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Abstract Dynamic magnetic resonance imaging (MRI)

allows real-time characterization of upper airway collapse

in sleeping subjects with obstructive sleep apnea (OSA).

The aim of our study was to use sleep MRI to compare

differences in upper airway collapse sites between BMI-

matched subjects with mild OSA and severe OSA. This is a

prospective, nested case–control study using dynamic

sleep MRI to compare 15 severe OSA subjects (AHI[40)

and 15 mild OSA (AHI\10) subjects, who were matched

for BMI. Upper airway imaging was performed on sleeping

subjects in a 3.0 T MRI scanner. Sleep MRI movies were

used by blinded reviewers to identify retropalatal (RP),

retroglossal (RG), and lateral pharyngeal wall (LPW) air-

way collapse. Mean AHI in the severe OSA group was

70.3 ± 23 events/h, and in the mild group was 7.8 ± 1

events/h (p\ 0.001). All mild and severe OSA subjects

demonstrated retropalatal airway collapse. Eighty percent

in the mild group showed single-level RP collapse

(p\ 0.001). All subjects in the severe group showed multi-

level collapse: RP ? LPW (n = 9), RP ? RG ? LPW

(n = 6). All severe OSA subjects showed LPW collapse, as

compared with three subjects in the mild group

(p\ 0.001). LPW collapse was positively associated with

AHI in simple regression analysis (b = 51.8, p\ 0.001).

In conclusion, severe OSA patients present with more lat-

eral pharyngeal wall collapse as compared to BMI-matched

mild OSA patients.

Keywords Sleep magnetic resonance imaging � Lateral

pharyngeal wall collapse � Obstructive sleep apnea

Introduction

Obstructive sleep apnea (OSA) is characterized by recur-

rent upper airway (UA) obstruction associated with oxygen

desaturation during sleep. Polysomnography (PSG) is the

gold standard diagnostic tool for OSA, and provides a

comprehensive array of physiologic data. It does not,

however, provide anatomic information about the region of

UA collapse that leads to apnea and desaturation. As more

medical and surgical treatments become available for tar-

geted therapy, precise phenotyping the OSA patient for

individualized therapy is pertinent and timely.

From static imaging to awake and asleep endoscopic

examinations, clinicians have attempted numerous ways to

characterize the dynamic airway of a sleeping patient.

Much work has been done via static and awake imaging,

and surrogate measures that correlate with severity of OSA
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have been published [1–5]. There is need for examination

of upper airway collapse during sleep.

Dynamic magnetic resonance imaging (MRI) has been

used to investigate the sites of airway obstruction in OSA

patients who are either awake, under sedation, or during

natural sleep. To date, sleep MRI studies have focused on

observations using sagittal views of the UA, which only

allows for the identification of retropalatal and retroglossal

airway collapse in an anterior to posterior direction [6–9].

The aim of our study was to use sleep MRI to compare

differences in upper airway collapse sites between BMI-

matched subjects with mild and severe OSA.

Materials and methods

Study design

This was a nested case–control study, where subjects were

selected from 64 consecutive participants who successfully

completed in the dynamic sleep MRI study from July 2012

to June 2014. Inclusion criteria for the study subjects

included complaint of excessive daytime somnolence,

presence of snoring, and OSA diagnosed by attended PSG.

Subjects with nasal obstruction or who had nasal or

oropharyngeal surgery for OSA were excluded. Subjects

with image sequences obscured by swallowing or

mandibular movements were also excluded. Of the 64

subjects, 15 subjects with severe OSA (AHI [40) and 15

BMI-matched subjects with mild OSA (AHI \10) were

selected. The study was approved by the institutional

review boards of Cathay General Hospital and the National

Taiwan University Hospital, with informed written consent

obtained from all enrolled subjects.

Data collection

Polysomnography

All subjects underwent standard overnight in-lab PSG with

at least 6 h of sleep data recording. Alcohol or other

sedatives were not allowed the day before the study.

Electro-physiological parameters, including central electro-

encephalogram (EEG), electro-oculogram, electro-myo-

gram, electrocardiogram, nasal/oral airflow, thoracic and

abdominal efforts, oxygen (O2) saturation, and snoring

sound, were recorded. AHI was defined as the sum of total

apnea and hypopnea episodes per hour of sleep. Apnea was

defined by a decreasing of airflow by 90 % lasting longer

than 10 s, and hypopnea defined as oxygen desaturation of

3 % or more with EEG confirmed arousal.

Magnetic resonance imaging

Subjects were scanned after 11 pm with continuous mon-

itoring by a radiologist and an otolaryngologist. A 3 T MRI

(Verio 3 T Syngo MR B17, Siemens Healthcare, Munich,

Germany) was used with a head and neck surface coil.

Subjects were in supine position and orbito-auricular plane

at 90� angle to the horizontal plane. Airtight earplugs were

inserted into the external auditory canal to minimize noise

disturbance. Sleep MRI images were obtained with rapid

MRI 2D multi-slice fast low-angle shot (FLASH)

sequence, first performed with the subjects awake. Once

sleep was determined with our study definitions, patients

were monitored for 30 min. The technical parameters were:

echo time 1.73 ms, repetition time 2.74 ms; flip angle 6�;
matrix 1.0 9 1.0.8.0 mm; and section thickness 8 mm.

The imaging time per slice for this sequence was 0.5 s. 100

consecutive images were obtained as a single section, with

total imaging time of 50 s, where each image represents

0.5 s.

Determination of sleep

Pulse rate with oxygen saturation and snoring sound were

continuously recorded during scan. State of sleep was

determined by simultaneous recordings of irregular snoring

heard through the optical-fiber microphone.

Snoring recording and synchronizing

Snoring was recorded using an MRI-compatible micro-

phone (FOMRI-III, dual channel optical-fiber microphone,

Optoacoustics, Yehuda, Israel) and a universal serial bus

sound card sampling at 44.1 kHz with 24-bit resolution

(Sound Blaster X-Fi, Creative, Singapore City, Singapore).

The microphone was installed inside the MRI head coil for

snore sound recording. To ensure the quality of sound

recording, the distance between the mouth and microphone

was consistent at 5–20 mm in supine position, depending

on the subject’s head size. The details of MRI and snoring

recording/synchronizing procedures were validated in our

previous studies [10, 11].

To eliminate MRI noise from the recording, we identi-

fied the segments (slices) of each FLASH sequence in the

recording and applied principle component analysis

method to the matrix of segments. The snoring sound

recorded during MRI imaging was reconstructed by sub-

tracting the templates from different FLASH sequences of

the original data. The audio data and the slices of each

FLASH sequence were aligned segment by segment to

synchronize MRI imaging and snoring sound (Video 1).
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Data analysis

Starting with the mid-sagittal slice, UA was divided into

retropalatal and retroglossal spaces. Retropalatal (RP)

space was defined between levels of the hard palate to

inferior border of the uvula. The retroglossal space (RG)

was defined from the inferior border of the uvula to the

base of the epiglottis (Fig. 1). RP and RG collapses were

determined by dynamic sagittal and axial sequences. Rat-

ing of lateral pharyngeal wall collapse was based on

coronal slices from sleep MRI.

Rating of airway collapse was binary, where collapse

(airway obstruction) was defined as a narrowing greater

than 75 % of the airway. Rating was performed by two

blinded investigators (SYCL and LKH).

Statistical analysis

Intra-rater consistency and inter-rater reliability were

checked with Cronbach’s and Kappa correlations, respec-

tively. Simple regression analyses were used to measure

the association between sites of UA collapse and severity

of OSA. Fisher exact and Mann–Whitney U tests were used

for group comparisons. To determine the sample size, we

set confidence level at 80 % with significance level

p\ 0.01.

Results

Demographics

All subjects were male, and of Han Chinese ethnicity.

There were no statistically significant differences in age,

neck circumference, and BMI between the 15 subjects with

severe OSA and 15 subjects with mild OSA (Table 1). AHI

was 70.3 ± 22.9 events per hour in the severe group and

7.8 ± 1.4 events per hour in the matched, mild OSA group

(p\ 0.001).

Dynamic UA collapse

Distribution of sites of UA collapse for both groups is

provided in Table 2. All subjects with severe OSA had

multi-level collapse (RP ? LPW, or RP ? RG ? LPW).

In comparison, 80 % of the mild OSA subjects showed

single level collapse at RP only. Only 20 % of the mild

OSA subjects showed multi-level collapse with 13.3 %

(RP ? RG) and 6.7 % (RP ? RG ? LPW).

When compared by sites of collapse, all subjects (mild

and severe OSA) showed RP collapse. All subjects with

severe OSA had LPW collapse, as compared with 6.7 % in

the mild OSA group (p\ 0.0001) (Table 3). Internal

consistency for intra-rater Cronbach’s alpha coefficient

ranged from 0.95 to 1.00, and inter-rater reliability Kappa

coefficient was 0.90–1.00.

We demonstrate the coronal view of a dynamic sleep MRI

movie of a 46-year-old subject with AHI of 71 events/h

(Video 2) is compared with an age and BMI-matched subject

with AHI of 7 events/h (Video 3). This is the view used to

rate lateral pharyngeal wall collapse, which is 1 in the severe

OSA subject, and 0 in the mild OSA subject. Figure 2 shows

axial views of lateral pharyngeal wall collapse sequences,

and Fig. 3 showed dynamic coronal view of lateral pharyn-

geal wall collapse sequences.

Dynamic UA collapse and disease severity

On simple regression analysis, lateral pharyngeal wall

collapse showed positive correlation with AHI (b = 51.8,

p\ 0.001) (Table 4).

Discussion

Methods for predicting sites of UA obstruction during sleep

in OSA patients include cephalometry, computed tomog-

raphy (CT), MRI, nasopharyngoscopy, fluoroscopy, and

drug-induced sedation endoscopy (DISE). They are all

limited by providing information about the airway during

static, awake, or pharmacologically induced sleep states

[1, 2, 12–15]. Dynamic sleep MRI provides excellent

temporal resolution to changes of the upper airway during

sleep. Previous sleep MRI studies have demonstrated ret-

ropalatal and retroglossal airway collapse in subjects with

OSA [6]. In this study, we found that retropalatal airway

collapse is common in all OSA subjects, which is

Fig. 1 Mid-sagittal magnetic resonance image (MRI) of sample

subject, demonstrating retropalatal (RP)-level of the hard palate to the

tip of uvula; and retroglossal (RG)-tip of the uvula the base of

epiglottis
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compatible with previous observations [6–9, 15]. We did

not, however, find any isolated retroglossal airway collapse

in subjects with severe OSA as described in previous

imaging studies [7, 9]. All of our severe OSA subjects

showed retroglossal or retropalatal airway collapse in

combination with lateral pharyngeal wall collapse. The

most important finding from our dynamic sleep MRI study

is patients with severe OSA had a more lateral pharyngeal

wall collapse compared with BMI-matched mild OSA

patients.

Pathogenesis of OSA remains complex. Two prevailing

mechanisms for upper airway collapse during sleep

include: (1) anatomic theory: fat deposits around the

pharynx and thickening of soft tissue of pharyngeal wall;

and (2) neural hypothesis: decreased neural output to

pharyngeal dilator muscles during sleep, leading to muscle

hypotonia [16].

For the first theory, obesity is a predisposing factor in

the development and progression of OSA [17, 18]. Fat pads

in the pharyngeal wall are increased in obese patients with

OSA, contributing to narrowing of the pharyngeal lumen

[19–21]. Larger neck circumference has been associated

with greater severity of OSA [22]. However, this does not

apply to OSA patients who are of normal BMI [2, 23].

Also, studies by Akan et al. [24] and Schwab et al. [25] did

not ascribe importance to the parapharyngeal fat pads in

airway obstruction during sleep.

Our findings in the setting of BMI-matched non-obese

subjects illustrate the neural hypothesis as it relates to

multi-level collapse. Our results highlight the importance

of increased lateral pharyngeal wall collapsibility as a

major determinant of airway obstruction in severity of

OSA. Increased collapsibility of the lateral pharyngeal wall

may reflect inadequate neuromechanical response to air-

way obstruction in severe OSA subjects, while in the

matched mild OSA subjects, coordinated airway dilation

mechanism during sleep is preserved.

The association of lateral pharyngeal wall collapse with

severity of OSA has been reported by observation during

nasopharyngoscopy and DISE. There is a strong associa-

tion between lateral pharyngeal wall collapse and severity

of oxygen desaturation during DISE [26]. Soares et al. also

reported the presence of severe lateral pharyngeal wall on

preoperative DISE is associated with sleep surgical failure

[27]. The most effective surgical treatment for OSA

besides a tracheostomy is maxillomandibular advancement

Table 1 Demographic and ESS

data of severe (n = 15) and

mild OSA subjects (n = 15)

Severe OSA (AHI[40)

n = 15

Mild OSA (AHI\10)

n = 15

p

Age (years) 45.4 ± 8.4 44.3 ± 8.9 0.693

BMI (kg/m2) 27.0 ± 3.4 25.7 ± 3.6 0.263

AHI (events/h) 70.3 ± 22.9 7.8 ± 1.4 0.000

Neck circumference (cm) 38.5 ± 1.5 39.3 ± 2.8 0.404

ESS 13.87 ± 3.44 11.27 ± 4.09 0.090

OSA obstructive sleep apnea, BMI body mass index, AHI apnea–hypopnea index, ESS Epworth Sleepiness

Scale

p value computed using Mann–Whitney U test

Table 2 Sites of upper airway

collapse in severe and mild

OSA groups

Severe OSA (AHI[40)

n (%)

Mild OSA (AHI\10)

n (%)

p

RP 0 (0) 12 (80 %) 0.000

RP ? RG 0 (0) 2 (13.3 %) 0.483

RP ? LPW 9 (60 %) 0 (0) 0.001

RP ? RG ? LPW 6 (40 %) 1 (6.7 %) 0.080

OSA obstructive sleep apnea, RP retropalatal, RG retroglossal, LPW lateral pharyngeal wall

p value computed using Fisher’s exact test

Table 3 Distribution of sites of upper airway collapse in severe and

mild OSA groups

Severe OSA (AHI[40)

n (%)

Mild OSA (AHI\10)

n (%)

p

RP 15 (100 %) 15 (100 %) 1.000

RG 6 (40 %) 1 (6.7 %) 0.080

LPW 15 (100 %) 3 (20 %) 0.000

OSA obstructive sleep apnea, RP retropalatal, RG retroglossal, LPW

lateral pharyngeal wall

p value computed using Fisher’s exact test
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(MMA), and both Li et al. and Liu et al. reported that

reduction of lateral pharyngeal wall collapse is associated

with MMA surgical success [28, 29].

Our findings need to be interpreted with the following

limitations. Our comparison groups are subjects with mild

OSA and severe OSA. There is not a true control group

who do not have OSA. While the strength in our study is

the BMI-matching of both groups, all subjects are of Han

Chinese ethnicity, which may limit the generalizability of

our results. There is also a selection bias, since we are only

able to assess those patients who fell asleep in the scanner.

Sleeping in MRI in this study is not representing a true

natural sleep due to the short scanning time (30 min after

subjects fall asleep). Without EEG in our MRI scanners,

we do not have information about the patients’ sleep

staging. It has been suggested that patients who could fall

asleep in the scanner remain mostly in stages I and II [7].

Finally, an increase in number of subjects would allow

multivariate analyses examining other anatomic or physi-

ologic contributors to lateral pharyngeal wall collapse.

Conclusion

In conclusion, patients with severe OSA present with more

multi-level and lateral pharyngeal wall collapse as com-

pared to BMI-matched mild OSA patients under sleep

MRI. When examining patients with suspected sleep-dis-

ordered breathing, identification of lateral pharyngeal wall

collapse with nasopharyngoscopy or drug-induced sleep

endoscopy may correlate with OSA severity.
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