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Abstract Downbeat nystagmus (DBN) is caused by an

impairment of Purkinje cells in the flocculus. The de-

creased cerebellar inhibitory input affects otolith pathways.

Since ocular and cervical vestibular evoked myogenic po-

tentials (o-/cVEMP) test the otoliths, the VEMP were

measured in DBN patients and in controls. Sixteen patients

with DBN, 14 cerebellar oculomotor disorder patients

without DBN (COMD), and 16 healthy controls were ex-

amined with o-/cVEMP. Computational modeling was

used to predict VEMP differences between groups. DBN

patients had significantly higher oVEMP peak-to-peak (PP)

amplitudes than COMD patients without DBN and con-

trols. Cervical VEMP did not differ. The computational

model of DBN predicted a twofold oVEMP increase for

DBN patients. These findings suggest an enhancement of

the utriculo-ocular response. The unchanged cVEMP

indicate no effect on the otolith-cervical reflex in DBN.

Computational modeling suggests that the utriculo-ocular

enhancement is caused by an impaired vertical neural in-

tegrator resulting in the increased influence of utricular

signals. This also explains the gravitational dependence of

DBN.

Keywords Downbeat nystagmus � Cerebellar
degeneration � oVEMP � cVEMP � Vestibular function �
Otolith

Introduction

Downbeat nystagmus (DBN) is a frequent type of acquired

nystagmus, which is proposed to be most often caused by

an impaired function of the flocculus/paraflocculus [1–3]. It

consists of slow upward drifts of the eye and compensatory

downward fast phase eye movements. Vertical upward drift

has two parts: vertical gaze-evoked drift attributed to lea-

kiness of the vertical gaze-holding mechanism and an up-

wardly directed spontaneous or bias drift that is present

with gaze straight ahead. The spontaneous upward drift can

be subdivided into a gravity-independent component,

which is present in gaze straight ahead, and a gravity-de-

pendent component, which is maximal in prone and

minimal in supine positions [4]. Gaze-evoked drift follows

Alexander’s law, i.e. vertical drift velocity increases with

gaze in the direction of the fast phase, i.e. downward. The

vertical drifts in DBN patients, including the gravity-de-

pendent otolith-mediated drift, have been mainly attributed

to a reduction of floccular inhibitory influence on the

floccular target neurons in the superior vestibular nucleus

in the brainstem due to floccular [5, 6] or, in rare cases,

paramedian tract impairment [7, 8, 9].

Clinically, the function of the otolith organs can be

tested by vestibular evoked myogenic potentials (VEMP).

Tap stimuli to the forehead stimulate utricular hair cells

and give rise to ocular VEMP. The utricular signals are

transmitted to the extraocular muscles, in particular the

inferior oblique muscle [10, 11], via the superior part of the

vestibular nerve to the superior and medial vestibular
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nuclei in the brainstem reaching the contralateral oculo-

motor nucleus [12, 13]. Saccular afferent fibers are

stimulated via high-amplitude tone bursts causing cervical

VEMP. The respective pathway projects through the infe-

rior vestibular nerve, the vestibulospinal tract, the acces-

sory nucleus and via the accessory nerve to the ipsilateral

sternocleidomastoid muscle [14].

The increase of the gravity-dependent component of

vertical drift in DBN described above suggests a central

enhancement of utriculo-ocular responses in DBN patients.

In the current study, we therefore investigated whether

oVEMP amplitudes are higher in patients with DBN than

in controls. We hypothesized that cVEMP amplitudes in

these patients do not change because the floccular damage

underlying DBN affects the vestibulo-ocular but not the

vestibulo-collic reflex and because the enhancement of

otolith-ocular responses is supposed to be of central origin,

thus not affecting the sacculus. We also performed oVEMP

examination in patients with cerebellar ocular motor dis-

orders but without DBN to test whether cerebellar im-

pairment without vertical ocular motor symptoms would

affect oVEMP responses.

Subjects and methods

This is a prospective study conducted in the tertiary out-

patient center. All subjects underwent a complete neuro-

logical, neuro-ophthalmological, and neuro-otological

examination. Patients were divided into two groups on the

basis of the neuro-ophthalmological findings: first, patients

with DBN and additional cerebellar ocular motor disorders;

second, patients with cerebellar ocular motor disorders but

no DBN.

Subjects

Sixteen patients with cerebellar ocular motor disorder and

DBN (8 F, age: mean ± SD 73.4 ± 10.8 years), 14 pa-

tients with cerebellar ocular motor disorders without DBN

(8 F, 72.1 ± 9.1 years), and 16 age-matched healthy sub-

jects (4 F, 72.6 ± 4.8 years) with no evidence of cerebel-

lar, vestibular, or ocular motor disorders were included.

The etiologies of patients with cerebellar ocular motor

disorders with DBN comprised Arnold-Chiari malforma-

tion type I (n = 1, F), cerebellar ischemia (n = 1, F),

hereditary spinocerebellar ataxia (n = 1, M), cerebellar

degeneration after lymphomatous meningitis (n = 1, M),

and ‘‘idiopathic cases’’ (n = 12, 5 F), with neither cere-

bellar nor brainstem pathological MRI signs. Three of the

‘‘idiopathic causes’’ were ‘‘pure DBN’’ (3 F), i.e. no other

cerebellar ocular motor disorders were present, and nine

were ‘‘cerebellar DBN’’ (4 F), (for details see Table 1A).

In three patients of the cerebellar group without DBN,

the MRI revealed a microangiopathy of the cerebellum.

None of these patients had high-grade cerebellar atrophy

on MRI as evaluated by the experienced neuroradiologist

(for details see Table 1B).

The study was performed in accordance with the Hel-

sinki II Declaration and approved by the Ethics Committee

of the Medical Faculty of the Munich University Hospital.

Written informed consent was obtained from all par-

ticipants in the study (consent for research).

Recording of vestibular evoked myogenic potentials

The VEMP examination was performed as published

elsewhere [15]. Briefly, oVEMP were recorded with

recording electrode placed over the inferior oblique muscle

bilaterally, approximately 3 mm below the eye and cen-

tered beneath the pupil, a reference electrode on the chin;

and a ground electrode placed under the chin. ‘‘Mini taps’’

were delivered with a Bruel and Kjaer Mini-Shaker Type

4810 at the midline of the hairline, 30 % of the distance

between the inion and nasion. The responses to 50–100

stimuli were averaged. The first negative and positive

peaks of the oVEMP response that occurred between 10

and 20 ms after stimulus onset were designated n10 and

p15, respectively [16, 17]. For cVEMP, supine-positioned

subjects were instructed to lift their heads to actively flex

their neck against gravity during stimulation and recording

to provide tonic background muscle activity. Air-con-

ducted 500-Hz, 100-dB SPL tone bursts were delivered

monaurally via intra-auricular headphones. Cervical

VEMP were recorded from an electrode montage consist-

ing of a recording electrode placed at the midpoint of the

ipsilateral sternocleidomastoid muscle belly, a reference

electrode placed on the manubrium sterni, and a ground

electrode placed on the forehead.

EMG activity was recorded (Nicolet Biomedical Inc,

Madison WI, USA), amplified and bandpass filtered and

the responses to 50–100 stimuli were averaged. The first

positive and negative peaks that occurred between 13 and

23 ms after stimulus onset were designated as p13 and n23,

respectively.

Statistical analysis

The statistical analysis compared the sizes of averaged

oVEMP n10, PP amplitudes and n10 latencies, as well as of

the averaged cVEMP p13 and PP amplitudes between the

cerebellar patients with/without DBN and the same-aged

group of control subjects. The oVEMP amplitudes were

analyzed by repeated-measures ANOVA with one within-

subject factor (SIDE: right/left) and two between-subject

factors (SEX: m/f; GROUP: DBN/control/cerebellar only).
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For post hoc tests, the Scheffe test was used. Statistical

testing was performed using Statistica 6.1 (StatSoft Inc.,

Tulsa, USA). The significance level was set to p = 0.05.

Computational modeling

The mathematical model of the vertical ocular motor sys-

tem published previously [18] was extended to include

oVEMP stimulation. Briefly, the model consists of system-

level differential equations describing the function of var-

ious cortical and subcortical areas involved in eye move-

ment generation. Emphasis is placed on the role of

brainstem and cerebellar areas for slow eye movements, i.e.

the vestibulo-ocular reflex and smooth pursuit. For the

present work, the oVEMP stimulation was done in the

model as a 2-ms pulse of acceleration to the otoliths with

the model’s simulated head position at 60� pitch backward

and gaze direction 45� upward. No other changes were

made to the original model [18]. Two simulations were

performed: one for a healthy subject and another one for a

DBN patient. The DBN patient simulation was performed

as described previously by changing the input–output re-

lationship of the floccular Purkinje cells [18]. To quantify

the simulated oVEMP response, the effect of the accel-

eration pulse on the slow phase velocity was extracted. The

computational simulation was verified analytically (see

‘‘Appendix’’).

Results

The patients’ clinical characteristics are given in Table 1A,

B. In patients with DBN the oVEMP n10 amplitudes were

16.6 ± 7.2 lV and the PP amplitudes, 32.6 ± 11.5 lV. In
patients with cerebellar ocular motor disorders without

DBN the oVEMP n10 amplitudes were 8.8 ± 4.2 lV and

the PP 19.1 ± 8.8 lV. In controls, the oVEMP amplitudes

were 10 ± 2.7 lV and 23 ± 6.1 lV (Table 2).

The oVEMP PP amplitudes showed a significant main

effect for GROUP [F(2,40) = 9.22, p = 0.0005], but no

dependence on SIDE or SEX and no significant interac-

tions. The main effect of GROUP was caused by a dif-

ference between oVEMP amplitudes in DBN and control

subjects (post hoc Scheffe p = 0.019) and a difference

between DBN and cerebellar subjects (p = 0.001), but not

between control and cerebellar subjects (Fig. 1). The n10

amplitude showed a similar result with a main effect of

GROUP [F(2,40) = 10.9, p = 0.0002], again caused by

differences between DBN and the other two groups. The

three-way interaction (SIDExSEXxGROUP) also became

significant [F(2,40) = 3.63, p = 0.035] due to a slight side

difference between male and female participants in the

DBN group.

For the cVEMP, there were no significant differences of

p13 and PP amplitudes between the three groups (p[ 0.05,

Table 3). The correlation between the amplitude and the

latency of n10 oVEMP in all enrolled subjects was not

statistically notable. OVEMP n10 latencies did not sig-

nificantly differ between groups. Age had no significant

influence on the oVEMP and cVEMP amplitudes. If other

pathological vestibular findings in DBN patients are taken

into account, seven DBN patients had a pathological head-

impulse test. No statistically significant relation between

these abnormal findings and the oVEMP testing was ob-

served. The pathophysiologically relevant brainstem path-

ways are depicted in Fig. 2a.

Table 2 Ocular VEMP n10, PP amplitudes and n10 latencies: mean values and standard deviations in downbeat nystagmus (DBN) patients,

healthy controls and in patients with cerebellar ocular motor disorders without DBN

Ocular VEMP DBN Control Cerebellar

N10 ampl. PP ampl. N10 ampl. PP ampl. N10 ampl. PP ampl.

Amplitudes (mean in lV, ±SD) 16.6 ± 7.2* 32.6 ± 11.5* 10 ± 2.7 23 ± 6.1 8.8 ± 4.2 19.1 ± 8.8

Latencies (Mean in ms, ±SD) 11.5 ± 1.9 – 10.9 ± 1.9 – 10.3 ± 1.5 –

* p\ 0.01

Fig. 1 Ocular VEMP peak-to-peak amplitude (PP) for the three

groups of participants. The DBN group shows significantly higher

amplitudes than the two other groups. Error bars denote 95 %

confidence intervals. (*p\ 0.05; **p\ 0.01)
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To evaluate the present results in the framework of the

previously published mathematical model of DBN [18], the

oVEMP stimulation was simulated computationally. The

2-ms acceleration pulses to the utricle, which were

simulated during 60� backward tilt of the head and 45�
upward gaze direction, caused brief deviations in the slow

phase velocity (Fig. 2b). The simulated response amplitude

for a patient with DBN (slow phase velocity 3.0 �/s in

upright position with gaze straight ahead) was 140 % of the

simulated response of a healthy test subject. The compu-

tational simulation was verified analytically (see ‘‘Ap-

pendix’’), confirming that responses in simulated DBN are

larger than in the healthy system.

Discussion

In this study, we found significantly higher oVEMP am-

plitudes in patients with DBN compared to age-matched

controls and patients with cerebellar ocular motor disorders

without DBN; this suggests that the effect was associated

with DBN and thus with impaired pathways for vertical eye

movements rather than with cerebellar disorders in general.

The increased oVEMP amplitudes indicate an enhanced

pass-through of otolith-ocular responses in patients suffer-

ing from DBN. The pitch-dependent hyperactivity of otolith

circuits in DBN was previously reported in humans [4, 5, 7]

as well as in a mouse model of DBN [19]. Our computa-

tional simulation of DBN also supports this interpretation.

Based on these findings, we propose the following

mechanisms:

1. Impairment of vertical ocular motor pathways involv-

ing the floccular lobe leads to DBN [5] and to leakiness

of the vertical oculomotor integrator, which results in

vertical gaze-dependent nystagmus [20].

2. The vertical integrator receives signals from the utricle

via an indirect otolith-ocular pathway, which is

responsible for static otolith-driven changes in eye

position [21, 22].

Table 3 Cervical VEMP n10, PP amplitudes: mean values and standard deviations in downbeat nystagmus (DBN) patients, healthy controls,

and in patients with cerebellar ocular motor disorders without DBN

Cervical VEMP DBN Control Cerebellar

P13 ampl. PP ampl. P13 ampl. PP ampl. P13 ampl. PP ampl.

(Mean in lV, SD) 12 ± 18.6 32 ± 46 22.8 ± 18.2 51.1 ± 37.2 25.8 ± 19.1 60.4 ± 51.2

p[ 0.05

Fig. 2 a Simplified scheme of the proposed neural pathways for

oVEMP. Solid red line depicts the proposed main otolith-ocular reflex

(oVEMP pathway) from utricle to the vestibular nuclei (VN), through

the medial longitudinal fascicle (MLF) to the interstitial nucleus of

Cajal (INC), to the oculomotor nuclei (OMN), and from there to the

extraocular muscles (especially inferior oblique muscle—IOM). The

direct VOR pathway (dashed-dotted line) connects the VN and the

oculomotor nuclei and may also carry utricular information. A

parallel feedback loop (red dashed lines) via the paramedian tract

(PMT) and the cerebellar floccular lobe (FL) controls, among other

functions, VOR adaptation and gaze holding (integrator time

constant). In DBN patients, the loop VN-PMT-FL is disturbed, e.g.,

due to damage of floccular Purkinje cells, which leads to a

disinhibition of floccular target neurons in the VN. This, in turn,

leads to an increased size of oVEMP. For details, see ‘‘Appendix’’.

b The simulated oVEMP response to a impulse-like head tap

transmitted via the utricles and the pathways in Fig. 2a to the

extraocular eye muscles during backward tilt of the head and upward

gaze for a model generating downbeat nystagmus (black line, DBN)

and a ‘healthy’ model (gray line, healthy). In the DBN simulation, the

disturbance of slow phase velocity by otolith input due to oVEMP

stimulation is higher than in the healthy model
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3. The leaky integrator causes increased pass-through of

the utricular signal.

The same cerebellar dysfunction that causes the increase

in utricular responses also explains the well-known strong

dependence of DBN on head position relative to gravity: in

supine position the upward drift and intensity of DBN are

smallest and in prone position the upward drift and DBN

are largest [23]. In line with our theory, cVEMP amplitudes

in DBN did not increase suggesting that vestibulo-collic

reflexes remain unchanged, probably caused by different

pathways conveying the ascending utricular and descend-

ing saccular projections.

However, the upward deviation of the head described in

the mouse model, which indicates hyperactivity also in

vestibulo-collic otolith circuits, is in contrast to our find-

ings of the absent effect on the saccular responses mea-

sured by cVEMP. There may be two reasons for this: first,

due to inter-species differences, the floccular impairment in

mouse may lead to the hyperactivity of the vestibulo-collic

reflex, whereas in humans, it is not the case. Lack of

symptoms in head posture or head movements in DBN

patients supports this hypothesis. Second, the sensitivity of

oVEMP and cVEMP measurements might not be compa-

rable, since oVEMP act in an excitatory fashion, while

cVEMP are inhibitory in nature. In addition, the vestibulo-

collic reflex could be weakened in our elderly study group,

since the cVEMP strongly depend on muscle tone, which

decreases with age [24, 25]. In contrast to air-conducted

cVEMP, the bone-conducted oVEMP elicited by tap

stimuli to the forehead do not significantly decrease with

age [26, 27]. Moreover, the air-conducted cVEMP might

be reduced in patients with mild to moderate conductive

hearing loss due to attenuation in the level of sound

transmitted to the inner ear [28, 29]. Therefore, the higher

reliability of bone-conducted oVEMP may reflect the oto-

lith function better than cVEMP.

In a preceding study investigating the effect of alcohol and

gaze-evoked nystagmus on oVEMP and cVEMP reflexes, a

significant decrease of oVEMP but not cVEMP amplitudes

was found [30]. The authors suggested that there might be a

specific central effect of alcohol, such as modulation of

vestibulo-ocular processes. This is in line with our theory that

central deficits underlying the DBN pathophysiology are re-

sponsible for the increase in oVEMP but not cVEMP reflex.

The result of the head-impulse test in DBN patients was not

related to oVEMP amplitudes. This is expected considering

that DBN is caused by a central rather than a peripheral deficit

and that central processing of horizontal canal and utricular

signals for eye movements is different.

The present study is relevant for understanding the

pathogenesis ofDBNbecause it confirms again the previously

found effect on otolith-ocular pathways, which leads to the

strong dependence of DBN on postural orientation with re-

spect to gravity. Apart from this, it is highly relevant for the

interpretation of abnormal oVEMP in patients. The present

example shows that abnormal oVEMP results do not neces-

sarily reflect a utricular dysfunction but may be caused by

impairment of central pathways carrying completely normal

utricular signals to the eye muscles. In the present case, we

hypothesize that the abnormal oVEMP responses reflect a

specific involvement of otolith-ocular pathways through the

vertical oculomotor integrator, which is impaired due to

malfunction of the floccular lobe, but do not indicate otolith

dysfunction in general.
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Appendix

The previously published model ([18], see their Figure 1)

can be slightly simplified for the present simulations by

setting several inputs to zero.

In particular, for the oVEMP simulation we can neglect

saccadic eye movements, there is no semicircular canal

input, the visual input can be neglected due to the open-

loop character of oVEMP, and the eye plant equation de-

scribing mainly the dynamics of the eyeball is not required,

since oVEMP are measured at the level of the extraocular

eye muscles. Consequently, the remaining equations are-

depends on the PC gain

1. the utricular input u ¼ gu � sin aþ dtap with a being the

pitch angle of the head and dtap the oVEMP stimulus

(‘‘otoliths’’ in [18] Figure 1),

2. the brainstem integrator (‘‘INC’’ in [18] Figure 1) in

Laplace notation (s is the complex frequency) can be

written as ei ¼ �pþ cft � uð Þ � sb�se
1þsbs

with sb and se
being the time constants of brainstem integrator and

eye plant, p being the PC output, and cft a bias term

compensating for the PC resting discharge,

3. the motor command m ¼ �pþ cftð Þ � se þ ei sent to

the eye muscles (input to ‘‘eye plant’’ in [18] Figure 1),

4. the floccular loop yielding the PC output p ¼ g � ve þ
prest (‘‘FL-Purkinje-cells’’ in [18] Figure 1) with
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g being the PC gain factor, ve being the internal

estimate of eye velocity ve ¼ s
1þses

� m, and prest being

the PC resting discharge (normally prest = cft).

Given these equations, we can now solve for the motor

command following an oVEMP tap dtap. First, we set p ¼
g � s

1þses
mþ prest and plug (2) into (3) as

m ¼ ð�pþ cftÞ � se þ ð�pþ cft � uÞ sb�se
1þsbs

. Ignoring the bi-

as terms (assuming they cancel out) we can simplify and

get m ¼ �p � ð1þsesÞsb
1þses

� u sb�se
1�sbs

. Now we can insert p and

solve for m: m ¼ � sb�se
1þsbð1þgÞs u. The oVEMP input to the

utricle can be approximated as impulse with amplitude

d resulting in a muscle response of m ¼ � sb�se
sbð1þgÞ d, which

depends on the PC gain g. As in [18], to simulate healthy

subjects, the gain is set to g = 10, while for an average

DBN patient the gain can be set to about g = 5. If the

oVEMP amplitude d is the same in both healthy subjects

and patients, independently of the other constants we thus

get mDBN ¼ 1þghealthy
1þgDBN

� mhealthy ¼ 1:83 � mhealthy, i.e. a motor

command to the eye muscles which is about 180 % of the

amplitude in DBN patients. Note that this analytical

derivation assumes upright position and gaze straight

ahead. Due to the nonlinear Purkinje cell activation func-

tion, the relation changes to lower values with upward gaze

and pitch-back position.
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