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Abstract
Purpose Adequate iron transportation from the mother across the placenta is crucial for fetal growthand establishing suf-
ficient iron stores in neonates at birth. The past decade has marked significant discoveries in iron metabolism with the 
identification of new players and mechanisms. Immunohistochemical studies rendered valuable data on the localization of 
substantial iron transporters on placental syncytiotrophoblasts. However, the function and regulation of maternal-placentofetal 
iron transporters and iron handling is still elusive and requires more attention.
Methods A thorough literature review was conducted to gather information about placentaliron transfer, the role of regula-
tors and maintenance of iron homeostasis.
Results The role of classical and new players in maternal-fetal iron transport and the regulation in the placenta has been 
addressed in this review. Animal and human studies have been discussed. The role of placental iron regulation in thalassemia 
and hemochromatosis pregnancies has been reviewed.
Conclusions The current advances that highlight the mechanisms of placental iron regulation and transport in response to 
maternal and fetal signals have been presented.
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Background

Iron is a primary trace element in many biological processes 
and homeostasis of iron is tightly balanced as either overload 
or deficiency has adverse effects. During pregnancy, physi-
ological anemia results from blood volume expansion and 
increased demands from the growing placenta and fetus. To 
accommodate these physiological needs in an early gesta-
tion phase, a pregnant woman requires an increased iron 
supply from stores. But many women enter pregnancy with 
inadequate iron stores. Global estimates show that 33% of 
non-pregnant women, 40% of pregnant women, and 42% 
of children are vulnerable to iron deficiency anemia (IDA) 
[1]. Neurodevelopment deficit, cognitive deficit, delayed 
behavioral and mental development persist among infants 

with IDA [2]. In developing countries, iron deficiency in 
neonates before six months of age indicates that many neo-
nates may not have adequate iron stores at birth [3]. Studies 
on placental iron transport have produced noticeable results 
over the past decade, yet substantive and transformative 
evidence remains elusive. Hence more detailed studies are 
essential to understand the specific pathways and molecular 
mechanisms triggered upon iron depletion and its influence 
on placental iron regulation. This review will discuss how 
iron is trafficked across the placenta and transported to the 
fetus at the mother’s expense and the interplay between iron 
regulators and transporters in the common maternal–pla-
cental–fetal pathway.

Placenta: maternal–fetal interface

The placenta is a vital interface between mother and fetus 
which helps transport nutrients, excretion of fetal wastes, 
prevention of immune rejection, and supports pregnancy by 
hormone secretions [4, 5]. It is one of the first fetal organs 
that develop during the implantation period around 6th day 
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after conception. Cytotrophoblast and multinucleated syncy-
tiotrophoblasts are types of trophoblast cells located among 
mesenchymal cells and vasculature, which collectively form 
the placenta [6]. At the end of the 5th week of conception, 
the developing placenta establishes complete maternal–fetal 
blood circulation and is shown by the developing placenta 
[7]. At the end of the 12th week of conception, the tropho-
blast differentiates and forms a villous tree-like structure 
where the maternal blood flushes into the intervillous space. 
Villous tree comprises floating villi (FV), drifts into inter 
villous space and anchoring villi (AV) towards the endome-
trium. The villous branches bathed in the maternal blood 
provide more prominent space for trans-placental exchange 
via active or passive transport where syncytiotrophoblasts 
lines villi. From this period onwards, the placenta estab-
lishes an exchange of nutrients, gases, and waste products 
between mother and fetus [7]. The placenta takes up an 
adaptive response in regulating rates of nutrients to be trans-
ported [8]. A brief illustration of the placental development 
is depicted in Fig. 1.

Syncytiotrophoblasts consist of two plasma membranes: 
microvillus plasma membrane inclined towards maternal 
circulation and basal plasma membrane facing the stromal 
core of the villi. The stromal core comprises fetal blood 
vessels separated by fetal endothelial cells and other cell 
types, including macrophages and fibroblasts. Nutrients pass 
through the microvillous plasma membrane and enter fetal 
circulation after crossing fetal endothelial cells and villous 
stroma [9]. Several transporters expressed in these plasma 

membranes regulate maternal–fetal signals. A study on the 
systems biology approach illustrated the functional gene net-
works of the placenta, which could help uncover the molecu-
lar underpinnings of placental dysfunction with fetal growth 
abnormalities [10]. Embryonically lethal mouse cell lines 
derived from CRISPR/Cas9-mediated knockout of tropho-
blast stem cell line yielded mutant embryos due to molecular 
defects in placental morphology [11]. These findings suggest 
that delineating the placenta function helps to understand its 
association with maternal function and fetal development.

Iron: primary nutrient in pregnancy

Elemental iron (Fe) is essential for many biological pro-
cesses where it acts as a cofactor for numerous enzymes 
and other molecules. Dietary iron absorption takes place 
in the duodenum (1–2 mg/day), where iron is stored in a 
ferritin reservoir and transported to bone marrow (eryth-
ropoiesis), liver (iron storage), reticuloendothelial spleen 
(iron recycling), and other tissues. Systemic iron homeo-
stasis is tightly regulated by hepcidin, a master regulator 
synthesized in the liver [12].

Iron has an essential part in placental–fetal development 
and fetal survival. Failing to meet the demands of such 
physiological adaptation causes adverse outcomes such as 
premature birth, low birth weight, cognitive abnormalities 
in the offspring, and risk of maternal death. Hence, opti-
mal iron availability is crucial and needs to be maintained 

Fig. 1  Schematic representation of placental development: Blastocyst 
implants inside maternal uterus endometrium and its development 
progress until it reaches the basement membrane. Inner cell mass of 
blastocyst develops into yolk sac protected by the amniotic sac and 
chorionic cavity, which allows gas exchange. Trophoblasts (outer 
layer of blastocyst) proliferate and differentiate into villous cytotroph-
oblasts, which develop into syncytiotrophoblasts (outer cellular layer) 

and extravillous cytotrophoblasts (inner cellular layer). Spiral arteri-
oles erode the uterine wall, maternal arteries and enter the intervil-
lous space. The villi-like structures are bathed in maternal blood and 
provide ample space for trans-placental exchange. Fetal and maternal 
vascularization completes within early placental development (20th 
day of conception). Villous branches continue to grow along the 
expanding intervillous space until the fourth month of gestation
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throughout the gestational period [13]. At birth, the neo-
nate body comprises 1 g of iron derived from the mother, 
of which 600 mg Fe is from maternal diet and menstrual 
cessation, and around 400 mg Fe comes from maternal 
iron stores [14]. However, the mechanism of iron mobili-
zation towards the fetus and iron balance between mother 
and fetus is not well understood.

Iron demand in pregnancy

Throughout the gestational period, demand for iron is not 
evenly distributed as there is an increased iron requirement 
during the second and third trimesters [15]. Bothwell et al. 
estimated a total need of around 1190 mg Fe during the 
gestational period as it is necessary for the development of 
the placental–fetal compartment (360 mg), erythrocyte mass 
expansion (450 mg), basal losses (230 mg), and compensate 
the maternal iron loss incurred during delivery (150 mg) 
[15]. In the first trimester, demand for iron is ~ 0.56 mg/d 
as menstruation stops and gradually elevates to 4 mg/d and 
6 mg/d in subsequent trimesters, respectively [16]. During 
the 2nd and 3rd trimesters, maternal iron stores are depleted 
to accommodate fetal growth and survival. Nearly 20% of 
pregnant women have around 500 mg of iron reserve, which 
is essential for pregnancy. In contrast, 40% of women of 
reproductive age proceed to gestation with depleted iron 
stores [17].

Response to iron supplementation

The World Health Organization (WHO) has suggested the 
supplementation of 30–60 mg of iron for all reproductive-
aged women in all countries. In high-risk populations, 
prophylaxis for IDA was recommended at a dose of 120 
mg/day of elemental iron till hemoglobin level reaches the 
expected value, after which a regular dose of 30 mg/day was 
prescribed to prevent anemia [18]. Based on data, 30 mg/day 
of elemental iron ameliorates maternal iron deficiency and 
protects their neonates [19]. In contrast, some studies have 
reported poor outcomes, including no improvement in iron 
status, increased oxidative stress, gastrointestinal side effects 
in higher dosage of iron supplementation [20, 21]

WHO conducted a study trial in India revealed that 25% 
of pregnant women continued to be anemic despite iron 
supplementation and concluded that iron dosage was not 
influencing anemia [22]. Data from a national family health 
survey in India (1998–2016) showed only 30% of pregnant 
women had responded to iron-folic acid supplementation 
[23]. Thus, anemia remains a severe health problem in 

pregnant women despite several measures taken over the 
last three decades [24].

Iron status during pregnancy

One of the primary maternal adaptations during pregnancy 
is accelerated erythropoiesis [25]. Erythropoiesis expan-
sion causes an increase in red blood cell mass and plasma 
volume during the second and third trimesters and peaks at 
term owing to physiological anemia [26]. Maternal iron sta-
tus indicators such as hemoglobin(Hb), hematocrit (HCT), 
serum ferritin (SF), and serum soluble transferrin receptor 
(sTfR) were commonly used for evaluating the characteristic 
changes of iron status occurred due to physiologic anemia 
[27].

IDA is defined as hemoglobin < 11 g/dL or hematocrit < 
33% and serum ferritin < 12 µg/L, respectively [28]. Most 
often, hemoglobin and hematocrit are used as indicators 
for anemia in pregnancy [28, 29]. Besides Hb/HCT values, 
specific indicators such as SF act as sensitive markers for 
maternal and fetal iron status; sTfR identifies iron demand in 
cellular iron homeostasis [30]. During the gestational period, 
sTfR concentration remains constant in the first trimester 
and gradually increases during the second and third trimes-
ters [31]. Hepcidin, a systemic regulator of iron homeostasis, 
may act as a diagnostic marker for iron deficiency in preg-
nant women. Longitudinal studies have depicted lower hep-
cidin levels in pregnancy were likely to promote increased 
iron absorption [29]. A recent study detected hepcidin range 
of 0.49–0.76  ng/ml in iron-deficient pregnant women with 
good sensitivity (80.6–83.3%) and specificity (76.2%) in 
diagnosing IDA [32]. Thus, pregnant women with lower 
hepcidin level could transfer higher amount of maternal iron 
to the fetus, suggesting that maternal hepcidin could acts as 
better indicator of bioavailability of iron to fetus. Therefore, 
serum hepcidin would be a better indicator for diagnosis 
of IDA in pregnancy as compared to other iron indicators.

Iron regulation in pregnancy

Cellular iron regulation

Iron homeostasis at cellular levels is regulated by a post-
transcriptional mechanism that controls the production of 
critical proteins involved in iron uptake, storage, and release 
(Fig 2). Iron-regulatory proteins IRP1 and IRP2 are two 
major proteins in the post-transcriptional regulation of cel-
lular iron homeostasis. At low iron levels, IRPs binds to 
iron responsive element (IREs) located at the 5ʹ untranslated 
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region (UTR) of RNA stem loops of ferritin FT (iron stor-
age)/ ferroportin FPN (iron exporter) and inhibits their trans-
lation. In contrast, 3ʹ UTR binding to transferrin receptor 1 
(TFR1) mRNA and divalent metal transporter 1 (DMT1) 
(iron uptake) stabilizes them [33]. Because of cellular iron 
deficiency, increased expression of TFR1 and reduced fer-
ritin allows more iron acquisition and mobilization from the 
iron stores. Whereas at high iron levels, IRPs do not bind 
to IREs, causing increased ferritin and ferroportin synthesis 
and degradation of TFR1 and DMT1 [34].

To examine the association of IRPs with placental iron 
transporters such as TFR1, FPN and FT, Bradley and co-
workers analyzed 22 pregnant women's placental tissues 
at different gestational ages [35]. They demonstrated that 
IRP1 and IRP2 activity is present throughout gestation and 
responds to fetal iron status. IRP1 activity was the mainstay 
for post-transcriptional regulation of FT and FPN in the pla-
centa [35]. Chong’s immunohistochemical study exhibited 
isoforms of DMT1 such as DMT1A containing IRE in its 
3′ UTR and DMT1B without IRE. DMT1 isoforms were 
expressed in syncytiotrophoblasts and were responsible for 
cellular iron transport in the placenta [36]. A recent study 
using IRP1 knockout iron-deficient mice illustrated that pla-
cental iron regulators FPN, and transferrin receptor (TFRC) 

function is regulated by IRP1 activity in response to mater-
nal iron deficiency. Thus placental iron regulation is medi-
ated by IRP1 and the expression of placental IRP2 is much 
lower than the IRP1 [37].

Systemic iron regulation

Hepcidin, a small peptide hormone, is the systemic regu-
lator of iron absorption, binds to ferroportin and regulates 
iron entry into the circulation [38]. In the liver, hepcidin 
synthesis is increased in iron overload or inflammation and 
suppressed in iron-deficient or hypoxic conditions. Hepcidin 
in circulation modulates iron absorption and mobilization 
from iron stores [39].

Insights into hepcidin in pregnancy

Hepcidin concentration decreases throughout the gesta-
tional period with increased iron absorption from diet and 
mobilization from maternal iron stores towards maternal 
bone marrow for increased erythropoiesis [40]. Studies 
have reported that hepcidin regulates the iron endowment 
to placental–fetal unit [41, 42]. Using choriocarcinoma cell 

Fig. 2  Cellular iron regulation under physiological condition: Iron 
acquisition depends on endocytosis of diferric transferrin (TF-Fe 
(III)2) through transferrin receptor (TFR1) on the cell surface. Acidi-
fied endosome causes the release of  Fe3+ (blue balls) from TF.  Fe3+ 
is transported by divalent metal transporter 1 (DMT1) into the cyto-
plasm after  Fe3+ is reduced to  Fe2+ (yellow balls) by STEAP3 (trans-
membrane epithelial antigen of prostate). Iron-regulatory proteins 1/2 
(IRP 1/2) sense the amount of iron present in the cytosol and regu-
late post-transcriptional modification of iron uptake proteins (DMT1, 

TFR1), iron storage protein ferritin (FT), and iron exporter ferropor-
tin (FPN). In iron-deficient cells, IRPs stabilize mRNAs of DMT1 
and TFR1 by binding to 3′ UTR (untranslated region) iron responsive 
element (IRE) and allowing increased iron uptake. IRPs bind to 5′. 
UTR IREs in FT and FPN mRNAs and represses their translation, 
reducing iron storage and export. In iron replete cells, IRPs do not 
bind to IREs and increase FT and FPN synthesis while promoting 
degradation of TFR1 and DMT1
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line, Jeg 3, as invitro trophoblast model, exogenous hepci-
din treatment resulted in decreased expression of ferroportin 
and transferrin receptor in trophoblast cells [43]. In addition 
to the effects of maternal hepcidin on iron regulation, fetal 
hepcidin synthesized by the fetal liver also contributes to the 
regulation of placental iron transfer towards fetal circulation 
by regulating the expression of placental transferrin recep-
tor [44]. In a rat model study, fetal hepcidin levels became 
much lower in an iron-deficient fetus, where fetal liver iron 
levels strongly correlated with placental transferrin receptor 
(TFRC) expression, indicating the regulation of placental 
iron absorption towards fetus by fetal hepcidin [45]. Hence, 
the question arises of how fetal hepcidin regulates placental 
TFRC levels. On the other side, studies have shown that 
fetal hepcidin regulates placental ferroportin expressed on 
the basolateral side of syncytiotrophoblasts. Together these 
data provide evidence that fetal hepcidin can have direct 
influence at the rate of iron delivered to the fetus [27, 44]. In 
addition, transgenic overexpression of fetal hepcidin in mice 
had severe iron deficiency and led to spontaneous abortion in 
utero [46]. Besides in vivo studies have observed lower fetal 
hepcidin levels in normal pregnancy [45, 47].

In humans, hepcidin levels have been measured only in 
cord blood at delivery, where fetal hepcidin levels were sig-
nificantly higher than maternal hepcidin [14, 42, 48]. Basu 
et al. observed a significant association between maternal 
and cord blood hepcidin concentration (r = 0.717, p ≤ 
0.001) [48]. In contrast, other studies have shown no asso-
ciation of cord blood hepcidin with maternal hepcidin and 
iron status [14, 42, 49]. Of interest, the authors studied 
the conceptual link between maternal and fetal iron status 
and found the association of maternal hepcidin with iron 
parameters of neonates [14, 50]. In a study by Young, Grif-
fin et al., nineteen pregnant women had ingested intrinsi-
cally labeled non-heme and heme iron sources, where iron 
status was inversely correlated with maternal hepcidin and 
directly associated with neonatal hemoglobin [51]. Thus, 
downregulation of maternal hepcidin increases iron absorp-
tion and direct delivery to the fetus, establishing adequate 
iron stores in neonates at birth.

Erythroid derived cytokines like growth differentia-
tion factor 15 (GDF15), twisted gastrulation homolog 1 
(TWSG1) and erythroferrone (ERFE) are considered hep-
cidin suppressors in the setting of increased erythropoiesis 
[52–54]. The suppressive effect of these erythroid regula-
tors on hepcidin regulation during pregnancy needs to be 
studied extensively. A study on possible hepcidin inhibitors 
in healthy pregnant women suggested that maternal iron 
stores, soluble hemojuvelin, and erythropoietin (EPO) sup-
press hepcidin transcription while GDF15 has no suppres-
sive effects on hepcidin [55].

Animal and human studies have recognized erythrofer-
rone as the main erythroid regulator for hepatocyte hepcidin 

suppression. ERFE secreted by erythroblasts specifically in 
response to erythropoietin and it helps in accumulating iron 
for erythropoiesis [56]. Delany et al. have shown increased 
ERFE levels in neonates in comparison to mother. In these 
neonates, ERFE increased in response to erythropoietin and 
had inverse association with cord blood hepcidin. Besides 
neonatal hepcidin and the hepcidin/erythropoietin ratio were 
the strongest determinants of neonatal Fe and hematologi-
cal status [57]. Data from current studies on erythroferrone, 
erythropoietin and hepcidin in pregnant women at mid-
gestation and delivery have not found significant associa-
tion between maternal hepcidin and erythroferrone [57–59]. 
These data suggest that erythroferrone might not be a main 
driver for hepcidin suppression.

Hormonal regulation of iron metabolism

Several hormones act as checkpoints for placentation and 
fetal progression during pregnancy. The chief hormones 
produced during pregnancy are estrogen and progesterone, 
where estrogen and its relation to iron status were primarily 
studied in the non-pregnant state [60]. In pregnancy, estro-
gen is produced in the placenta at the rate of 100–120 mg/24 
h, which enables nutrient transfer and helps in vasculariza-
tion [61]. In vivo studies have reported EPO production was 
inhibited by increased estrogen levels in pregnant mice mod-
els [62]. Horiguchi et al. described the suppressive effect of 
17β-estradiol (E2) administration on EPO induction in iron-
deficient pregnant rats and the subsequent restoring effect of 
EPO during iron availability [63]. Endogenous 17β-estradiol 
also inhibits hepatic hepcidin expression by binding to estro-
gen responsive element (ERE) at the promoter region of the 
hepcidin gene and increases iron absorption [60, 64, 65].

Cortisol is a stress hormone released by adrenal glands in 
the anabolic phase of pregnancy [66]. In young guinea pigs, 
cortisol levels were increased in response to maternal iron 
deficiency owing to increased stress levels [66]. Cortisol 
could be used as a stress biomarker to measure maternal iron 
deficiency's impact.

Iron trafficking in placenta

Fetal iron source

The transition of iron to the fetus is pooled from sources 
such as maternal dietary and supplementary iron and mater-
nal iron stores. Chang Cao reported that a pregnant woman 
consumes bioavailable iron around ~13 mg/day at the onset 
of pregnancy, of which ~12 mg was non-heme and ~1mg 
heme iron [67]. Nearly 3–4 mg of dietary iron is loaded 
onto transferrin. Erythrophagocytosis of senescent red blood 
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cells (RBC) affords ten times more iron into the system. In 
extravascular RBC catabolism, approximately 20 mg of Fe 
is released into the plasma iron pool. Besides, 1–2 mg of Fe 
is discharged by intravascular RBC catabolism as heme and 
Hb and transported towards the placenta [68].

The placenta employs a distinct cellular iron homeosta-
sis pattern that exclusively responds to systemic and local 
maternofetal regulatory signals [8]. Restricted rates of iron 
uptake are facilitated by syncytiotrophoblasts and delivered 
to the fetus to avoid the excess iron transfer. Earlier stud-
ies had suggested that iron flows unidirectionally between 
maternal and fetal circulation [69, 70].

Non‑heme iron transport

From maternal circulation, non-heme iron acquisition takes 
place through the diferric transferrin (TF-Fe (III)2) bound 
transferrin receptor 1 (TFR1) complex located on the apical 
side of syncytiotrophoblasts. Early kinetic studies on the 
term human placenta demonstrated the higher expression 
of TF and TFR1 in the placental microvillus surface, which 
confirms increased iron absorption in the placental apical 
membrane facing the maternal side [71, 72].

Unlike human placenta, mouse has two syncytiotropho-
blasts layers I and II. Transferrin receptor localized to the 
intracellular vesicles in syncytiotrophoblast I was involved 
in iron acquisition from maternally injected transferrin iron, 
suggesting iron trafficking takes place in different placental 
cells. And it is obscure whether transferrin bound iron trav-
els from syncytiotrophoblast I to II [73].

After non-heme iron uptake, acidification of the endocy-
tosed vesicle assists in the detachment of iron from trans-
ferrin. Here iron is reduced to the ferrous state by ferric 
reductases of Six-Transmembrane Epithelial Antigen of 
Prostate (STEAP) family members. Notably, STEAP 3, 4 
are expressed in the placenta [74, 75]. Further, the reduced 
form of iron is egressed into the cytoplasm by potential 
transporters such as DMT1 and Zrt and Irt-like protein 14 
(ZIP14) [76]. In the cytoplasm, iron is either incorporated 
into ferritin, which is strongly expressed in stroma [77] or 
it is transported to the basal side of syncytiotrophoblasts 
through the concerted action of FPN, where FPN acts as an 
iron efflux pump. Subcellular location of FPN in mouse pla-
centa was recently found to be localized to the basal mem-
brane of syncytiotrophoblast II and not present in the fetal 
endothelium [73].

Ferroxidases such as zyklopen (Zp), hephaestin (HEPH), 
ceruloplasmin (Cp) are localized to the placenta. Hephaestin 
expression in placenta was detected in BeWo cell line [78] 
and mice model lacking hephaestin were survived, indicating 
absence of its role in placental iron oxidation. Recent investi-
gation on hephaestin knockout mice had fetus with abnormal 

red cell indices causing fetal anemia. Placental HEPH gene 
disruption in this mice model had uneven distribution of iron 
to the fetus, implying essential role of hephaestin in correct 
distribution of iron and not require for the placental iron 
export [79]. Earlier animal study observed ceruloplasmin in 
fetal circulation in early gestation and increase in Cp levels 
as gestation advances [80]. Using zyklopen knockout mice, 
author demonstrated that Zp localizes to maternal decidua 
and not required for the placental iron transfer, rather it is 
involved in the placental development [81]. Collectively 
these data implies that unknown ferroxidase involve in iron 
oxidization in the placenta.

Fe transport across fetal capillary endothelium needs to 
be characterized, while there is some evidence of transferrin 
receptor expression in fetal capillary endothelium, suggest-
ing the possibility of endocytosis activity in iron transfer 
[82]. The probable mechanism of iron transport across the 
placenta is depicted in Fig. 3.

Gambling and his colleagues demonstrated the rate of 
iron transfer using a rat model. They suggested that preg-
nant rats up to 12.5 days of gestation could maintain their 
hematocrits despite being iron depleted for about five weeks. 
However, in the second half of pregnancy, hematocrit 
became low to compensate for high fetal demand. Fetal iron 
levels were shown to regulate placental transferrin receptor 
and maternal hepcidin levels, thereby determining the iron 
supply rate to the fetus [45].

Heme iron transport

Until now, sources have not provided clear evidence on 
whether transferrin bound iron is solely responsible for the 
fetal iron transfer. In an animal study, despite transferrin 
receptor allele (TfR1) disruption in mice causing defective 
erythropoiesis in embryos, TfR1-/- embryos were able to 
generate substantial red blood cells, which suggests that 
an alternative iron uptake mechanism could occur in early 
embryogenesis. Total deletion of TfR1 in the placenta could 
solve this controversy [83]. Nevertheless, the hemochorial 
placenta highly expresses heme transporters, including low 
density lipoprotein receptor related protein 1 (LRP1), Felin 
Leukemic virus subgroup C receptor 1 (FLVCR1), and pro-
ton coupled folate transporter (PCFT) also known as heme 
carrier protein 1 (HCP1).

Besides the placental lipid transport, LRP1 is involved 
in heme uptake from maternal circulation [84]. In systemic 
heme recycling, LRP1 is identified as a primary receptor 
of the heme–hemopexin complex, where plasma protein 
hemopexin (Hx) has a higher affinity for heme and medi-
ates heme delivery to liver storage. Consistent findings 
revealed that an increased number of LRP1 in hepatoma 
cells of iron deprived mice had increased heme iron 
uptake. In iron-deficient conditions, a similar fashion of 
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heme uptake was noticed in the placenta favoring the fetal 
iron demand [85]. Besides FLVCR1, a heme exporter that 
regulates intracellular heme content, and PCFT, a folate 
transporter engaged in intestinal heme absorption, could 
be utilized for placental iron transport [86]. Association 
of LRP1 and FLVCR1 with serum Hx concentration in 
57 pregnant women have confirmed that placental heme 
uptake is mediated by LRP1 and exported via FLVCR1. 
These findings suggest that heme iron transporters co-ordi-
nately regulate heme iron clearance to prevent the piling of 
intracellular heme [87]. Another heme transporter, heme 
oxygenase 1 (HO-1) was detected in trophoblast cells in 
first trimester and increases, as pregnancy progresses. It 
was speculated that HO-1 has a role in regulating intracel-
lular iron levels by increasing iron export to fetal side via 

ferroportin. This relationship was confirmed in the human 
placenta with fetal death (miscarriage) in first and second 
trimester, where ratio of HO-1 with FPN-1 was signifi-
cantly elevated [88].

Coordinated regulation of heme and non-heme trans-
porters with maternal iron status was significantly higher in 
iron-deficient pregnant women [89]. Furthermore, studying 
the association of heme transporters with fetal iron demand 
would help to understand the rate of iron utilized in placental 
iron transfer.

NTBI transport

Non-transferrin bound iron (NTBI) is another form of iron 
species that exists in circulation when transferrin saturation 

Fig. 3  Iron trafficking in the placenta: Maternal diferric transferrin 
(TF-Fe (III)2) binds to the transferrin receptor (TFR1) present on the 
apical plasma membrane of syncytiotrophoblasts and gets internal-
ized by endocytosis. In acidified endosomes, ferric iron is dissociated 
from the TF-TFR1 complex and reduced to the ferrous state by fer-
rireductase STEAP3 (transmembrane epithelial antigen of prostate). 
Then ferrous iron is exported into the cytoplasm by DMT1 (Diva-
lent metal transporter 1) or ZIP 14 or ZIP 8 (Zrt and Irt-like protein). 

Maternal heme is bound to hemopexin and scavenged via placental 
LRP1-mediated endocytosis. Heme iron is freed from hemopexin in 
the lysosome. It is exported to the maternal circulation via FLVCR1 
or degraded by heme oxygenase to release iron into the labile iron 
pool (LIP). LIP incorporates  Fe2+ into the ferritin reservoir or iron 
efflux from syncytiotrophoblasts via ferroportin (FPN). Released  Fe2+ 
is oxidized by unknown ferroxidase and exported into the fetal circu-
lation and transported possibly by fetal transferrin (TF) to the fetus
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and is not commonly present in the serum of healthy subjects 
[90]. Several authors reported that newborns were the most 
vulnerable to the disorders caused by NTBI [91, 92]. Higher 
NTBI concentration was detected in cord blood of newborns 
with central nervous damage and premature infants. Interest-
ingly, a study using high performance liquid chromatography 
(HPLC) method found the levels of NTBI ranging from 1.6 
to 9.8µM in human term placenta [91]. Consistency with this 
finding, a first-trimester gestational sac survey confirmed 
the presence of NTBI in fetal circulation, where transferrin 
saturation was elevated [93]. Reinforcing the dependence of 
the fetus on NTBI, several in vivo studies reported that TfR1 
deleted mice were born alive despite having severe anemia, 
suggesting NTBI could be a potential source of iron for the 
fetus [94, 95]. Additionally, ZIP 8 and ZIP 14, zinc trans-
porters belonging to the solute carrier family 39A, enable 
the transport of non-transferrin and transferrin bound iron 
in the mouse placenta [96]. Nevertheless, the precise con-
tribution of NTBI to fetal development in normal and com-
plicated pregnancies would help in understanding placental 
iron metabolism.

Utilization of iron on fetal side

Many studies have strongly proposed that placental FPN is 
mainly involved in exporting iron into the fetal circulation 
[97, 98]. A complete FPN knockout in mice was embryoni-
cally lethal, whereas the selective inactivation of FPN in all 
tissues except the placenta has spared embryonic develop-
ment and birth [97, 98]. In a recent study, Cao et al. devel-
oped mouse model using CRISPR/Cas9 for trophoblast sub-
type (syncytin b (Synb) Cre line (SynbCre) mice), targeting 
syncytiotrophoblast facing towards fetal side; demonstrated 
that conditional knockout of placental Fpn1 in late gestation 
was embryonically fatal [99]. Collectively these data suggest 
essential role of ferroportin in placental iron transfer.

Whether the exported iron via FPN is loaded onto trans-
ferrin or unknown transporter remains a mystery. Direct 
transportation of NTBI to fetal circulation is still not eluci-
dated [94]. Ganz et al. reported that fetal hepcidin regulates 
maternal iron transport towards fetal circulation [100]. In 
affirmation, rat model studies have evidenced that fetal liver 
iron has a physiological relationship with maternal transfer-
rin receptor expression [45]. In addition, overexpressed fetal 
hepcidin in transgenic mice regulated placental ferroportin 
levels and increased iron export into the fetal circulation 
[50]. Thus, the fetal liver could control the maternal iron 
supply to the fetus.

Interestingly, Gunshin and his group developed a 
SLC11A2-/- (Solute carrier family 11, member 2 or DMT1) 
mice model and demonstrated that neonates of knockout 
mice had excess liver iron stores at birth and regular iron 
stores even in the absence of SLC11A2. Suggesting that fetal 

SLC11A2 is indispensable for iron acquisition after birth but 
not required for placental iron transfer [101]. Fundamental 
questions remain regarding different forms of iron species 
across the fetal endothelium and its regulation by fetal iron 
regulators.

Placental iron transport in dysregulated iron 
homeostasis

Many pregnant women in developing countries develop IDA 
during gestation, a significant public health concern [18]. 
During pregnancy, RBC mass expansion and placenta–fetal 
growth and development impose primary demand for iron 
from the mother; when the requirement is not met, it results 
in anemia due to iron deficiency [15]. Maternal iron defi-
ciency causes a severe risk of anemia and affects the devel-
oping fetus. In a longitudinal study of 225 pregnant women, 
iron-deficient pregnant women had a significant association 
of maternal iron status indicators with placental heme and 
non-heme transporters, indicating increased iron transfer 
from mother to fetus [89]. Decreased iron stores and high 
transferrin receptor levels in pregnant women at mid-gesta-
tion were consistently related to the abundance of placental 
TFR1. In addition, the fetal iron stores indicated by cord 
blood ferritin levels were negatively associated with placen-
tal FLVCR1 expression [89]. Data suggest that the fetus gets 
priority according to the hierarchical usage of iron, but how 
the exact mechanism of this priority is regulated remains 
unclear.

Gestational diabetes mellitus (GDM) is another common 
disorder in pregnancy caused by glucose intolerance in the 
second and third trimester [102]. Hemoglobin and iron levels 
are higher in GDM pregnant women than in healthy pregnant 
controls [103]. A strong positive relationship between ferri-
tin levels and GDM in pregnant women has also been shown. 
[103–105]. In another study, elevated ferritin [Ferritin—94.5 
(67.9–133.5) pmol/l] and hepcidin levels [6.4 (4.6–8.3) ng/
ml] had a significant association with increased GDM risk 
at the second trimester (95% CI: 1.07, 6.36) [105]. Further, 
FPN expression was higher in GDM pregnant women, while 
hepcidin expression was lower, indicating an active transport 
of iron to the fetus in GDM pregnant women compared to 
normal [106]. Thus, the placenta dynamically participates 
in the surplus amount of iron transfer to the fetus from iron 
overloaded GDM mother. However, detailed research is 
required to predict iron status in the fetus by determining 
fetal iron parameters in GDM pregnant women.

Iron overload was observed in pregnant women with 
hereditary hemochromatosis (HH). HH patients carry 
a mutation in the homeostatic iron regulator (HFE) gene 
involved in the hepcidin transcription. Pregnant women with 
HH had higher ferritin levels than their normal counterparts 
(Table 1) [107]. Thus far, no studies have assessed hepcidin 
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levels in HH pregnant women. In a single case study on 
HH pregnant women, the fetus had increased ferritin levels 
(250µg/L) and transferrin saturation (88%) [108]. Nonethe-
less, the exact mechanism of iron regulation in HH pregnant 
women and their fetuses remains speculative.

Neonatal hemochromatosis is characterized by fetal liver 
cirrhosis and marked by increased expression of TFR1, 
transferrin, hepcidin, ferritin, and DMT1 in microvilli sur-
face and cytoplasm of syncytiotrophoblasts [109, 110]. 
Decreased fetal hepcidin levels are observed in this rare neo-
natal disorder. To counterbalance fetal hepcidin deficiency, 
ferroportin was sustained on the surface of syncytiotropho-
blasts and thereby helps in iron transfer from mother to fetus 
at a higher level.

Yet another iron disorder is beta thalassemia major and 
intermedia marked by maternal iron overload secondary to 
stress erythropoiesis [111]. The absence or decreased pro-
duction of hemoglobin tetramer beta globin chains causes 
beta thalassemia (BT). BT is characterized by ineffective 
erythropoiesis, splenomegaly, extramedullary expansion, 
apoptosis of erythroid precursors, and shortened mature 
RBC survival [112].

Two cases of pregnant women with β-thalassemia major 
and intermedia had 50% iron deposition in placental villi 
at the 38th gestational week [113]. In another case report 
on neonates born to β-thalassemia major pregnant women, 
the fetus had lower ferritin and serum iron levels compared 
to maternal iron indicators [114]. This suggests that neo-
nates born to thalassemic women were not affected by iron 
overload in mothers. In thirty-six non-transfusion dependent 
beta thalassemic pregnant women, ferritin levels were not 
exacerbated at pre and post pregnancy (409.35 ug/L and 
418.18 ug/L, respectively), and they had successful delivery 
[115]. Ferritin (p = 0.0137) and liver iron levels (p = 0.006) 
increased in the third trimester in eleven pregnant women 
with β-thalassemia major who received chelation therapy 
either before or during pregnancy, and the iron levels were 
monitored using MRI (Magnetic resonance) [116]. Sub-
stantially, iron overload in beta thalassemia might result in 
maternal and fetal complications [116]. In contrast to GDM 
and HH, the amount of iron transferred from beta thalas-
semic mother to fetus is not in excess despite the placenta 
loaded with iron.

Although iron deficiency or iron overload has been 
extensively studied in the above disorders, a more detailed 
understanding of maternal and fetal signaling is needed to 
minimize iron dysregulation. Fetal iron homeostasis in these 
high-risk pregnant women is unexplored so far. Identifying 
essential iron regulatory genes associated with these disor-
ders would substantially prevent adverse outcomes in the 
mother and the fetus.

Conclusion and future directions

The placental iron trafficking mechanisms and regulation 
from the studies reported so far have critically elucidated 
factors, including hepcidin, DMT1, and FPN. During the 
pre-gestational period, many women entered with reduced 
iron stores. Maternal iron absorption is regulated by sys-
temic iron regulatory hormone hepcidin, which declines 
throughout gestation and facilitates increased iron mobili-
zation to meet the iron demand. The placenta regulates and 
ensures optimal iron transfer from mother to fetus and assists 
in having sufficient iron stores in neonates at birth.

In the placenta, the transferrin receptor helps in non-heme 
iron uptake from the maternal iron-transferrin complex and 
gets endocytosed. Cellular iron transporter DMT1 transports 
iron from endosome to cytoplasm in syncytiotrophoblasts, 
and FPN effluxes iron from syncytiotrophoblasts to fetal cir-
culation. On the other hand, heme iron acquisition occurs 
through heme receptor LRP1. Fetus utilizes maximum iron 
from mother as per hierarchical usage and benefits from ade-
quate iron stores at birth. But the mechanism of maternal and 
fetal regulation in determining the rate of iron transfer across 
the placenta raises many unanswered questions.

Understanding the importance of iron regulators in the 
placenta using animal models is well appreciated. Some 
studies suggested that fetal iron is regulated independently 
of maternal support. Hepcidin levels decline throughout the 
gestational period, ascertaining that an unknown mechanism 
exerts a suppressive effect. Molecular details of cellular iron 
transporters highly expressed in the placenta are poorly char-
acterized; identifying the function of normal and alternative 
isoforms of cellular iron transporters would help to under-
stand prioritized iron transport for the fetal need. Hence, 
detailing mechanistic insights of placental dynamic regula-
tion of maternofetal signals and fetal iron homeostasis using 
animal models and a larger cohort of human pregnancies 
will elucidate the gap in iron regulation during pregnancy.
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