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Abstract
Introduction The role of cancer stem cells (CSC) remains controversial and increasingly subject of investigation as a potential 
oncogenetic platform with promising therapeutic implications. Understanding the role of CSCs in a highly heterogeneous 
disease like epithelial ovarian cancer (EOC) may potentially lead to the better understanding of the oncogenetic and metastatic 
pathways of the disease, but also to develop novel strategies against its progression and platinum resistance.
Methods We have performed a review of all relevant literature that addresses the oncogenetic potential of stem cells in EOC, 
their mechanisms, and the associated therapeutic targets.
Results Cancer stem cells (CSCs) have been reported to be implicated not only in the development and pathways of intra-
tumoral heterogeneity (ITH), but also potentially modulating the tumor microenvironment, leading to the selection of sub-
clones resistant to chemotherapy. Furthermore, it appears that the enhanced DNA repair abilities of CSCs are connected with 
their endurance and resistance maintaining their genomic integrity during novel targeted treatments such as PARP inhibitors, 
allowing them to survive and causing disease relapse functioning as a tumor seeds.
Conclusions It appears that CSCs play a major role in the underlying mechanisms of oncogenesis and development of relapse 
in EOC. Part of promising future plans would be to not only use them as therapeutic targets, but also extent their value on a 
preventative level through engineering mechanisms and prevention of EOC in its origin.
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Introduction

The role of CSCs has been increasingly investigated over the 
last years; however, a clear definition has not yet emerged 
for their value in carcinogenesis, progression, and tumor 
metastasis. Nevertheless, their potential in contributing to 
a better understanding of the behavior profile of malignant 
diseases, but also as therapeutic targets, is highly promising, 
with many cancer researchers worldwide turning their efforts 
in further exploring them as a promising “holy grail” in the 
field of oncology.

CSCs have been described as being able to modulate 
core signaling pathways in epithelial ovarian cancer and are 
believed to be responsible for disease progression, relapse, 
and drug resistance development. Epithelial ovarian cancer 
has been shown to have a strong temporal and spatial intra-
tumoral heterogeneity, which represents a challenge in the 
efficacy and success of any therapeutic attempts. Despite 
maximal effort cytoreductive surgery and platinum-based 
chemotherapy in combination with antiangiogenetic agents 
and immunomodulators, the majority of patients will eventu-
ally develop drug-resistant disease and die.

In this complex scenario, CSCs appear to have significant 
role in the development of intratumoral heterogeneity in epi-
thelial ovarian cancer.

CSCs are isolated from cancer tissue and have the abil-
ity to self-regenerate, as a result of resistance to apoptosis, 
induced by loss of anchorage, and also the ability to undergo 
differentiation through asymmetric cell division; features 
also found in non-cancer stem cells. Still, the main differ-
ence and pathognomonic characteristic of CSCs or tumor-
initiating cells is that once transplanted in an organism, 
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they are able to induce carcinogenesis on the basis of the 
same molecular characteristics of the original neoplasm 
from which they derive [1]. Hence, the CSCs appear to 
have a key role across all cancer stages: from the develop-
ment of the disease and its initial treatment until the devel-
opment of relapse and chemoresistance [2]. The plasticity 
that CSCs display as almost characteristic allows them to 
switch between different states (including non-stem states) 
[3], whereas by expressing molecular pumps that facilitate 
efflux of the various pharmacologic agents along with the 
presence of intracellular scavengers such as ALDH1, they 
significantly contribute to the development of resistance to 
systemic treatments [4].

A process that highlights this aspect is the so-called Epi-
thelial-to-Mesenchymal Transition (EMT) in which stem 
cells not only acquire mesenchymal traits but also provide 
epithelial cells with staminal associated properties, confer-
ring them with greater tumorigenic potential and chemore-
sistance [5, 6]. In tumor cells, the transition mechanism 
should not be understood in a static but rather a highly 
dynamic way, in which CSCs seem to be associated with a 
partial EMT phenotype [4, 7]. The various signal transduc-
tion pathways that govern cancer stemness include Wnt/β-
catenin, NOTCH, IL6/JAK/STAT3, Hedgehog, NFκB, and 
PI3K/AKT [8] and specifically for ovarian cancer TLR2-
MyD88-NFκB [9], HMGA1 [10], PKCι/Ect2/ERK [11], 
YAP/TEAD [12], and hypoxia/NOTCH1/SOX2, which play 
a central role as ovarian cancer stem cell markers.

Experimental evidence for ovarian cancer 
stem cells

The exact pathophysiologic pathways of epithelial ovarian 
cancer carcinogenesis are still not well defined. From an 
embryogenic perspective, the most prevailing hypothesis is 
that very small embryonic-like stem cells (VSEL) play a 
central role in EOC stemness and carcinogenesis. The VSEL 
in human ovarian cancer cells express multiple genes con-
nected with pluripotency and germinal lineage, especially 
primordial germ cells [13]. Klun et al. assessed the pres-
ence of VSEL in eight patients with borderline ovarian 
tumor comparing them with a similar population of small 
cells from the healthy ovaries of three women without can-
cer. Similar populations of small putative stem cells were 
found in the ovarian surface epithelium/ovarian cortex tis-
sue of women with borderline ovarian cancer and in healthy 
women. However, only the small putative cancer stem cells 
from the “cancerous” ovaries intensely proliferated and 
spontaneously formed tumor-like structures in vivo, and in 
vitro in cell cultures after enzymatic digestion of ovarian 
cortex tissue [14]. Microarray analysis of the samples in 

this study showed that the gene expression profile of cancer 
stem cells appears to differ from healthy non-cancerous cells 
by 132 up-regulated and 97 downregulated genes, including 
some important SOX17, forkhead box (FOXQ1, FOXL2), 
and homeobox genes (HOXD9) known to regulate transcrip-
tion, differentiation, cell growth, and embryogenesis [15].

The models for epithelial ovarian cancer stemness are 
rather scarce and not yet well standardized. Bapat et al. have 
attempted to develop such a model of disease progression 
based on EMT and CSCs from a single sample collection 
of malignant cells, isolated from the ascites of a stage IV 
EOC-patient [16]; the isolated cells in culture gave rise to 
65 individual sublines of EOC cell clones, based on differ-
entially morphology. Nineteen of the sixty-five spontane-
ously immortalized, while the remaining clones underwent 
senescence within 4–5 weeks of cloning. Semiquantitative 
reverse transcription (RT)-PCR was carried out to identify 
the nature of the isolated cells. Co-expression of cytokera-
tin 18 and vimentin, the growth factor receptors c-met and 
epidermal growth factor receptors and the surface adhesion 
molecule CD44 were evident in all of the clones. There was 
also an almost ubiquitous expression of E-cadherin; while 
Snail, a known mediator of EMT through transcriptional 
repression of E-cadherin, was also present in all exam-
ined cells. These identified expression patterns are a clear 
indicator of the mesothelial nature of the cells, which is in 
alignment with the current hypotheses of the EMT-based 
carcinogenesis processes in EOC. On the contrary, when 
assessing the growth of the 19 clones, only two clones 
(A2 and A4-T) were tumorigenic, and had the capacity for 
anchorage-independent growth and the ability to give rise to 
organized spheroids from one clone of cells. Nestin, Oct4, 
and Nanog, specific markers known to be associated with 
stem and/or progenitor cells, were expressed in both A2 
and A4-T monolayers and absent or had lower expression 
in spheroids. The expression pattern of these three markers 
possibly indicates a potential multipotent nature of the A2 
and A4-T clones. As a further step, the in vivo correlation 
of the in vitro clonogenic potential of the candidate tumor 
stem cells was assessed in nude mice: both clones were able 
to propagate a disease similar to that from the index patient, 
which led to the conclusion that the two transformed clones, 
A2 and A4-T, highly possibly represent CSCs [16]. Fur-
ther studies point out the presence of adult stem cells within 
the human fallopian tube epithelium and their key role in 
the oncogenesis: the stem cells in the epithelial lining can 
give rise in vitro to a 3D organoid formed by ciliated and 
secretory cells. In addition, the organoid growth and dif-
ferentiation process have been analyzed, revealing that both 
are under the Wnt and Notch paracrine signaling pathways 
control: through the inhibition of Notch route, there is a 
downregulation of stem cell-associated genes together with 
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decreased proliferation and increased numbers of ciliated 
cells [17]. Moreover, a 2019 preprint work by Hofmann et al. 
has showed the results of a study carried out on 15 organoid 
lines derived from high-grade serous ovarian cancer primary 
tumor: it was showed that the parental tumor almost shares 
the same mutational profile and phenotype with the orga-
noids and that Wnt pathway activation leads to growth arrest 
of these cancer organoids [18].

The role of microenvironment is also crucial in its inter-
action with CSCs. Pro-tumorigenic properties of the micro-
environment appear to carry a central value in the process 
of carcinogenesis, including EOC [19]. One hypothesis is 
that a pro-tumorigenic microenvironment in EOC, promotes 
processes like EMT and perhaps vice versa [20]; malignant 
ascites and also the omental cake are typical examples of 
such tumor-promoting platforms. Studies in EOC have 
shown that malignant ascites contains high level of Inter-
leukin 6, which in turn promotes the JAK /STAT3 signal-
ing pathway that has been shown to promote the ability of 
CSCs to develop and function [21–23]. At a similar level, 
the adipose tissue in the omentum, the most common site of 
metastasis in EOC, equally promotes cancer cell migration 
and dissemination, providing the required energy for tumor 
cells [24].

Mesenchymal stem cells and macrophages are funda-
mental components of the stem cell niche and function in 
a coordinated fashion to regulate stem cell renewal and 
mobilization [25]. Hence, extracellular vesicles play a key 
role not only in the development of pre-metastatic niche and 
metastatic colonization, but also in intercellular signaling 
and transportation of genetic messages: by transporting dif-
ferent lipids, proteins, double-stranded DNAs, RNAs, non-
transcribed RNAs, and microRNAs, they can coordinate the 
communication between cancerous cells, stromal cells, and 
the extracellular matrix. The upregulation of matrix metal-
loproteinase 9 is a central factor in this process providing the 
cancer cells with the required energy for nesting and inva-
sion [26]. Several groups have identified surface biomarkers 
that are used to characterize CSCs in ovarian cancer and can 
be studied to develop novel target therapies. Common CSC 
surface markers are CD24, CD44, CD 133, EpCAM, and 
ROR1; CD 133 is associated with tumor formation, disease 
progression, chemoresistance, and poor prognosis [27–31]. 
CD24 and CD44 are linked with tumor formation, metasta-
sis, poor prognosis, chemoresistance, and recurrence of dis-
ease [32–36]. The expression of the enzyme aldehyde dehy-
drogenase ALDH1 alone or in combination with cell surface 
stem cell markers is an accepted method for CSC identi-
fication in ovarian cancer. Evidence suggests that ALDH 
can be used as expression of cell proliferation, migration 
promotion, poor survival, and chemoresistance [37–39], and 
in animal models, its inhibition reversed resistance of the 
tumors to treatment [40]. Moreover, a recent meta-analysis 

highlight that high-expression levels of ALDH1 significantly 
correlated with poor 5-year overall survival and progression-
free survival rate in ovarian cancer patients. No further links 
between ALDH1 expression profile and clinico-pathological 
features such as FIGO Stage, tumor grading, lymph nodal 
status, and patients’ age at diagnosis were emerged [41].

Ovarian cancer stem cells: therapeutic target 
options

Understanding the biological mechanisms inducing the 
development of chemoresistance in EOC similarly to 
other epithelial cancers remains a challenge. Evidence has 
shown a key role played by CSCs in progressing relapse 
following systemic chemotherapy. While chemotherapy 
and radiotherapy target actively proliferating cells, CSCs 
are characterized by a rather slow cycling rate which 
makes them resistant to standard cytotoxic treatments [42, 
43]. Prevailing hypotheses suggest that the high frequency 
of EOC relapse might be originating from a subpopulation 
of quiescent EOC stem cells that, by remaining in the G0 
phase of the cell cycle, are not sensitive to cytotoxic treat-
ments. However, once they return to an active reproduc-
tion phase, they have the ability to become the potential 
driving force of the cancer relapse. Various studies have 
highlighted the direct correlation between emerging chem-
oresistance at EOC relapse and CSC abundance: tissue 
sample analyses from primary, metastatic, and recurrent 
EOC patients have demonstrated increased expression of 
CD44 in the less favorable patients with metastatic and 
relapsed tumors [44, 45]. Furthermore, CD44 was found 
to be overexpressed in drug-resistant EOC cell lines and 
up-regulated in mouse models with tumor recurrence 
after chemotherapeutic treatment [46]. Different studies 
highlight this hypothesis: ovarian cancer cells with stem-
like traits  (CD44+/CD24−) showed higher relapse rate as 
well as shorter progression-free survival [30] compared 
to those without abundant stem cell-like features. Similar 
results were observed analyzing other ovarian cancer stem 
cell-related markers such as CD133, which are connected 
with a poor response to chemotherapy and, hence, a less 
favorable survival [47]. It is evident that several biologi-
cal pathways involving CSCs promote chemoresistance, 
and, therefore, developing therapies that will inhibit those 
pathways may alter the development of chemoresistance. 
A potential design of such an inhibiting agent should ide-
ally target mainly CSCs to minimize toxicity, even though 
one would need to be cautious of potential toxicity issues 
attributed to the fact that CSCs may share epitopes with 
normal stem cells [48]

Recently, the emerging value of PARP inhibitors 
in ovarian cancer has become increasingly evident and 
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multiple PARPi have been approved for use in patients 
with recurrent ovarian cancer; however, their interaction 
with CSCs is not well described [49, 50]. Despite the 
highly encouraging response rates of PARP inhibitors in 
both BRCA1/2 mutant and non-BRCA1/2 mutant patients, 
most will develop eventually resistance. The molecular 
process underlying this event has not yet been fully eluci-
dated. A potential hypothesis as formulated by Bellio et al. 
is that the antitumor activity of PARPi is rather due to their 
focused targeting of non-CSC population of cells; sug-
gesting that PARPi treatment result in the induction of an 
enrichment of cell populations expressing antigens linked 
to stem phenotype in ovarian cancer including CD133, 
CD117, and ALDH [51]. Another important aspect is the 
fact that ovarian CSCs and non-CSCs respond in different 
way to DNA damage, and that CSCs may feature more 
efficient DNA repair mechanisms due to the activation of 
embryonic repair mechanisms that can confer a survival 
advantage, contributing in turn to treatment resistance 
and recurrence [52]. It appears that the enhanced DNA 
repair abilities of CSCs are connected with their endurance 
and resistance maintaining their genomic integrity during 
PARPi treatment, allowing them to survive and causing 
disease relapse functioning as a tumor seeds.

Conclusion

Decoding the underlying mechanisms of the interaction 
between CSCs and EOC may significantly contribute in 
developing effective strategies to overcome chemotherapy 
resistance in a challenging disease. As a future, even ambi-
tious aim, it could even be used as a preventative platform by 
engineering at a stem cell level. The first important step would 
probably be the determination of the progenitor stem popula-
tion involved in the development, progression, and metastasis 
of EOC, to be able to target the disease at its origin.
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