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Introduction

Furan is classed as a dangerous toxicant by the International 
Agency for Research on Cancer. It leads to diverse types of 
cancers in humans [1]. Furan may occur in various kinds 
of processed foods, during canning process which changes 
carbohydrates’ structure during jarring process. Moreover, 
coffee also contains furan naturally [2]. Therefore, there is 
concern about its harmful effects in animals and humans [3]. 
It was first reported in foods over 30 years ago [4]. It is also 
generated during combustion; therefore, it is found in smoke 
and engine exhaust [5]. A previous study has shown that it is 
a toxicant agent and has harmful effect on biological system 
of rats [6, 7]. Due to these known adverse effects of furan, 
it is significant to show the toxicological effects of furan.

There are protective mechanisms in cell to avoid from 
oxidative stress via reducing the pro-oxidative disorders 
by antioxidants. Antioxidants are used in cells for evaluat-
ing protective effect on level of oxidative stress by catalase 
(CAT), glutathione peroxidase (GPx), superoxide dismutase 
(SOD), and glutathione-S-transferase (GST). Many toxicants 
are harmful to cell’ membranes, since they produce malondi-
aldehyde (MDA) from lipid peroxidation (LPO) and reactive 
oxygen species (ROS) [8, 9].

Lycopene is found in fruits together with carotenoid. 
Many studies demonstrated that lycopene has helped to 
eliminate the adverse effects of risk factors in the case of 
heart and cancer diseases [10, 11]. The previous studies 
have demonstrated that lycopene destroys ROS damage in 
cell membranes and DNA damage [12, 13], and lycopene 
has been studied for a long time in the hunt for hydroxyls 
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and superoxides to prove its antioxidant capacity. It also has 
protective role against lipid peroxidation, caused ROS in cell 
membranes and DNA damage [14]. Harmful chemicals can 
change cell’s signaling pathways, and defensive and protec-
tive systems of cells in varying physiological and pathologi-
cal conditions [6, 10].

Diabetes is a metabolic disorder and 2.5–3% of world’s 
population is struggling with this important illness. Patho-
physiological mechanisms of diabetes were shown in many 
studies [15]. Apoptosis, inflammation, and oxidative stress 
can often be seen along with high glucose [16, 17]. Free 
radicals increase in the pancreatic β-cells, as they generate 
from protein glycosylation and glucose auto-oxidation [18]. 
Subsequently, oxidative stress can cause pancreatic inflam-
mation and apoptosis in these cells [19, 20].

Comet assay is one of the methods for DNA damage 
detection in the cell under in vitro and in vivo conditions [6, 
7]. This method is also called as single-cell gel electrophore-
sis and widely used in a variety of cells’ single- and double-
strand breaks and alkali-labile sites [21]. This inexpensive 
method is relatively sensitive and rapid. It is commonly used 
in genotoxicity testing for widespread applications in human 
population and environmental monitoring [22, 23].

The consumption of lycopene has shown to support 
reducing all complications regarding to diabetes mellitus 
(DM). It was found that it cures the advancement of toxic 
effect of furan, protects the liver, lung, and kidney against 
harmful effects, but there are not enough studies about its 
effects on the ovarian. Hence, in this study, we focused on 
ovary in experimental non-diabetic and diabetic rats. Cur-
rently, protective effect of lycopene against ovary structure 
and functions is unknown. The purpose of this work is to 
identify the effect of furan on the ovary of non-diabetic and 
diabetic female rats, and to show whether these adverse 
effects can be cured by lycopene and on the tissue damage, 
whether level of oxidative stress and DNA damage in the rat’ 
ovary can be decreased.

Materials and methods

Animals and chemicals

Female Wistar–Albino rats (300–320 g) were administrated 
according to standard protocol for use and care of laboratory 
animals. Çukurova University Animal Experiments Local 
Ethics Committee approved our treatment procedure. Rats 
were feed with standard laboratory chow and water ad libi-
tum at 23 ± 1 °C with periods of light and dark (12 h/12 h). 
Furan, streptozotocin (STZ), lycopene, and other chemicals 
were obtained from Sigma-Aldrich. Distilled water was used 
for dissolving furan and lycopene.

Animal grouping and treatment

Fifty-six Wistar–Albino rats were allocated as eight groups: 
In control group (group 1), 1 mL of 0.9% NaCl saline solu-
tion was injected to rats as orally during 28 days. Lycopene 
group (group 2) received lycopene at 4 mg/kg b.w. via gav-
age for 28 days. Furan group (group 3) received 40 mg/kg 
b.w. furan via gavage. Furan + lycopene group (group 4), 
40 mg/kg furan and 4 mg/kg b.w. lycopene were given for 
28 days. In diabetic control group (group 5), single dose of 
STZ was injected to cause diabetes. Diabetic lycopene group 
(group 6) received single dose of STZ and lycopene at 4 mg/
kg b.w. via gavage for 28 days. Diabetic furan group (group 
7) received a single dose of STZ and 40 mg/kg b.w. furan 
via gavage. In diabetic furan + lycopene group (group 8), a 
single dose of STZ 40 mg/kg furan and 4 mg/kg b.w. lyco-
pene was given for 28 days. Rats were taken under general 
anesthesia by an intraperitoneal injection of ketamine hydro-
chloride (60 mg/kg, Ketalar) and xylazine hydrochloride 
(10 mg/kg). Samples were obtained surgically from control 
and treatment groups and arranged for light microscopic, 
biochemical, and DNA damage inquiry for examination. 
Level of malondialdehyde (MDA) and enzymes activities 
(CAT, SOD, GPx, GST) of ovary tissue was calculated.

Assessment of diabetes mellitus (DM)

STZ dissolved in cold 0.1 M sodium citrate buffer, pH 4.5 
(always prepared fresh for immediate use within 5 min). STZ 
single-dose injection (55 mg/kg) was given intraperitoneally. 
The blood glucose concentration was measured after 2 days 
of STZ injection for diabetes induction confirmation via a 
glucometer. The blood samples were collected from the tail. 
Animals whose blood glucose levels were over 300 mg/dl 
were considered diabetic and used for this study [15].

Measurement of tissue damage

Sodium phosphate buffer (pH 7.2) was used for dissecting 
the ovary tissues’ washing. The obtained ovarian tissues 
were fixed in 10% formalin and then passed graded etha-
nol series, and prepared in paraffin block. Hematoxylin and 
eosin (H&E) was used for cutting the tissue. Tissue images 
were obtained from olympus light microscope (Olympus 
BX51, Tokyo, Japan) with an attached camera using seven 
slides. Histopathological changes in all groups were gra-
dated as none (–), weak (+), mild (++), moderate (+++), 
and severe (++++) damage.

Immunohistochemistry

Leica Bond-Max (Leica, Bannockburn, IL, USA auto-
matic) immunostainer and Apaf-1 expression were used for 
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immunohistochemistry. Formalin was used for fixation and 
samples were transferred to paraffin and sections (5–6 μm) 
were cut using a microtome (Leica RM2255, Germany) and 
then dried air at 36–37 °C. Images of tissue were obtained 
from olympus light microscope (Olympus BX51, Tokyo, 
Japan).

Assessment of oxidative stress

Measurement of malondialdehyde (MDA) level

Level of MDA was determined using the thiobarbituric 
acid (TBA) test as described by Ohkawa et al. [24]. MDA 
and TBA were combined with each other to form a colored 
complex, and these reactions were calculated spectrophoto-
metrically at 532 nm to measure MDA levels. The specific 
activity was defined as nmol per mg protein.

Measurement of superoxide dismutase (SOD) activity

Inhibition of autoxidation of pyrogallol demonstrates SOD 
activity. This reaction was calculated according to the 
Marklund and Marklund’s method [25]. The activity was 
calculated at 440 nm for 180 s nmol/mg protein which was 
used as data expression.

Measurement of catalase (CAT) activity

Method of Aebi [26] was used for CAT activity for ovary 
tissue according to the rate of decomposition hydrogen per-
oxide  (H2O2) at 240 nm for 60 s μmol/mg protein was used 
as data expression.

Measurement of glutathione peroxidase (GSH‑Px) activity

Method of Paglia and Valentine [27] was used for GPx 
activity and measured as spectrophotometrically. NADPH, 
reduced glutathione, Tris–HCl, and glutathione reductase 
were mixtured for reaction.  H2O2 was added for the begin-
ning of reaction and GPx activity was calculated as the 
change in absorbance at 340 nm nmol/mg protein that was 
used as data expression.

Measurement of glutathione‑S‑transferase (GST) activity

Enzyme activities of GST of ovary were analyzed by deter-
mination of the generation of glutathione and the 1-chloro 
2,4-dinitrobenzene conjugate [28]. Increments in absorb-
ance were stated at 340 nm. The enzyme is represented as 
nanomoles of glutathione 1-chloro 2,4-dinitrobenzene con-
jugate formed per minute per milligram protein.

Protein estimation

The ovary tissue’s protein concentration was measured accord-
ing to the method of Lowry et al. [29] and bovine serum albu-
min was used as a standard. These parameters were measured 
by a spectrophotometer.

Data analysis

SPSS 20.0 for Windows was used for calculation of values. 
ANOVA and Tukey were applied result for comparing the 
experimental groups. p < 0.05 show statistically significant 
between groups. Standard error of the mean (SEM) was used 
for results.

Measurement of DNA damage with comet assay

Control and treated cells of ovary were obtained and centri-
fuged with magnetic stirrer at 500×g for 5 min and then rested 
for 20 min in PBS. Obtained supernatant from control and 
treatment groups was stirred with low melting point agarose 
(0.65%); 75 µl of suspension was immediately layered over 
slides which were precoated with normal melting point aga-
rose (0.05%) and then quickly covered with a cover slip. The 
slides were kept at +4 °C for 30 min. Slides leaving from 
coverslip were transferred into cold lysing solution (2.5 M 
NaCl, 100 mM EDTA, 10 mM Tris, pH 10, in which 10% 
DMSO, 1% Triton X-100) for 1 h. Horizontal gel electropho-
resis platform was filled with freshly made pH > 13 electro-
phoresis buffer (300 mM NaOH, 1 mM EDTA) until the liquid 
level completely covers the slides. To unwinding of the DNA, 
slides were waited for 20 min [30]. Power supply was turned 
on to 25 V for 20 min. The slides were lifted gently from the 
buffer and placed on a drain tray and then washed three times 
for 5 min with neutralizing buffer (0.4 M Tris–HCl buffer, 
pH 7.5). Slides were stained with 80 µl of ethidium bromide 
(10 mg in 50 ml of distilled water) for 5 min and then dipped in 
chilled distilled water to remove excess stain. The slides were 
covered with coverslip and scored immediately using BS 200 
ProP with software image analysis (BS 200 ProP, BAB Imag-
ing System, Ankara, Turkey). A 40× objective on a fluorescent 
microscope was used for observations DNA damage. The tail 
DNA% (100—Head% DNA), tail length, and tail moment of 
50 comets were identified and calculated differences between 
groups [31].

Results

Determined tissue damage in ovary

Normal ovary structure with many primordial, primary, 
secondary, and antral follicles was seen in control group 
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(Fig. 1a). The pathological changes were detected as edema 
and hemorrhage in diabetic control (Fig. 1b). No change 
has been detected in lycopene treatment group (Fig. 2a). 
Lycopene treatment effectively reduced the ovarian tissue 
damage in diabetic lycopene treatment group (Fig. 2b). His-
topathological changing in furan-induced non-diabetics and 
diabetics’ female rats was observed such as severe hemor-
rhage, vascular congestion, edema, follicular degeneration, 
and leukocyte infiltration in the ovary tissue (Fig. 2c, d). 
Moderate pathological changing was seen in diabetics’ rats 
taking lycopene plus furan. Hemorrhage, vascular conges-
tion, and edema were seen in this group (Fig. 2e, f). The his-
topathological alterations in samples of rats were graded for 
non-diabetic and diabetic furan and/or lycopene, and were 
determined as scored in Table 1.  

Secretion of Apaf-1 was seen as weakly in the control, 
diabetic control, lycopene, and diabetic lycopene treatment 
group (Figs. 3, 4a, b), but furan treatment group has moder-
ate Apaf-1 expression (Fig. 4c). Secretion of Apaf-1 was 
strongly obtained in the diabetic furan group (Fig. 4d). The 
non-diabetic and diabetic furan + lycopene group has mod-
erate secretion in terms of Apaf-1 (Fig. 4e, f).

Determined of MDA levels and antioxidant enzyme 
activities of ovary tissue

MDA production significantly increased in the diabetic con-
trol when compared to the control group (p < 0.05). Level 
of MDA increased in the furan-treated non-diabetic and 
diabetic groups compared to the diabetic control and con-
trol group. MDA level decreased in the furan + lycopene-
treated group compared to the furan-treated group (p < 0.05) 
(Fig. 5).

CAT, SOD, GPx, and GST enzymes have lower activities 
in the diabetic control than the control group (p < 0.05). 
These enzyme activities statistically decreased in the furan-
treated non-diabetic and diabetic groups compared to dia-
betic control group. Non-diabetic and diabetic furan + lyco-
pene administration increased antioxidant enzymes activities 

when compared to the non-diabetic and diabetic furan-
treated group (p < 0.05) (Fig. 5).

Determined DNA damage in the ovary tissue

The mean tail DNA% and tail length significantly raised in 
diabetic control and non-diabetic/diabetic + furan treatment 
groups according to the comet assay results. Used param-
eters for DNA damage decreased in the non-diabetic/diabetic 
furan + lycopene and diabetic lycopene groups compared 
with the non-diabetic/diabetic furan and non-diabetic/dia-
betic control groups, respectively (Fig. 6). Scores of the 
DNA damage were showed in Table 2 for the control and 
non-diabetic/diabetic groups.

Discussion

Furan can be used as an intermediate agent for chemical 
reactions, since it is a main compound of many chemi-
cals. It is known that little amount of exposure to [2] and 
metabolized cytotoxic metabolites lead-binding proteins and 
nucleosides irreversibly [32, 33]. The toxicity of furan is 
attributed as cis-2-butene-1,4-dialdehyde due to the cause 
uncoupling of mitochondrial oxidative phosphorylation and 
cell proliferation [34, 35]. The previous studies have shown 
that furan induced some histopathological damage in the 
male rats’ kidney and liver along with the changes in liver 
and serum enzyme levels at increasing doses [36], and so 
it has been also classified as a potential human carcinogen. 
El-Akabawy and El-Sherif [37] have demonstrated that the 
furan induced oxidative changes in the adult rat testis, but 
the potential of furan to induce oxidative stress damage 
in the ovary of rats has not been demonstrated yet. This is 
the first in vivo assessment of furan and lycopene caused 
effects in non-diabetic and diabetic rat ovarian associated 
with changes histopathological, oxidative stress parameters, 
and DNA damage.

Diabetes mellitus (DM) presents a rapid growing health 
problem and it is one of the most common causes of vascular 

Fig. 1  Ovary section of control 
(a) and diabetic control (b) rats 
showing normal morphology 
of many different stages of 
developing follicles. A antrum, 
GC granular cell, PF primary 
follicle, ZP zona pellucida, GEp 
germinal epithelial, TA tunica 
albuginea, CL corpus luteum, 
SF secondary follicle, asterisk 
edema, double arrow hemor-
rhage ×200
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disease worldwide [38, 39]. Different alterations have been 
attributed to the increased production of ROS, which results 
from reduced activity of SOD and CAT, reduced total glu-
tathione level, and increased activity of GPx [40]. Most stud-
ies have used streptozotocin for obtaining experimental dia-
betes. Many of these studies indicated that DM has affected 
biomechanical structure or fracture healing with histologic 
changes in the fracture callus in type 1 diabetes animal mod-
els [38, 41]. Other studies have shown that DM induced bio-
chemical alterations, protein and collagen metabolism, and 
DNA structure of cells [42–46]. In addition to these studies, 
we have also used diabetic rats to evaluate the effects of 
lycopene (4 mg/kg bw) and furan (40 mg/kg bw) in diabetic 
individuals for oxidative stress parameters in this study.

Histopathological alterations were obtained in the ovary 
tissue after daily treatment of furan. Bas and Pandır [10] 
have shown that furan induced lung toxicity in the diabetic 

Fig. 2  Ovary sections of a 
lycopene, b diabetic lycopene, 
c furan, d diabetic furan, e 
furan + lycopene, f diabetic 
furan + lycopene treated show-
ing A antrum, GC granular 
cell, PF primary follicle, SF 
secondary follicle, GC germinal 
cell, CL corpus luteum, asterisk 
edema, double arrow: hemor-
rhage, filled right side pointing 
triangle vascular congestion, 
open right side pointing triangle 
leukocyte infiltration, and single 
arrow follicular degeneration 
× 200

Table 1  Grading of the histopathological changes in ovary sections 
of rats exposed to furan and/or lycopene in diabetic conditions

The features were scored as follows: none (_), weak (+), mild (++), 
moderate (+++), and severe (++++)

Groups Edema Hemorrhage Vascular 
congestion

Follicular 
degenera-
tion

Control – – – –
Dcontrol + + – –
Lycopene – – – –
Dlycopene – + – –
Furan +++ +++ +++ +
Dfuran ++++ ++++ ++++ ++++
Furan + lycopene + + + +
Dfuran + lycopene ++ ++ ++ ++
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rats with severe pathological alterations. Emphysematous 
changes, hemorrhage, changes in connective tissue of the 
alveolar septa, edema, and desquamation of the epithelial 
cell of the terminal bronchiole were observed in the diabetic 
furan group. Lycopene treatment cured these transforma-
tions. Emphysematous and hemorrhage were seen in the 
diabetic furan + lycopene group in moderate level. Unal 

et al. [11] demonstrated that histological damages of kid-
ney were more severe in diabetic furan group, particularly 
extensive inflammatory cell infiltration, glomerular lobula-
tion, glomerular atrophy, tubular degeneration, hemorrhage, 
and dilatation of Bowmann’s space. Lycopene supplemen-
tation was protective against furan caused histopathologi-
cal changes, too. Administration of furan increased severe 

Fig. 3  Ovary section of a 
control and b diabetic control 
female rats’ ovary showing 
Apaf-1 protein expression with 
immunohistochemical analysis. 
Single arrow Apaf-1 expression 
in control and diabetic control 
group shows multiple apoptotic 
cells × 200

Fig. 4  Ovary sections of a 
lycopene, b diabetic lycopene, 
c furan, d diabetic furan, e 
furan + lycopene, f diabetic 
furan + lycopene in female rats’ 
ovary showing Apaf-1 protein 
expression with immunohisto-
chemical analysis. Single arrow 
Apaf-1 expression in diabetic 
control, diabetic furan, and 
diabetic furan + lycopene group 
shows multiple apoptotic cells 
× 200
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hemorrhage, edema, follicular degeneration, and vascular 
congestion in the ovary tissue of non-diabetic and diabetic 
treatment group in this study. However, milder pathologi-
cal changes were seen in lycopene + furan non-diabetic 
and treated diabetic rats. When the non-diabetic group and 
the diabetic group were compared, much more pathologi-
cal changes were observed in diabetic group. In this way, it 
seems that lycopene ameliorate furan induced toxicity, but 
exact protection was not seen in rat ovary tissues.

Apoptosis occurs during normal physiological process in 
cells. External or internal warnings activate apoptotic mech-
anism. Mitochondrial pathway works and apoptotic protein 
is forms in case of DNA damage, hyperoxia, and oncogene 
activation [47, 48]. Apaf-1, the signal protein, was used to 
show apoptosis in many animal studies [49, 50]. Mouse ova-
ry’s granulosa cells secreted Apaf-1 in apoptosis process 
[49]. Bas et al. [13] were used Apaf-1 antibody for ischemia/
reperfusion (I/R) injury in Wistar rats’ ovary. Their study 
has shown that the I/R has a harmful effect on testis tissue, 
but administration of vardenafil reduced these effects. Germ 
cell was evaluated by apoptosis with the Apaf-1 antibody 

[50]. Ovarian furan injury with lycopene in non-diabetic and 
diabetic condition has not been evaluated using the expres-
sion of Apaf-1 antibody until now. In this study, Apaf-1 
expression was evaluated in control and treatment groups. 
Apaf-1 expression in the non-diabetic and diabetic furan 
groups was seen stronger than non-diabetic and diabetic 
control groups. Non-diabetic and diabetic furan + lycopene 
groups have lower Apaf-1 expression than non-diabetic and 
diabetic furan group.

MDA, which occurs during lipid peroxidation, is a sig-
nal of oxidative stress and leads to tissue damage [2, 51]. 
Antioxidant enzymes such as CAT, SOD, GST, and GPx 
enzymes struggle to prevent the harmful effect of chemicals 
on ovarian tissue. They are the most important enzymatic 
systems in cellular membranes for protection of tissues 
against toxicants [52–54]. If antioxidant mechanism of cells 
is damaged by chemicals’ antioxidant enzyme activities and 
their gene expressions decrease because of increasing oxida-
tive stress [55]. This study showed a significant reduction in 
CAT, SOD, GPx, and GST activities and a significant eleva-
tion of MDA levels in furan induced ovarian tissue injury. 

Fig. 5  Effects of furan and/
or lycopene on MDA levels 
and SOD, CAT, GPx, and 
GST activities of ovary tissues 
of non-diabetic and diabetic 
rats. Column superscripts 
with different letters indicate 
significantly different values. 
Data represent the mean ± SEM 
of seven samples. Significance 
at p < 0.05
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Under these conditions, administered lycopene increased the 
enzymatic activities and lead to MDA level decrease in rats 
ovary. The same results were obtained in diabetic groups and 
also there are more harmful effects in the diabetic groups 
compared to non-diabetic groups.

Single and double-strand breakage, disruption of deox-
yribose, and creation of DNA–protein were seen DNA 
structure during the oxidative stress [56]. These modifica-
tions have been detected with alkaline comet assays in both 

clinical and occupational exposures [57]. Deoxyguanosine 
to 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) occurs 
in oxidative stress-induced DNA damage [58]. 8-oxodG and 
8-hydroxyguanine (8-oxoG) increased in diabetes of cells’ 
DNA [59] and is indicators of oxidative DNA damage in 
blood and tissue. MDA is important indicator of oxidative 
stress in cell membranes of diabetes. Currently, 8-oxodG, 
alkaline, and modified comet assay are widely used for 
showing oxidatively damaged DNA in diabetes [60]. Body 

Fig. 6  DNA damage in rat 
ovary exposed to furan and/
or lycopene a control group, 
b diabetic control group, c 
lycopene treatment group, d 
diabetic lycopene treatment 
group, e furan treatment group, 
f diabetic furan treatment 
group, g furan + lycopene 
treatment group, and h diabetic 
furan + lycopene treatment 
group
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mass index, serum glucose level, and FPG-sensitive are 
related with oxidative stress in diabetes [61]. The present 
study has shown that the relationship between the subse-
quent DNA damage and diabetes in the ovary of diabetic 
rat was demonstrated with alkaline comet assay because of 
being suitable endpoint of detection. This study also indi-
cated that furan has increased the DNA damage, but lyco-
pene has ameliorated this effect on ovary cells under non-
diabetic or diabetic conditions and also detected the fitness 
of the modified comet assay in the present of the oxidative 
stress-induced DNA damage.

Conclusion

Lycopene administration reversed the histopathologic 
changes that occured because of the ovarian damage. 
Furan + lycopene group has significantly higher (p < 0.05) 
in point of antioxidant enzymes activities compared to furan 
treatment in the ovarian tissue. MDA level of the ovarian 
was significantly lowered in furan + lycopene group than 
other treatment groups (p < 0.05). In this study, we detected 
that administration of lycopene ameliorated the ovarian tis-
sue from the toxic effect of non-diabetic and diabetic furan. 
While our results have shown that protective effect of lyco-
pene on furan induced ovarian toxicity, large prospective 
randomized controlled studies are necessary.
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