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Abstract
The prevalence of maternal obesity rapidly increases, which represents a major public health concern worldwide. Maternal 
obesity is characteristic by metabolic dysfunction and chronic inflammation. It is associated with health problems in both 
mother and offspring. Increasing evidence indicates that the placenta is an axis connecting maternal obesity with poor out-
comes in the offspring. In this brief review, we have summarized the current data regarding deregulated placental function 
in maternal obesity. The data show that maternal obesity induces numerous placental defects, including lipid and glucose 
metabolism, stress response, inflammation, immune regulation and epigenetics. These placental defects affect each other 
and result in a stressful intrauterine environment, which transduces and mediates the adverse effects of maternal obesity to 
the fetus. Further investigations are required to explore the exact molecular alterations in the placenta in maternal obesity, 
which may pave the way to develop specific interventions for preventing epigenetic and metabolic programming in the fetus.
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Introduction

Obesity, commonly defined by body mass index (BMI), is a 
growing public health concern and its prevalence is stead-
ily increasing worldwide [1, 2]. It is estimated that 2.7 bil-
lion adults will be overweight (BMI 25.0–29.9 kg/m2), 
over one billion will be obese (obesity class I and II, BMI 
30.0–39.9 kg/m2), and 177 million will be extremely obese 
by 2025 (obesity class III, BMI ≥ 40.0 kg/m2) [3, 4]. While 
29.0% of women giving birth had obesity in the United 
States in 2019 [5], 45.7% of women were overweight or 
obese in Europe in 2019 [6]. Maternal obesity, character-
istic by metabolic dysfunction and chronic inflammation, 

negatively affects placental function and fetal development 
[7, 8], resulting in epigenetic and metabolic changes in the 
offspring [9]. From mother’s perspective, maternal obesity 
is associated with multiple pregnancy complications, such 
as spontaneous abortion, Caesarean delivery, and increased 
risk of developing gestational diabetes mellitus (GDM) 
and preeclampsia (PE) [10, 11]. Moreover, mothers with 
obesity are highly associated with hypertension, diabetes, 
and depression in later life [12]. From infant’s perspec-
tive, maternal obesity is linked to small for gestational age 
(SGA) infants, even more frequently, large for gestational 
age (LGA) newborns [10, 12], and stillbirth, particularly 
in males [13]. Importantly, children born to women with 
obesity are at an increased risk of obesity, metabolic disease, 
neuropsychiatric and cognitive disorders, and deregulated 
immunity [14–16]. The association between maternal obe-
sity and health problems in the offspring suggests a trans-
mission of metabolic disease from the mother to the child.

Maternal obesity

Obesity is caused by an imbalance between food intake and 
energy expenditure [17]. Obesity affects many systems and 
organs, such as the adipose tissue, which is an important 
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metabolic and endocrine organ. Adipose tissue produces 
and releases various bioactive factors, including nutrients, 
hormones, adipokines, growth factors, enzymes, and extra-
cellular vesicles that modulate energy balance, glucose and 
lipid homeostasis, tissue repair, inflammatory regulation, 
and immune response [18–21]. Obesity alters the structure, 
composition, regulation, and function of adipose tissue, 
along with many changes in other organs. Maternal obe-
sity is thus associated with deregulated circulating factors, 
particularly metabolites like glucose and lipids, adipokines 
including leptin and adiponectin, growth factors for exam-
ple insulin-like-growth factors (IGFs), and inflammatory 
cytokines such as interleukin 6 (IL6), IL8, tumor necrosis 
factor α (TNFα), monocyte chemoattractant protein 1 (MCP-
1), and C-reactive protein (CRP) [7, 19, 20]. In particular, 
elevated lipids, leptin and IL6 are inflammatory mediators, 
which play important roles in the development of maternal 
obesity and metabolic dysfunction. While many metabolites 
in the maternal circulation, such as glucose and lipids, are 
likely transmitted across the placental barrier, causing fetal 
hyperglycemia and hyperlipidemia and negatively affecting 
fetal development [7], an array of maternal metabolic and 
inflammatory signals directly regulate placental function 
[22, 23]. Maternal metabolites, hormones, growth factors, 
and cytokines that are altered in maternal obesity result in 
an “obesorgenic” metabolic environment, which leads to 
changes in placental function, fetal growth and develop-
ment. Although the molecular mechanisms remain elusive, 
emerging evidence indicates that an impaired placenta, the 
maternal–fetal axis, mediates this metabolic environment 
from mothers with obesity to adverse short- and long-term 
outcomes in the offspring.

The placenta

The placenta, a temporary organ, is the interface between 
the mother and the fetus. It is essential for fetal growth and 
development and a key for a successful pregnancy [24]. The 
human placenta is composed of a fetal part or chorionic plate 
and a maternal part or basal plate. The chorionic plate is cov-
ered by the amnion, which is composed of a single layer of 
stratified epithelium and amniotic mesenchyme, an avascular 
connective tissue [25]. The placenta provides nutrients and 
oxygen to the growing fetus, produces and releases bioac-
tive factors, such as hormones, growth factors, cytokines, 
and microRNAs/long non-coding RNAs/circular RNAs 
(miRNAs/lncRNAs/cirRNAs), and removes waste products 
[24, 26]. Moreover, the placenta serves as a defense front 
against pathogens through multiple mechanisms, including 
triggering interferon type III signaling, miRNA-mediated 
autophagy and the nuclear factor-κB (NF-κB) pathway [26, 
27]. The placenta contains various placental cells including 

trophoblasts, immune cells, stromal cells and endothelial 
cells. Its development depends on the differentiation of 
progenitor cells, termed villous cytotrophoblasts (vCTBs), 
into the syncytiotrophoblast (STB) as well as extravillous 
trophoblasts (EVTs) [28]. While the STB builds the impor-
tant interface between maternal and fetal blood [29], vCTBs 
of the anchoring villi differentiate into invasive interstitial 
EVTs, which invade the maternal decidua and remodel the 
uterine spiral arteries [30]. A variety of molecular signal-
ing pathways, such as Notch and Wnt (wingless/integrated), 
regulates placental development and controls trophoblast 
stemness, differentiation, and function [31].

Interestingly, a large body of epidemiological data sug-
gests that altered placental function increases the risk of obe-
sity, metabolic and cardiovascular diseases in the adult life 
of the offspring [32–34]. In further support, studies in mice 
demonstrate that the placenta directly impacts fetal brain 
development and that changed placental function mediates 
maternal complications to adverse fetal neurodevelopment 
[35–38]. These observations highlight that the placenta is 
the key, determining life-long metabolic and mental health 
and connecting maternal obesity with poor outcomes in the 
offspring.

Changed placenta in maternal obesity

Altered bioactive factors in maternal obesity may directly 
regulate intracellular signaling pathways in trophoblastic 
cells of the placenta. In line with this notion, the STB, the 
transporting epithelium in the placenta, expresses recep-
tors for glucose transporters (GLUTs), insulin, leptin, and 
IGF-1 in its maternal-facing microvillous plasma membrane 
[39–41]. Through these signaling pathways, maternal obe-
sity associated alterations can thus negatively affect the 
placenta in diverse aspects, such as placental metabolism, 
mitochondrial function, inflammation modulation, oxidative 
response and epigenetics. Pathologically, the rate of mater-
nal placental vascular lesions was higher in women with 
obesity than in women with normal weight [42]. Maternal 
obesity was significantly associated with both maternal- and 
fetal overall vascular malperfusion, inflammatory lesions, 
and villitis [43]. As placenta is a fetal tissue, it exhibits sex-
ual dimorphism. Indeed, fetal sex affected significantly the 
effect of maternal obesity on placental inflammatory lesions 
showing an increased incidence rate of chronic villitis and 
fetal thrombosis in female placentas [44]. Studies have fur-
ther revealed distinct sexually dimorphic profiles of gene 
expression in the placenta, particularly, genes responsible 
for immune response and inflammatory regulation [45–49]. 
Early developmental stresses in the placenta are believed to 
be transduced into the offspring through fetal epigenetic and 
metabolic reprogramming [9, 50, 51].
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Deregulated metabolism in the placenta

The placenta maintains high metabolic activity to fulfill its 
roles in providing the fetus with nutrients, hormones and 
oxygen during pregnancy [52]. While circulating lipids are 
elevated during pregnancy in all women, maternal obesity is 
associated with an altered maternal lipid profile: compared 
with control pregnant women, pregnant women with obesity 
displayed lower high-density lipoprotein (HDL) levels in the 
first trimester and higher maternal triglyceride (TG) levels in 
the second and third trimester [53]. In addition, non-esteri-
fied (free) fatty acids (NEFA), hydrolyzed products of TGs, 
were also elevated in maternal plasma throughout gestation 
in women with obesity [53].

Altered metabolism in maternal obesity leads to meta-
bolic deregulation in the placenta. Placental omics studies 
demonstrate that lipid metabolism was altered in the pla-
centa from women with obesity [54–56]. These placentas 
displayed increased lipoprotein lipase activity [57]. The 
expression of genes responsible for lipid transport mecha-
nisms was also deregulated, such as genes encoding fatty 
acid transport protein 2 (FATP2) and FATP4 [58, 59]. This 
leads to changed placental lipid profile in maternal obesity. 
In fact, placentas from women with obesity displayed ele-
vated levels of TGs, free fatty acids (FFAs), NEFAs, and 
cholesterol [8]. The transcriptomic analysis of term pla-
centas from women with obesity further revealed differen-
tial expression of genes associated with lipid metabolism, 
such as decreased DKK1 (Dickkopf homolog 1) [60] and 
ANGPTL4 (angiopoietin-like 4) [61]. In further support, 
the results from placental proteomic analysis were consist-
ent with increased lipid synthesis and altered antioxidant 
capacity in placentas from women with obesity [62]. These 
alterations facilitate placental lipid accumulation, reduce 
lipid transport to the developing fetus, and induce a lipotoxic 
placental environment that associates with cellular stress and 
inflammation. The data strengthen the notion that maternal 
obesity is associated with placental lipotoxicity [63, 64].

Glucose is the primary substrate for placental and fetal 
energy metabolism. To promote placental and fetal glucose 
delivery, pregnancy is accompanied by alterations in mater-
nal glucose metabolism, including insulin resistance, activa-
tion of hepatic glucose production and increased β-cell insu-
lin release with higher plasma C-peptide [65]. Women with 
obesity had 50–60% higher postprandial insulin concentra-
tions than control women in both early and late gestation 
[66]. Women with obesity were more glucose intolerant than 
pregnant women with normal weight, as evidenced by higher 
fasting, 1-h and 2-h glucose levels following an oral glucose 
tolerance test [66]. Glucose transfer to the fetus occurs via 
a concentration gradient, which is mainly mediated by the 
GLUT family. The expression of different isoforms of the 
GLUT transporter was altered by an obesogenic maternal 

environment and these alterations mirrored the trends in 
fetal growth and birth weight at term [67, 68]. These find-
ings underscore the notion that deregulated metabolism of 
maternal obesity leads to deregulated placental metabolism.

Altered immune cells in the placenta

Maternal immunity plays a critical role in pregnancy and the 
development of healthy offspring. Maternal immune cells, 
including uterine macrophages, natural killer cells, dendritic 
cells and mast cells, are present in the placenta [69]. While 
maintaining host defense against pathogens [26], maternal 
immune cells initiate and support implantation, placenta-
tion, and parturition [70]. Maternal obesity enhanced the 
number of maternal macrophages and innate immune cells 
associated with accumulated macrophages in the placental 
villous stroma, promoting inflammation, oxidative stress, 
mitochondrial dysfunction and metabolic deregulation [71, 
72]. In addition, an increased ratio of pro-inflammatory M1 
macrophages versus anti-inflammatory M2 macrophages 
was reported [73]. These macrophages produced pro-
inflammatory cytokines, including IL6, TNFα and MCP-1 
[71, 74, 75], enforcing placental inflammation. Moreover, 
the placenta normally helps to skew the maternal and fetal 
environment toward a  CD4+ helper T cell type-2 (Th2) and 
anti-inflammatory profile, whereas obesity and other stress 
factors create a more CD4 + helper T cell type-1 (Th1) and 
inflammatory gestational environment [76]. Furthermore, 
maternal obesity and obesogenic diets have been associated 
with abnormal immune function in the offspring, including 
decreased response to infection, atopic disease, and asthma 
[77–79].

Inflammatory placenta

Obesity is associated with enhanced inflammation, referred 
to as “metaflammation” for the chronic, low-grade inflam-
matory state [80]. Metaflammation is triggered by metabo-
lites and nutrients that lead to systemic insulin resistance 
[80, 81]. This metaflammation in pregnant women with obe-
sity initiates a cascade of events, leading to an inflammatory 
utero environment.

Indeed, maternal cytokines and adipokines link maternal 
metaflammation to placental function. Similar to maternal 
plasma, the placenta also showed increased levels of inflam-
matory markers, such as IL6, IL8, IL1β, and MCP-1 [81, 
82]. Multiple factors, including lipids [83], oxidized lipids 
[84], reactive oxygen species (ROS) [85], and endotoxin 
[86], stimulate placental inflammation. This cytokine pro-
file is driven by multiple inflammatory pathways, including 
the activation of receptors for advanced glycation end prod-
ucts (RAGEs) [87] and activation of Toll-like receptor 4 
(TLR4) [88]. In turn, these pathways promote NF-κB, c-Jun 
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N-terminal kinase (JNK), and rat sarcoma virus (Ras) signal-
ing, resulting in an increased generation of ROS and secre-
tion of the inflammatory cytokines [89]. Placental inflam-
mation impairs overall placental function. Particularly, early 
inflammation has been reported to affect the developing 
immunophenotypes of fetal immune cells, which is likely 
related to the effects of obesity on epigenetics and the micro-
biome [77, 90, 91].

Stressed placenta

Pregnancy is linked to heightened oxidative stress, partially 
due to the high metabolic demand of the placenta [90]. Mito-
chondria are the major source of ROS under normal physi-
ological conditions. ROS are vital signaling molecules of 
redox-sensitive pathways, including autophagy, cell differen-
tiation, and inflammatory response [92]. ROS triggered the 
expression of vascular endothelial growth factor (VEGF) and 
GLUTs to promote angiogenesis in early pregnancy [93]. 
In contrast, excess ROS generated by mitochondria and/or 
decreased total antioxidant capacity (TAC) were shown to 
disrupt cellular and tissue homeostasis by promoting oxida-
tive stress, damaging proteins, lipids, and nucleic acids [8]. 
Maternal obesity was associated with increased maternal 
ROS, including higher levels of maternal nitric oxide and 
superoxide anions [94, 95]. Moreover, ROS production [72], 
glutathione concentrations and superoxide dismutase (SOD) 
activity [95] in the placenta were reported to be increased 
in maternal obesity, which may impair mitochondrial func-
tion and reduce ATP production [72]. In further support, 
the proteomic signature showed altered antioxidant capacity 
in placentas from women with obesity [62]. Reduced pla-
cental mTOR gene expression and up-regulation of genes 
involved in oxidative stress and mitochondrial function, 
such as increased sirtuin 1 (SIRT1) and uncoupling protein 
2 (UCP2), were reported in maternal obesity [96]. It was 
also revealed that highly increased ROS led to mitochondrial 
dysfunction, placental inflammation and fetal epigenetic 
changes [97, 98].

Inflammation and metabolic dysfunction also increase 
placental endoplasmic reticulum (ER) stress and down-
stream activation of the placental unfolded protein response 
(UPR), which has been extensively reviewed [8]. Along with 
deregulated metabolism, inflammation, immune deregula-
tion, these cellular stresses impair placental function and 
fetal development, which may cause long-term alterations 
in the immune and nervous system of the offspring [70].

Placental epigenetic changes

Altered placental epigenetics, including DNA methylation, 
may mediate adverse outcomes in the offspring [50]. Com-
pared to a plenty of placental epigenetic investigations in 

pregnancy complicated by diabetes, only a smaller propor-
tion of studies focused on epigenetic alterations in pregnancy 
complicated by obesity alone [50]. Nevertheless, differen-
tially-methylated genes, such as ADIPOQ (adiponectin), 
ADIPOR1 (adiponectin receptor 1), LEP (leptin) and LEPR 
(leptin receptor), were reported in placental tissue in mater-
nal obesity [99, 100]. Recently, it has been revealed that 
placental DNA methylation alterations were associated with 
maternal pre-pregnancy BMI and gestational weight gain 
[101]. Maternal obesity is further reported to be linked to 
increased DNA methylation and decreased RNA methylation 
in the human term placenta [102]. Interestingly, based on the 
data derived from ten studies with 2631 mother-child pairs 
from the Pregnancy and Childhood Epigenetics (PACE) con-
sortium, 27 CpG sites were identified to be differentially 
methylated in placental tissue DNA from women with obe-
sity [103]. Moreover, 104 CpG sites annotating for 97 genes 
in the placenta were reported to be differentially methylated 
with gestational weight gain [104]. Particularly, CpG sites 
annotating for FRAT1 (frequently rearranged in advanced 
T cell lymphomas-1), SNX5 (sorting nexin 5) and KCNK3 
(potassium channel subfamily K member 3) genes were cor-
related with an adverse metabolic phenotype in the offspring 
[104]. In sum, these data demonstrate that maternal obesity 
is associated with epigenetic changes in the placenta. More 
studies are needed to further explore the impact of maternal 
obesity on epigenetic alterations in placental tissue as well as 
in various placental cell populations at different gestational 
stages.

Cord blood cell epigenetic alterations

Placental dysfunctions associated with maternal obe-
sity affect each other, resulting in a stressful intrauterine 
environment, which associates with poor outcomes, espe-
cially, with programing the fetus for disease in later life [47, 
105, 106]. Indeed, maternal pre-pregnancy BMI was linked 
to decreased methylation at five CpG sites near the LEP tran-
scription start suggesting an association between maternal 
and fetal obesity [107]. Methylation of serotonin regulat-
ing genes in cord blood cells was correlated with maternal 
metabolic parameters [108]. Moreover, gestational weight 
gain in pregnant women with obesity was associated with 
cord blood cell DNA methylation [109]. Average methyl-
ated cytosine levels in both the CpG islands and promoters 
were shown to be significantly decreased in cord blood from 
overweight and obese groups [110]. Importantly, a longi-
tudinal birth cohort study, which was across a period from 
birth to 18 years, showed a significant connection between 
cord DNA methylation marks and postnatal BMI trajectories 
[111]. These data show that fetal epigenetic alteration is a 
potential underlying mechanism for poor outcomes of the 
offspring.
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Fig. 1  Schematic illustration showing the placenta as an axis linking 
maternal obesity to poor outcomes in the offspring. Maternal obesity, 
associated with deregulated metabolism and inflammation, negatively 
affects placental development and function, evidenced by defected 
metabolism, deregulated immune cells, inflammation, cellular stress, 
changed epigenetics and other unknown aspects. These placental 

defects affect each other and cause a stressful intrauterine environ-
ment, which transduces the effect of maternal obesity to fetal devel-
opment, leading to poor outcomes in the offspring. IGF insulin-like 
growth factor, IL interleukin, TNFα tumor necrosis factor α, MCP-1 
monocyte chemoattractant protein 1, CRP C-reactive protein, ROS 
reactive oxygen species, ER endoplasmic reticulum
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Potential clinical intervention

Restoration of placental function will reduce the adverse 
outcomes caused by maternal obesity. Prior and during 
pregnancy are time windows to prevent the negative con-
sequences of poor in utero environments and to improve 
the long-term outcomes of the mother and the child. It is 
necessary for women of reproductive age to receive educa-
tion about maternal and fetal risks associated with maternal 
obesity. Exercise and lifestyle modifications may positively 
affect maternal and fetal outcomes. In fact, exercise and 
healthy diets during pregnancy were shown to be able to 
influence the offspring’s lean mass and early growth [112]. 
Further potential interventions, including supplementation 
of omega 3 polyunsaturated fatty acids (n-3 LCPUFAs), 
DHA (docosahexaenoic acid), melatonin, or anti-inflam-
matory agents, have been discussed [7]. Activation of the 
adiponectin receptor in the placenta has also been proposed 
to be a promising strategy [7]. This is supported by the 
data from animal experiments showing that normalization 
of maternal adiponectin in obese pregnant mice prevented 
cardiac dysfunction and improved glucose metabolism in the 
adult offspring [113, 114]. Moreover, studies have under-
lined the importance of the gut microbiome in the trans-
mission of the obesity phenotype and dietary interventions 
are thus considered as potential strategy to improve mater-
nal and fetal outcomes [115–117]. Especially, novel anti-
inflammatory diets during pregnancy should be explored 
to prevent metabolic dysfunction in the offspring [118]. In 
addition, vitamin D deficiency has been reported to be par-
tially responsible for placental mitochondrial dysfunction 
and increased inflammation, and its supplementation is thus 
proposed to be beneficial in improving placental function 
[119]. Collectively, although much has been done, it is still 
a long way to go to discover targeted and effective strategies 
to prevent and reduce adverse maternal and fetal outcomes 
induced by maternal obesity.

Conclusion

The prevalence of maternal obesity is rapidly increasing and 
the poor short- and long-term outcomes in both mothers and 
infants represent a major public health problem worldwide. 
In this brief review, we have summarized the data showing 
that maternal obesity associated with deregulated metabo-
lism and metaflammation greatly impairs placental devel-
opment and function, as evidenced by placental defects in 
lipid and glucose metabolism, stress response, inflammation, 
immune regulation and epigenetics (Fig. 1). These defects 
affect each other and result in a stressful intrauterine envi-
ronment, which transduces and mediates the adverse effects 

of maternal obesity to the fetus, leading to poor outcomes 
in the offspring (Fig. 1).

The placenta holds the key to better understand the 
molecular pathophysiology linking maternal obesity to poor 
outcomes. Further investigations are required to explore 
molecular alterations in the placenta in response to mater-
nal obesity. In particular, advanced sequencing approaches 
[120, 121] represent powerful tools to further study placental 
‘omics’ in maternal obesity. The establishment of human 
trophoblast stem cells [122] and placental organoids [123, 
124] also provides novel tools for investigating the impact 
of maternal obesity on placental function. In addition to 
trophoblasts, placental mesenchymal stromal/stem cells 
[125] may also play important roles in mediating the effect 
of maternal obesity on the placenta. Studies employing these 
novel techniques may pave the way for developing specific 
interventions to prevent epigenetic and metabolic program-
ming in the offspring.
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