics during the check of the electrode

Fig. 1 Four electrode placement regions: M. masseter (gray), M.

orbicularis oris (diagonal stripes), submental region (white), parala-

ryngeal region (black)
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impedances and the swallowing study. Each subject com-

pleted five swallows of 10 ml water (cf. [38]), self-deliv-

ered by a graduated syringe, each time after observing the

signal in rest for at least 3 s. To avoid fatigue effects,

recovery breaks of about 1 min were made between sub-

sequent swallows.

The obtained sEMG signals were high-pass filtered,

rectified, and smoothed with a moving-average filter of

80 ms in length, prior to analysis.

To compare the sEMG signals of all 42 channels and to

define the 16 most important swallowing-related electrode

positions in the four examined regions, the integral of the

rectified sEMG signals with respect to time was chosen as

an indicator of the strength of the corresponding muscles.

A baseline of at least 0.5 s before the swallow, without

any artifacts, was used to calculate a line indicating

activities surpassing the limit of two standard deviations

from the baseline. By means of this line, onset and offset of

the sEMG signal were identified. Rectified and smoothed

sEMG signals Vi(t) (i indicates the channel) with removed

baseline drift were processed by an experienced clinician

who set marks at the onset and offset time (ton, toff: inter-

section point of sEMG signal and the ‘‘two-standard-de-

viations-line’’) and highest peak in each channel and each

recording (see Fig. 2).

The integral (area under the curve) was calculated

automatically by the software with the following formula:

Area under the curve i ¼
Ztoff

ton

Vi tð Þdt;

The integral was calculated not on the basis of five sEMG

records per person, but on the basis of one record averaged

over five synchronized swallows.

In order to examine the preciseness of the integral cal-

culation method, the intra-judge (q = .992, p\ .001,

N = 320) and inter-judge reliability (q = .930, p\ .001,

N = 320) were analyzed for a sample of integral values of

two clinicians.

Statistical data were exported from the sEMG recording

program and analyzed in SPSS 20. As the data demon-

strated no normal distribution according to Kolmogorov–

Smirnov test, only non-parametric tests were used where

possible.

Differences in the distribution of the integral between

electrode placement sites and between test subjects were

determined by a Kruskal–Wallis H test. Differences

between swallowing patterns were also assessed by Krus-

kal–Wallis H tests.

Most significant electrode positions were chosen by a

simple ranking of integral values, numerically balanced for

four anatomical regions. To represent all anatomical

regions, at least two electrode positions were chosen in

each one. The difference between (a) the chosen electrode

positions and (b) the other positions was demonstrated by

the Mann–Whitney U test for integral to examine whether

the chosen 16 electrode placement sites deliver signifi-

cantly stronger sEMG signals than the other 26 electrode

placement sites.

Additionally, a linear regression was calculated with the

integral as dependent variable and several independent

factors which potentially influence the distribution of

sEMG signals: (1) ‘‘42 electrode placement sites’’; (2) ‘‘16

test subjects’’; (3) ‘‘sex’’; (4) ‘‘age’’; (5) ‘‘placement of

electrodes on the left, right side or centrally’’; (6) ‘‘4

swallowing regions’’; (7) ‘‘16 chosen electrode positions vs

the 26 other positions’’; (8) ‘‘3 subgroups of test subjects’’.

The factor (7) quantifies the influence of the division of all

electrode positions into more and less important ones. The

factor (8) refers to the subdivision of test subjects into

those who predominantly use the muscles (a) in the

orbicularis oris region, (b) in the masseter region, and (c) in

the submental region during swallowing. All of the chosen

factors were shown to be associated with the distribution of

sEMG signals in some of the previous studies, although

often inconsistently (see ‘‘Discussion’’). Standardized beta

coefficients (b) and mean values (M) are given for statis-

tically significant results. Adjusted R2 was used to deter-

mine the explained variance.

Results

The differences between 42 electrode positions were highly

significant for the integral: v(41)
2 = 129.41, p\ .001,

N = 42. Also, highly significant differences were revealed

between test subjects: v(15)
2 = 138.37, p\ .001, N = 16.

Fig. 2 Placement of three marks in sEMG signals for the calculation

of integral. 2-SD-line two-standard-deviations-line
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A further analysis of the sEMG signals of test subjects

identified three subgroups regarding swallowing patterns:

those with the highest activity (1) in the orbicularis oris

region (N = 5), (2) in the masseter region (N = 4), and (3)

in the submental region (N = 7). In three Kruskal–Wallis

H tests, the integral values of those test subjects ‘‘prefer-

ring’’ a certain region were significantly higher on elec-

trode positions from this region compared with the other

two groups: (1) M. orbicularis: v(2)
2 = 20.78, p\ .001, (2)

M. masseter: v(2)
2 = 14.67, p = .001, (3) submental region:

v(2)
2 = 9.98, p = .007.

For the choice of the most significant sEMG electrode

positions, all positions were subdivided into two groups for

each of the four regions (M. masseter, M. orbicularis oris,

submental and paralaryngeal regions) according to the

integral values: 16 most significant electrode positions with

the highest values in the ranking vs 26 positions with lower

values (see Fig. 3). The integral value was significantly

higher for the 16 most significant electrode positions than

for the 26 remaining positions: U = 40,551, Z = -6.42,

p\ .001, N = 42.

According to a linear regression (F(8,663) = 6.74,

p\ .001, adjusted R2 = .064, that is, 6 % of explained

variance), the influence of factors ‘‘42 electrode placement

sites’’, ‘‘16 test subjects’’, ‘‘3 subgroups of test subjects’’,

‘‘age’’, and ‘‘4 swallowing regions’’ did not reach statistical

significance. The influence of the factors ‘‘16 chosen

electrode positions vs the 26 other positions’’ (b = -.190,

p\ .001) and ‘‘sex’’ (b = -4.04, p\ .001) were highly

significant. Integral calculated for the chosen 16 electrode

positions (M = 3.0) was more than twice as high as the

integral of the other 26 positions (M = 1.2). Mean values

demonstrated that men’s results (M = 3.0) were on aver-

age higher than those of women (M = 1.4). The influence

of the factor ‘‘placement of electrodes on the left, right side

or centrally’’ was also significant (b = 2.09, p = .037).

Central electrode positions (M = 2.9) delivered higher

values than those on the right and left sides (both

Ms = 1.7). In regard to the low percentage of the explained

variance it should be noted that zero integral values made

out 63 % in the dependent variable in the regression, which

means that on 63 % of channels sEMG activities, measured

by integral, did not surpass the line indicating two standard

deviations from the baseline recorded in rest.

Discussion

In the present experimental study, 16 most significant

sEMG electrode placements were determined out of 42

potential positions located all over the oropharyngeal

swallowing-related regions. At least two electrode posi-

tions were selected in each of the four defined regions that

were (1) M. masseter, (2) M. orbicularis oris, (3) submental

and (4) paralaryngeal regions. The identification of the

most significant positions was based primarily on a simple

ranking according to the integral of the rectified and

smoothed sEMG signal with respect to time. Since force of

a muscle is roughly proportional to the sEMG voltage [39],

the integral expresses kind of a force–time product and

hence the ‘‘effort’’ of the muscle for the particular swal-

lowing task. The difference between these two groups of

electrode positions was also revealed by a linear regression

in which the negative beta value means that the 16 most

significant electrode positions delivered significantly

higher integral values than all other electrode positions.

As was shown in Fig. 3, the chosen 16 electrode posi-

tions were located predominantly centrally, which means

that the central regions delivered the strongest sEMG sig-

nals. These signals were produced by the most superficially

located muscle groups, as has already been demonstrated in

comparison with other regions in previous research

[4, 40, 41].

Significant differences in integral values of sEMG sig-

nals were identified between 16 test subjects. This result is

in line with some previous studies which revealed con-

siderable interpersonal variance in muscle activity patterns

[2, 42–45] and in the corresponding biomechanical

movements [46] in healthy subjects. The highly complex

adaptive motor activity as well as the considerable inter-

subject variability in the performance of higher-level

control mechanisms was mentioned by authors of previous

studies as potential explanations for this finding.

Indeed, as shown in previously published research, there

is a certain variation in the normal deglutition processes,

whichever parameters are utilized for the analysis [10].

Also, in much larger sEMG datasets no specific consistent

swallowing pattern could be detected [28]. In fact, even

individual swallowing patterns may vary within one con-

sistency or volume [47].

Motivated by the study of Dodds et al. [48], who out-

lined that there are at least two different types of oral

swallowing, the data collected here were analyzed inFig. 3 16 chosen electrode positions, marked in black, out of 42
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regard to different swallowing patterns. Three subgroups of

test subjects were identified: those with the highest activ-

ities (1) in the orbicularis oris region, (2) in the masseter

region, and (3) in the submental region. The existence of

the fourth subgroup, those with the strongest sEMG signals

in the paralaryngeal region, cannot be excluded and should

be verified in a larger sample.

However, although the differences between subgroups

were proven to be significant in a series of Kruskal–Wallis

H tests, the influence of the factor ‘‘subgroups of test

subjects’’ did not reach a significance level in a linear

regression, which does not surprise if the very low sample

size in each subgroup (Ns\ 10) is taken into account.

Age of the test subjects did not influence the integral

values significantly according to the linear regression.

Obviously, the distribution of sEMG values does not vary

much in different age groups except higher senior age, as

has already been shown in the study of Vaiman et al.

(2004), who could not detect a statistically significant

difference between 4- and 12-year-old children (N = 100)

and 18- and 30-year-old adults (N = 40) in the sEMG-

recorded amplitude (range) of M. orbicularis oris, M.

masseter, submental, and infrahyoid activities [49]. With

the median age of 27 years, test subjects in the present

study could have been too young for senior age-related

swallowing dysfunctions identified in other studies. For

instance, Wang et al. [50] demonstrated a delayed onset

latency in healthy subjects aged 51–70 years compared to

the age groups of 20–30 and 31–50 years. Also, conced-

edly, the reason for the missing significant result on age

could be traced back to a low sample size.

In contrast, the sex of the test subjects influenced sig-

nificantly the results, with stronger sEMG signals in the

male than in the female subgroup. However, again, because

of small sample sizes in both subgroups (male, female), the

result cannot be generalized. Findings of the previous

studies regarding differences between healthy men and

women in their sEMG activities are contradictory. Whereas

most authors could not identify such differences irrespec-

tive of the study design [7, 51, 52], Moreno et al. [53] did

find that men achieved a higher masseter activity at max-

imum effort than women and women achieved higher

values for the digastric muscles in deglutition.

The low percentage of explained variance in the linear

regression (6 %) demonstrated that some essential factors

influencing the distribution of sEMG values were not

included and are still to be identified. A high number of

zero integral values also contributed to this low

percentage.

All test subjects included in the study had no swallow-

ing-related disorders or dysfunctions. Therefore, the study

did not aim at the description of the sEMG patterns which

might be characteristic of swallowing disorders.

Despite the interpersonal variance, the presented study

demonstrated a systematically determined pattern of 16

electrode positions that ensures an accurate and reliable

recording of swallowing-related sEMG signals. It should

be viewed as an initial step in the development of empir-

ically based recommendations on a comprehensive sEMG

recording of the oropharyngeal swallowing, although a

larger sample size balanced for age and sex distribution

would be recommendable for further studies. In addition,

further examination of intrapersonal variability of sEMG

signals would be of interest [38]. Also, further work is

required to link the recorded sEMG signals to the crucial

biomechanical functions of oropharyngeal swallowing by

simultaneously recorded videofluoroscopy study.
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