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Abstract

Purpose For better selection of oocytes and embryos,

preimplantation genetic screening (PGS) was introduced.

As from the beginning of IVF, morphology was used as

selection criteria; we investigated the combination of both.

If there was a correlation between phenotype and genotype,

invasive PGS might be replaced.

Method Therefore, 104 cycles with PGS were done by

biopsy of the first polar body and FISH with five chro-

mosomes. Morphology of the oocyte was recorded digitally

and noted for 12 categories in 4–13 values; evaluation of

the chromosomes was noted for five chromosomes in five

values. Morphology and genetics were correlated to each

other.

Result Correlations between morphology and genetics for

day 0 were found: oocytes with an irregular or dark zona

are less probable to have a normal chromosome 13 (80 vs.

53 %, p = 0.001). A medium amount of detritus in the

perivitelline space makes it more probable to have a nor-

mal chromosome 18 (94 vs. 78 %, p = 0.001). A halo in

the cytoplasm makes it less probable to be euploid for

chromosome 22 (56 vs. 75 %, p = 0.018). For day 1,

pattern ‘‘1, 2, 3 and fine’’ in the pronuclei makes it more

probable to be euploid for chromosome 22 (78 vs. 63 %,

p = 0.002).

Conclusion There are correlations between the oocyte

genome and its morphology also on day 0. These correla-

tions are not sufficient to replace PGS.

Keywords Oocyte � Morphology � Genome � PGS �
Polar body biopsy � FISH

Introduction

The result of artificial reproductive techniques (ART) in

the human species is limited. Thinkable approaches for

optimization are: better quality, in the clinical or laboratory

work, and better selection of gametes or embryos. For

better selection, the ‘‘omics’’ were introduced in ART:

preimplantation screening of oocytes and (pre-) embryos

by genomics, proteomics and metabolomics. The principle

of this idea is not new: from the beginning of IVF, mor-

phology of oocytes and embryos was used as selection

criteria. The problem is: to what extent is there a correla-

tion between phenotype and genotype in oocytes and

embryos at that early stage, in vitro? If this extent is only

low, any selection criteria other than PGS can only lead to

limited success. Ideal selection criteria other than PGS

should exclude a maximum of aneuploidies.

Morphology is an easy-to-detect phenotypical selection

tool. But criteria for its description have to be standardized

and evaluated. Furthermore, morphology changes over

time, so the point in time for observation, matters. Last but

not least, it is not clear as to which point in time correlates

best with the outcome. Also the best time for a genetic

analysis of the embryo is not clear for various reasons.

Morphology checks in practice are normally done daily
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when other works on oocytes and embryos are carried out.

These times differ, and morphologic criteria are not

unanimously accepted. Investigations of the morphologic

development in relation to a time scheme with time lapse

(‘‘embryo scope’’) might deliver an additional selection

marker. As many randomized controlled trials (RCT) found

no benefit of PGS [1] and only now first significant results

were presented [2–4], we wanted to check if PGS could be

replaced by morphologic observations. As embryo selec-

tion is not allowed in our country, we opted for polar body

biopsy. So we related the morphology of the oocyte to the

result of its genetic investigation.

Morphology of oocytes and embryos can be checked by

stereo light microscopy, on a routine basis, at lower mag-

nification (809), or more detailed at the stage of the

microscope of the micromanipulator (4009). It is also

possible to record the picture by photograph or film. For the

genetic part, FISH and aCGH are thinkable. For scientific

morphologic investigations of oocytes or embryos, 4009

magnification and photography are most common. For PGS

of oocytes first or first and second polar bodies are ana-

lysed. For genetic analysis, FISH with 5–9 probes are most

common. With the introduction of PGS in our program [5]

by laser biopsy we opted for digital imaging of all oocytes.

In order to reduce possible harm to the oocyte by two

distinct micromanipulations (ICSI and biopsy) within a day

we biopsied only the first polar body. As we did not charge

the patients for PGS we limited FISH to five probes.

Methods

PGS was offered to all patients with eight or more oocytes.

If there were more than about 12 we offered ‘‘splitting’’ to

the patients: as cryopreservation of biopsied oocytes is not

very successful, we proposed to perform PGS on 8–10

oocytes and freeze the rest. We used all established stim-

ulation protocols, adapted to the patient, with a first line

therapy with the long GnRH protocol with oral

contraceptives (Valette, Ethinylestradiol 0.03 mg and

Dienogest 2 mg) and nasal Spay (Synarela, Nafarelin

0.8 mg/d).

After hyaluronidase treatment, the amount of mature

oocytes was detected. Together with the patient, it was

decided if a splitting between PGS and cryopreservation

should be done. For hybridization the standard set of

probes from Vysis was used: chromosomes 13, 16, 18, 21

and 22. The digital registration of the oocyte was per-

formed with the Octax system (MTG, Bruckberg, Ger-

many). The FISH results were evaluated by two

investigators following preset standards. If their decision

was not unanimous, a senior third decided. The results

were noted for each chromosome of the five chromosomes

in 5 values from 0 to 4, depending on the number of signals

detected (Table 1). As each chromosome in the first polar

body has got two chromatids, two signals signified one

whole chromosome in the polar body and one chromosome

in the oocyte, which signified the only normal value.

The morphology was noted at the time of biopsy and

on the following day (Table 2). Primarily five distinct

microanatomic parts of the oocyte were described: first

polar body, pronuclei, cytoplasm, perivitelline space and

zona pellucida. These categories were ranked in preset

values for each category (see Table 2). Secondly any

other special morphologic phenomena were noted

(Table 2, # 8, 10, 12). The morphologic and genetic

categories were than correlated with each other (Table 3).

This can be done in an analysis from fine to coarse: (1)

single categories versus single categories, with all vari-

ables or divided in only two (‘‘good’’ and ‘‘bad’’); (2)

single versus all categories as a whole, again with all

categories as variables or only two (genetics or mor-

phology of the whole oocyte) and vice versa (3); (4) all

genetic categories as a whole versus all morphologic

categories as a whole, again with all categories as vari-

ables or only two.

The study was registered and approved by the Ethics

Commission of the Medical Faculty of the Christian-

Table 1 Chromosomes

The 5 variables apply to each

chromosome. Bold signifies the

normal variable

5 genetic categories:

chromosomes

5 genetic variables:

chromatids

Genetic variables: explanations

Chromosome 13 0 No chromatid in polar body: 2 chromosomes in

oocyte = abnormal (aneuploidy)

Chromosome 16 1 1 chromatid in polar body: 1 chromosome and 1

chromatid in oocyte = abnormal (aneuploidy)

Chromosome 18 2 1 chromosome in polar body: 1 chromosome in

oocyte = normal (euploid)

Chromosome 21 3 3 chromatids in polar body: 1 chromatid in

oocyte = abnormal (aneuploidy)

Chromosome 22 4 2 chromosomes in polar body: no chromosome

in oocyte = abnormal (aneuploidy)
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Table 3 Possible correlations

between genetics and

morphology

a one chromosome, five

variables; b one chromosome,

two variables: normal or

abnormal; c all chromosomes,

some normal; d all

chromosomes, all normal or

abnormal; e one category, 4–13

variables; f one category, two

variables: normal, abnormal;

g all categories, some normal;

h all categories, all normal or

abnormal

Number of investigation Genetics Morphology

I. Single/single Single genetic categories

(five chromosomes with 5 variables)

Single morphologic categories

(12 categories with 4–13 variables)

1 Variable (a) Variable (e)

2 Variable (a) Dichotomous (f)

3 Dichotomous (b) Variable (e)

4 Dichotomous (b) Dichotomous (f)

II. Single/whole Single genetic categories

(five chromosomes with 5 variables)

Whole morphologic status

(12 categories together)

5 Variable (a) Variable (g)

6 Variable (a) Dichotomous (h)

7 Dichotomous (b) Variable (g)

8 Dichotomous (b) Dichotomous (h)

III. Whole/single Whole genetic status

(five chromosomes together)

Single morphologic categories

(12 categories with 4–10 variables)

9 Variable (c) Variable (e)

10 Variable (c) Dichotomous (f)

11 Dichotomous (d) Variable (e)

12 Dichotomous (d) Dichotomous (f)

IV. Whole/whole Whole genetic status

(five chromosomes together)

Whole morphologic status

(12 categories together)

13 Variable (c) Variable (g)

14 Variable (c) Dichotomous (h)

15 Dichotomous (d) Variable (g)

16 Dichotomous (d) Dichotomous (h)

Table 2 Morphology

# 12 morphologic

categories

4–13 morphologic variables Numbers

variables

Oocytes

1 Polar body 1 None, round, fragmented, big 4 182

2 Polar body 2 None, round, fragmented, oval 4 78

3 Pronuclei None, 1, 2, 3 4 932

4 Pattern pronuclei 0, 1, 2, 3, 4, 5, fine granular 7 567

5 Number polar bodies 0, 1, 2, 3 4 663

6 Polar body 2 Fragments 0, 2, 3, 4, 5, 6, 7 7 133

7 Cytoplasm Very good, good, bad, degenerating 4 853

8 Cytoplasm

specialties

Halo, oval, unshaped, dark, degenerated, cytoplasm out of

zona, nose, centered, vacuole, oil, fragmented, in perivitelline

space, coarsely granular

13 298

9 Perivitelline space Granulation degree 0, 1, 2, 3 4 354

10 Perivitelline space

specialties

Small, normal, big, oil 4 204

11 Zona Small, normal, thick, irregular, dark, no zona, marked-off 7 444

12 Zona specialties Big hole, vitreous, porous, porous dark, frazzled, fringed 6 41

All observations on day 0, except numbers 3, 4, 6, on day 1
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Albrechts-University, Kiel. Statistic tests were performed

with SPSS. Significant correlations were accepted if the

Chi-square test (Pearson) showed an asymptotic signifi-

cance (2-sided) of B0.05.

Results

From 104 PGS cycles we generated 1,181 mature oocytes;

893 were biopsied, and from 621 we got genetic results.

Morphologic phenomena were noted in detail with a

maximum of 932 for pronuclei (Table 2). Oocytes were not

biopsied because of ‘‘splitting’’, attributing part of the

oocyte pool to cryopreservation. Polar bodies could not be

biopsied due to biological or technical reasons. Oocytes

were not classified morphologically due to omissions in the

laboratory. Genetic results were not achieved due to

problems with fixation, hybridisation or analysis.

Significant correlations could be found for all four dif-

ferent comparisons of the first step of analysis (Table 3 I

1–4.), i.e., for single chromosomes versus single morpho-

logic categories. These comprised four of the five major

entities: for day 0 zona, perivitelline space, cytoplasm but

not polar bodies, and for day 1 pronuclei (Table 4). Further

steps found a single correlation (Table 3, III 11, ‘‘whole vs.

single’’) for euploid oocytes versus zona specialties

(p = 0.028). The zona correlates with chromosomes 13,

16, 21 and 22. A normal zona correlates with a normal

chromosome 13, especially oocytes with an irregular or

dark zona are less probable to have a normal chromosome

13 (80 vs. 53 %, p = 0.001). The perivitelline space cor-

relates with chromosome 18, a medium amount of detritus

makes it more probable to have a normal chromosome 18

(94 vs. 78 %, p = 0.001). Cytoplasm specialties and the

pattern of the pronuclei correlate with chromosome 22. A

halo makes it less probable to be euploid for chromosome

22 (56 vs. 75 %, p = 0.018). Pattern ‘‘1, 2, 3 and fine’’

make it more probable to be euploid for chromosome 22

(78 vs. 63 %, p = 0.002).

Discussion

From 621 oocytes we got chromosomal results and from up

to 932 oocytes morphological descriptions. These are suf-

ficient data to correlate morphology and genetics. Signifi-

cant correlations were found for zona, perivitelline space,

cytoplasm and pronuclei. There is only little literature

Table 4 Significant

correlations between genetics

and morphology

Genetics Morphology Correlations Oocytes Significances

pChromosome Morphologic

category

Chromosome/morphologic category

13 Zona (1.) variable/variable 201 0.027

(2.) dichotomous/variable 0.005

(3.) dichotomous/dichotomous: normal vs. rest

(81 vs. 68 %, 80/99 vs. 69/102)

0.033

(4.) dichotomous/dichotomous: small, normal,

thick vs. irregular, dark

(80 vs. 53 %, 126/158 vs. 23/43)

0.001

16 Zona (5.) variable/variable 293 0.024

18 Perivitelline

space

(6.) variable/variable 242 0.008

(7.) dichotomous/variable 0.007

(8.) dichotomous/dichotomous: medium

detritus vs. rest

(94 vs. 78 %, 101/108 vs. 104/134)

0.001

21 Zona

specialties

(9.) dichotomous/variable 26 0.05

22 Cytoplasm

specialties

(10.) variable/dichotomous 167 0.011

(11.) dichotomous/dichotomous: halo vs. rest

(56 vs. 75 %, 24/43 vs. 93/124)

0.018

Pattern

pronuclei

(12.) dichotomous/variable 347 0.025

(13.) dichotomous/dichotomous: 1,2,5, fine vs.

rest

(78 vs. 63 %, 123/157 vs. 119/190)

0.002

Zona

specialties

(14.) dichotomous/variable 24 0.001
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concerning a relation between oocyte morphology and

aneuploidy for day 0. Bad cytoplasm was related to a

seemingly increased proportion of aneuploidy, by con-

ventional karyogram [6]. For day 1 pronuclei scores were

found related to aneuploidy with blastomere biopsy day 3

and FISH [7–10], as well as development in vitro with time

lapse [11]. First analysis in the beginning of our trial found

correlations of oocyte aneuploidy with zona, polar body

and perivitelline space [12, 13].

Correlations between oocyte morphology and develop-

ment in vitro and in vivo were often looked for and mostly

found:

– For the zona (yes: [14–21]; no: [22, 23]);

– For the polar body (yes: [24–29]; no: [30–32]);

– For the perivitelline space (yes: [24, 29, 33];

no: [22, 34]);

– For the cytoplasm (yes: [24, 29, 35–37]; also for

spindles [38]; no: [22, 23, 26, 32, 39]);

– For pronuclei (yes: [7–10, 28, 40, 41]).

So it is not astonishing that most oocyte features also for

day 0 can be also related to genetics. Only the correlations

found unfortunately are not big enough to have a clinical

relevance. The differences are just between 15 and 27

percent points and only relate to single chromosomes.

aCGH might bring a higher efficiency towards a relation

between oocyte morphology and genome. For the aim of

the study, to find possibly a morphologic replacement for

PGS, one can say that this was not found. Even if there is a

correlation between a normal zona and a normal chromo-

some 13, the discrimination is not big enough and cannot

lead to a clinical relevance. So for the time being PGS

cannot be replaced by morphology, but a future broader

application of aCGH with an analysis of all chromosomes

might change that.
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