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Abstract Purpose The present study aimed to correlate

anti-Müllerian hormone (AMH) levels in follicular fluid

(FF) with oocyte maturity stages, morphological quality of

metaphase II (MII) oocyte and fertilization capacity of MII

oocytes.

Methods A total of 92 infertile women undergoing con-

trolled ovarian stimulation and intracytoplasmic sperm

injection were analyzed. Patients were divided into two

groups according to age: \35 years (n = 43) and

C35 years (n = 49). An FF sample was obtained from a

single dominant follicle in each patient for a total of 92

follicular fluid samples analyzed. AMH levels in serum and

follicular fluid were measured by enzyme-linked immu-

nosorbent assay. Mature MII oocytes, zygotes, and

embryos were assessed for morphological quality.

Results Serum AMH levels were significantly higher in

patients aged \35 years. No correlation was observed

between FF AMH level and oocyte maturation stages or

morphological quality of MII oocyte. Significantly lower

FF AMH levels were observed in fertilized MII oocytes

than in non-fertilized MII oocytes in patients aged

\35 years (2.56 ± 2.0 ng/ml vs. 4.81 ± 4.14 ng/ml;

p = 0.032).

Conclusions The present study revealed no correlation

between FF AMH and oocyte maturity stage or morpho-

logical quality of MII oocyte. However, FF AMH might be

a predictive marker for fertilization capacity of MII

oocytes.

Keywords Anti-Müllerian hormone � Embryo quality �
Fertilization capacity � Follicular fluid � Intracytoplasmic

sperm injection � Oocyte quality

Introduction

Oocyte quality is a key factor of success in artificial

reproductive technology (ART). The intrinsic develop-

mental potential of an oocyte has a crucial role in fertil-

ization and embryo development [1]. Oocyte quality is

affected by the age of the woman, ovarian reserve, con-

trolled ovarian stimulation protocol, and the composition of

follicular fluid [2, 3]. Follicular fluid (FF) is a product of

secretory activity of granulosa and thecal cells and pro-

vides a very important microenvironment for the devel-

opment of oocytes [4]. Some biochemical substances of the

FF surrounding the oocyte may play a critical role in

determining oocyte quality and consequently the capacity

of fertilization and embryo development [5].

From July 2009 to August 2012 in Croatia, a restrictive

law regulating assisted reproduction limited the number of

oocytes that could be inseminated to a maximum of three
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oocytes per cycle. Any remaining mature oocytes were

cryopreserved, and embryo cryopreservation was forbidden.

The selection of three female gametes for IVF/ICSI treat-

ment was made on the basis of morphological aspects of the

oocyte. In the case of conventional IVF, the evaluation of

oocyte maturity was based on the expansion and radiance of

the cumulus-corona complex surrounding the collected

oocyte [6]. In the case of ICSI, metaphase II (MII) oocyte of

good morphology implies a clear, moderately granular

cytoplasm, a small perivitelline space, an intact first polar

body, and a colorless zona pellucida [7, 8]. Due to the small

number of oocytes in which insemination was permitted and

the difficulties regarding morphological assessment in the

cases of conventional IVF, law restrictions had negative

effects on fertilization and pregnancy rates.

An assessment of morphology often fails to predict the

oocytes fertilization and developmental capacity [9] and

until today, many studies have been made to find a bio-

chemical predictor of the functional viability of oocyte and

embryo in follicular fluid [5]. It was showed that follicular

fluid anti-Müllerian hormone (AMH), may play a critical

role in determining the highest quality oocyte [3, 5]. Serum

AMH has been evaluated as a novel clinical marker of

ovarian reserve [10–13] with a poor ability to predict

pregnancy after IVF [14]. Several studies have found a

positive correlation between serum AMH levels and oocyte

quality [15, 16], fertilization rate [17, 18], embryo mor-

phology [19, 20] and blastocyst development [21], but

results are inconsistent [22–25]. Very few studies have

been published so far on the relationship of follicular fluid

AMH levels and the quality of oocytes and embryos, and

results are still controversial [26–32].

With the intention to minimize the negative effect of law

restrictions on fertilization and pregnancy rate, we focused

our research on oocyte selection and clarifying the rela-

tionship between follicular fluid AMH and oocyte quality.

The aim of the present study was to assess whether FF

AMH level might be a predictive marker for the selection

of mature MII oocytes and whether FF AMH levels cor-

relate with the morphological quality of MII oocytes and

the fertilization capacity of MII oocytes.

Materials and methods

This study was performed at the Reproductive Unit of the

Department of Obstetrics and Gynecology, Clinical Hos-

pital Center Rijeka, University of Rijeka. Ninety-two

patients, aged 26–43 (mean age 34 ± 4 years), undergoing

controlled ovarian stimulation and ICSI treatment at our

Center between August 2010 and July 2011 were included

in this study, regardless of the previous treatment history.

The inclusion criteria for women were normal ovulatory

cycles and a body mass index (BMI) ranging from 18 to

28 kg/m2. Couples with a male diagnosis of severe oli-

goasthenozoospermia (fresh sperm concentration

\1 9 106/ml, motility \30 %) were excluded from the

study. Two groups of patients were formed according to

age: \35 (n = 43) and C35 years (n = 49). Serum levels

of follicle-stimulating hormone (FSH), luteinizing hor-

mone (LH), prolactin (PRL), and anti-Müllerian hormone

(AMH) were determined. Women with endocrine abnor-

malities, such as polycystic ovarian syndrome or hyper-

prolactinemia, were excluded from the study.

All patients received the luteal down-regulation protocol

with the gonadotropin-releasing hormone (GnRH) agonist

triptorelin (Decapeptyl, Ferring Pharmaceuticals, Düssel-

dorf, Germany). After pituitary suppression was achieved,

ovarian stimulation was initiated with recombinant FSH

(rFSH) (follitropin alfa, Gonal-F, Serono, Geneva, Swit-

zerland) or human menopausal gonadotropin (HP-hMG)

(Menopur, Ferring Pharmaceuticals A/S, Copenhagen,

Denmark). Ovulation was induced with hCG (Choragon,

Ferring Pharmaceuticals, Düsseldorf, Germany) when

more than two follicles with a diameter of C17 mm were

present. Oocyte retrieval was performed 34–36 h after hCG

injection under transvaginal ultrasound guidance. Embryo

transfer was performed 3 days later. Luteal support

(Utrogestane, Laboratoires Besins International, Montro-

uge, France) was provided from the day of embryo transfer

until 12 weeks of gestational age or negative serum hCG

test (3 weeks after embryo transfer). Each pregnancy was

confirmed as a normal intrauterine pregnancy with a live

embryo by ultrasonography.

Follicular fluids (FF) were aspirated under transvaginal

ultrasound guidance. The FF from the single dominant

follicle of each patient (which is aspirated first) was sep-

arated and maintained at steady temperature conditions

(37 �C) until the oocyte was identified and isolated. The

oocyte from the dominant follicle was cultivated separately

(Fertilization Medium, Cook, Limerick, Ireland). FF sam-

ples were centrifuged at 500 g for 15 min to remove cel-

lular elements, aliquoted and frozen at -20 �C.

Blood samples were collected on day 3 of the menstrual

cycle and the serum was stored at -20 �C. FSH, LH, and

PRL concentrations in serum were determined by electro-

chemiluminescence immunoassay (Roche Diagnostics

GmbH, Mannheim, Germany). AMH levels in serum and

follicular fluid were measured by enzyme-linked immu-

nosorbent assay (Immunotech-Beckman-Coulter, Mar-

seilles, France). The assay range was 0–20.4 ng/ml with a

functional sensitivity of 0.08 ng/ml. Intra-assay and inter-

assay coefficients of variation were \8 %.

Two to four hours after retrieval, oocytes were denuded

using the enzyme hyaluronidase (Hyadase, Cook, Limer-

ick, Ireland). Denuded oocytes were assessed for the
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maturity stage. MII oocytes were identified by the presence

of the first polar body. Metaphase I oocytes (MI stage)

were identified by the absence of the germinal vesicle (GV)

and the first polar body. Prophase I oocytes (PI stage) were

identified by the presence of the germinal vesicle. Atretic

and aged oocytes were recognized by breakdown of the

zona pellucida during the denuding procedure. The ICSI

procedure was performed 3–6 h after oocyte retrieval as

published previously [33]. MII oocytes were assessed for

morphological quality before and during the ICSI proce-

dure on 2009 magnification (Olympus IX51, Japan). Three

morphologic and one functional parameter were assessed:

the presence and morphology of the first polar body, the

presence of central granularity, the presence of inclusions

and vacuoles, and the resistance of the plasma membrane at

ICSI [34–37]. MII oocytes were graded using a three-point

scoring system: oocytes without any irregularities were

graded as excellent-quality, oocytes with one irregularity

were graded as good-quality, and oocytes with two or more

irregularities were graded as poor-quality oocytes. Graded

and injected oocytes were cultured separately.

The fertilization rate was assessed 16–18 h after the

ICSI procedure (Day 1). Fertilized oocytes (zygotes) were

graded with respect to the size of the two pronuclei, the

arrangement of nucleolar precursor bodies, and the pre-

sence of the halo effect, as described previously [38–40].

Zygotes were graded using a three-point scoring system:

zygotes without any irregularities were graded as excellent-

quality, zygotes with one irregularity were graded as good-

quality, and zygotes with two or more irregularities were

graded as poor-quality zygotes.

Embryo cleavage rate and morphology were evaluated

64–76 h after ICSI (Day 3). Embryo morphology was

graded according to the number of blastomeres, the even-

ness of blastomeres, and the relative proportion of frag-

mentation [6, 41, 42]. A three-point scoring system was

used for embryo grading: embryos with seven or more

cells, equally sized blastomeres, and\20 % fragmentation,

were graded as excellent-quality; embryos with four to six

cells, equally or unequally sized blastomeres, and \20 %

fragmentation were graded as good-quality; embryos with

less than four cells or with [50 % fragmentation were

graded as poor-quality.

Statistical analysis

Depending on the data characteristics (e.g., group size,

measurement scale of a parameter, group variance, and

data distribution), parametric or non-parametric tests for

group comparison were applied. Student’s t tests were used

to examine differences between patients aged\35 and C35

in patients characteristics and ovarian response (Table 1).

The v2 tests were used to examined differences between

patients aged \35 and C35 in maturity stages of oocytes,

morphological quality of MII oocytes, zygotes and

embryos, and fertilized oocytes (Table 1). Student’s t tests

were used to examine differences between MII oocytes and

immature/atretic oocytes in follicular fluid AMH levels

(Tables 2, 3). To examine differences in follicular fluid

AMH levels between fertilized oocytes and non-fertilized

oocytes Student’s t tests were used (Tables 2, 3). When

comparisons were made between morphological excellent-

quality, good-quality, and poor-quality MII ooyctes and

embryos in follicular fluid AMH levels analyses of vari-

ance (ANOVAs) were applied (Table 2, 3). In some cases

(e.g., uniquely group sizes in Tables 2, 3), the results of

parametric tests (t test and ANOVA) were re-examined

using non-parametric tests (the Mann–Whitney U test and

Table 1 Patients’ characteristics, ovarian response, maturity stages

of oocytes, morphological quality of MII oocytes, zygotes and

embryos, and fertilized oocytes in patients aged \35 and C35 years

\35 years (n = 43)

M ± SD

C35 years (n = 49)

M ± SD

p

BMI (kg/m2) 23.30 ± 3.26 23.26 ± 3.09 0.956

FSH (IU/L) 7.13 ± 1.87 7.77 ± 2.32 0.148

LH (IU/L) 5.10 ± 1.65 5.71 ± 1.36 0.056

PRL (mIU/L) 299.88 ± 92.95 287.97 ± 96.02 0.548

AMH serum

(ng/mL)

1.48 ± 1.76 0.85 ± 0.81 0.034*

Oocytes

retrieved

7.09 ± 3.69 6.88 ± 3.46 0.773

% (N/total) % (N/total) p

Maturity stages of oocytes

MII stage 86.0 (37/43) 89.9 (44/49) 0.580

MI stage 4.7 (2/43) 6.1 (3/49) 0.757

PI stage 0 (0/43) 2.0 (1/49) –

Atretic/aged 9.3 (4/43) 2.0 (1/49) 0.125

Morphological quality of MII oocytes

Excellent-quality 29.7 (11/37) 29.5 (13/44) 0.859

Good-quality 35.1 (13/37) 18.2 (8/44) 0.083

Poor-quality 35.1 (13/37) 52.3 (23/44) 0.122

Fertilized oocytes (%) 73.0 (27/37) 72.7 (32/44) 0.975

Morphological quality of zygotes

Excellent-quality 40.7 (11/27) 28.1 (9/32) 0.308

Good-quality 51.9 (14/27) 50.0 (16/32) 0.888

Poor-quality 7.4 (2/27) 21.9 (7/32) 0.124

Morphological quality of embryos

Excellent-quality 16.7 (5/30) 23.8 (5/21) 0.527

Good-quality 43.3 (13/30) 14.3 (3/21) 0.028*

Poor-quality 40.0 (12/30) 61.9 (13/21) 0.124

Values in parenthesis are number/total number of analyzed cells.

M ± SD mean values ± standard deviation; * p B 0.05
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the Kruskal–Wallis test). The results of the non-parametric

tests supported our conclusions based on the results of the

parametric tests. Results are presented in tables as

mean ± standard deviation (SD) and number/total number

(%). Statistical significance was set at p \ 0.05 for all

analyses. Data were analyzed using the software Statistical

Package for Social Sciences version 17 (SPSS, USA).

Results

No significant differences were observed in BMI, FSH, LH,

and PRL levels among groups. Serum AMH levels were

significantly lower in patients aged C35 years compared to

patients aged \35 years (Table 1). There was no signifi-

cant difference in the number of oocytes retrieved after

controlled ovarian stimulation between groups according to

age (Table 1).

No significant differences were observed with respect to

two different gonadotropins used in controlled ovarian

stimulation (rFSH and HP-hMG) in terms of mean age,

BMI, FSH, LH, PRL, serum AMH level, number of

oocytes retrieved, embryo quality rate, and FF AMH level

(data not shown).

There was no significant difference in percentages of

maturity stages of oocytes, morphological quality of MII

oocytes, fertilized oocytes, and morphological quality of

zygotes between groups (Table 1). Patients aged\35 years

had significantly higher percentages of morphological

good-quality embryos (Table 1).

No significant difference of FF AMH levels between

MII oocytes and immature/atretic oocytes were observed in

patients \35 years (Table 2) and in patients C35 years

(Table 3). There was no significant difference in the FF

AMH levels in relation to the morphological quality of MII

oocytes and embryos in patients \35 years (Table 2) and

in patients C35 years (Table 3).

FF AMH levels were significantly lower in fertilized

MII oocytes than in non-fertilized MII oocytes in patients

\35 years (Table 2); however, there was no significant

difference of the FF AMH levels between fertilized and

non-fertilized MII oocytes in patients aged C35 years

(Table 3).

Discussion

Oocyte quality is one of the most important parameter of

success in IVF/ICSI procedures. However, morphological

quality of oocytes noted during in vitro culture cannot

always predict successful fertilization and developmental

capacity of oocytes. The role of follicular fluid AMH as

indicator of oocyte quality is not yet clarified. By corre-

lating oocyte maturity and morphological quality of MII

oocyte noted during ICSI procedure with follicular fluid

AMH levels, the present investigation aimed to clarify this

question.

Taking into account that female fertility declines with

the advancing age of woman and that age-related repro-

ductive failure results from diminished oocyte quality [43],

it was decided to subdivide patients into two groups

according to age (\35 years and C35 years). A negative

correlation of serum AMH to female age was found, as

described previously [44–46]. Despite data from literature

reporting that serum AMH is good predictor of oocyte

yield [45, 46], the present study failed to show a correlation

Table 2 Follicular fluid AMH levels compared between mature MII

oocytes and immature/atretic oocytes, between three morphological

stages of MII oocyte, fertilized and non-fertilized oocytes, and

between three morphological stages of embryos in patients aged\35

years

FF AMH (ng/ml)

(M ± SD)

p

MII oocytes (n = 37) 3.18 ± 2.86 0.284

Immature/atretic oocytes (n = 6) 1.88 ± 1.34

Excellent-quality MII oocytes (n = 11) 2.73 ± 2.36 0.828

Good-quality MII oocytes (n = 13) 3.34 ± 3.99

Poor-quality MII oocytes (n = 13) 3.42 ± 1.94

Fertilized oocytes (n = 27) 2.56 ± 2.00 0.032*

Non-fertilized oocytes (n = 10) 4.81 ± 4.14

Excellent-quality embryos (n = 5) 2.13 ± 0.97 0.644

Good-quality embryos (n = 13) 3.14 ± 2.34

Poor-quality embryos (n = 12) 2.69 ± 2.07

M ± SD mean values ± standard deviation; * p B 0.05

Table 3 Follicular fluid AMH levels compared between mature MII

oocytes and immature/atretic oocytes, between three morphological

stages of MII oocytes, fertilized and non-fertilized oocytes, and

between three morphological stages of embryos in patients aged C35

years

FF AMH (ng/ml)

(M ± SD)

p

MII oocytes (n = 44) 2.12 ± 1.30 0.652

Immature/atretic oocytes (n = 5) 1.85 ± 0.89

Excellent-quality MII oocytes (n = 13) 2.47 ± 1.31 0.491

Good-quality MII oocytes (n = 8) 1.82 ± 0.80

Poor-quality MII oocytes (n = 23) 2.03 ± 1.44

Fertilized oocytes (n = 32) 1.99 ± 1.19 0.431

Non-fertilized oocytes (n = 12) 2.32 ± 1.50

Excellent-quality embryos (n = 8) 1.50 ± 0.91 0.117

Good-quality embryos (n = 13) 1.99 ± 1.46

Poor-quality embryos (n = 14) 2.57 ± 0.92

M ± SD = mean values ± standard deviation; * p B 0.05
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between the oocyte yield and serum AMH levels (Table 1).

Similar results were also described by Takahashi et al. [31].

This study analyzed percentages of maturity stages of

oocytes and percentages of morphological quality of MII

oocytes, zygotes, and embryos in patients aged \35 and

C35 years. Each group consisted of single dominant oocyte

of each patient. Percentages of maturity stages of analyzed

oocytes and morphological quality of MII oocytes were

similar regardless of the patient age and serum AMH level.

Percentage of morphological good-quality embryos was

significantly higher in patients aged \35 years which

support previously published results that the success of IVF

mainly depend on maternal age [14, 47].

Some studies demonstrated a clear relationship between

serum AMH levels and the quality of oocytes and embryos

[15, 16, 19, 21], while others showed a lack of a consistent

correlation [22–24, 48]. One recent study suggested an

alteration of the follicular metabolism in conventional

gonadotrophin stimulated IVF and excluded any relevant

impact of AMH serum concentration on the follicular fluid

AMH concentration [50]. However, a limited number of

studies have analyzed quality of oocyte and embryo with

regard to FF AMH levels. The present study revealed no

correlation between FF AMH levels and maturity stages of

oocytes. Similarly, previous studies described FF AMH

concentrations having no effect on embryo quality [28, 29].

In contrast to our results, others showed a negative corre-

lation between FF AMH and oocyte quality [27, 30] and a

recent study [28] showed AMH is highly expressed and

secreted in preovulatory follicles containing immature and

atretic oocytes than in follicles containing MII oocytes.

Inconsistency in literature can be result in difference of

procedure. The present investigation measured AMH levels

in single dominant follicle of each patient while others [27,

30] estimated AMH concentration in pooled follicular

fluids. Also, Mehta et al. [30] estimated the maturity of

oocyte prior conventional IVF according to cumulus-oo-

phorus radiance which is often difficult to assess. Mor-

phological assessment of MII oocyte prepared for ICSI

(without cumulus-oophorus cells), can provide more

accurate information about the quality of the MII oocyte. In

contrast to previous observations, that different serum

AMH levels can predict the morphological quality of an

oocyte [15, 16], this study found no relationship between

FF AMH levels and morphological quality of MII oocytes.

The present study showed a significant negative corre-

lation between FF AMH levels and fertilization potential of

MII oocytes in patients aged\35 years. Fertilized oocytes

in this group had significantly lower levels of FF AMH in

comparison to non-fertilized oocytes. Higher levels of FF

AMH in non-fertilized oocytes suggest that, regardless the

same morphological quality of MII oocytes, oocytes from

follicles with higher levels of FF AMH had a poor fertil-

ization potential. However, we found no correlation in

patients aged C35 years. A disadvantage of the present

study is its small sample size, which could be a cause of

incompatible results in the two patients’ groups. Present

results are consistent with the recent study [30] which

demonstrated higher percentages of fertilization in low FF

AMH group. In contrast to our results, some studies [26,

31] found a positive relationship between FF AMH and

fertilization rate. Others found no significant correlation

between fertilization rate and serum AMH or FF AMH

levels [13, 28, 32]. The inconsistency in literature may in

part be explained by sperm quality that can affect fertil-

ization and the application of different fertilization proce-

dures (conventional IVF vs. ICSI). In our study, the ICSI

method was used because the IVF method is not optimal

for the analysis of oocyte quality. We are aware that ICSI

itself can also affect zygote and embryo quality and

development, but in the hands of one person, interference

of methodology is somehow standardized. Previous study

in mice suggests that oocyte can regulate AMH expression

and may play a role in intra-follicular regulation of the rate

of follicle growth [49]; therefore, we assume that oocytes

with good fertilization potential had a good utilization of

AMH from follicular fluid.

In conclusion, this study demonstrated that FF AMH

levels were significantly lower in fertilized oocytes than in

non-fertilized oocytes in patients aged \35 years. It

appears that FF AMH levels have no correlation to oocyte

maturity stage and morphological quality of MII oocyte but

might be a predictive marker of fertilization capacity of

MII oocytes in younger patients. Further studies are needed

to clarify this hypothesis.
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