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Abstract
Skin cutaneous melanoma (SKCM), a form of skin cancer, ranks among the most formidable and lethal malignancies. 
Exploring	tumor	microenvironment	(TME)-based	prognostic	indicators	would	help	improve	the	efficacy	of	immunother-
apy for SKCM patients. This study analyzed SKCM scRNA-seq data to cluster non-malignant cells that could be used 
to explore the TME into nine immune/stromal cell types, including B cells, CD4 T cells, CD8 T cells, dendritic cells, 
endothelial cells, Fibroblasts, macrophages, neurons, and natural killer (NK) cells. Using data from The Cancer Genome 
Atlas	 (TCGA),	 we	 employed	 SKCM	 expression	 profiling	 to	 identify	 differentially	 expressed	 immune-associated	 genes	
(DEIAGs), which were then incorporated into weighted gene co-expression network analysis (WGCNA) to investigate 
TME-associated hub genes. Discover candidate small molecule drugs based on pivotal genes. Tumor immune microen-
vironment-associated	genes	(TIMAGs)	for	constructing	TIMAS	were	identified	and	validated.	Finally,	the	characteristics	
of	TIAMS	 subgroups	 and	 the	 ability	 of	TIMAS	 to	 predict	 immunotherapy	 outcomes	were	 analyzed.	We	 identified	five	
TIMAGs	 (CD86,	 CD80,	 SEMA4D,	 C1QA,	 and	 IRF1)	 and	 used	 them	 to	 construct	 TIMAS.	 In	 addition,	 five	 potential	
SKCM	drugs	were	identified.	The	results	showed	that	TIMAS-low	patients	were	associated	with	immune-related	signal-
ing	pathways,	high	MUC16	mutation	frequency,	high	T	cell	 infiltration,	and	M1	macrophages,	and	were	more	favorable	
for immunotherapy. Collectively, TIMAS constructed by comprehensive analysis of scRNA-seq and bulk RNA-seq data 
is a promising marker for predicting ICI treatment outcomes and improving individualized therapy for SKCM patients.
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Based on scRNA-seq and bulk RNA-seq to establish tumor immune 
microenvironment-associated signature of skin melanoma and predict 
immunotherapy response
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Introduction

The incidence of skin cutaneous melanoma (SKCM), a 
remarkably aggressive and lethal malignancy, is progres-
sively escalating on a global scale [1]. The prognosis of 
individuals	 afflicted	 with	 SKCM	 is	 disheartening,	 with	
a mere 20% survival rate observed for those with distant 
metastases within a 5-year timeframe [2]. In recent times, 
the application of immune checkpoint inhibitors (ICI) tar-
geting CTLA-4 (cytotoxic T lymphocyte antigen 4), PD-1 
(programmed death 1), and PD-L1 (PD-1 ligand) has sig-
nificantly	 enhanced	 the	 clinical	 prognosis	 of	 individuals	
afflicted	 with	 SKCM	 [3–6].	 However,	 a	 mere	 fraction	 of	
approximately 30–40% of patients grappling with advanced 
melanoma can avail themselves of immunotherapy unhin-
dered by innate resistance [6, 7]. In order to explore prognos-
tic	 signatures	 that	 can	 significantly	enhance	 the	prognosis	
of SKCM patients, it is imperative to engage in pioneering 
searches for tumor immune microenvironment-associated 
genes (TIMAGs).

The	 efficacy	of	 immunotherapy	 is	 intricately	 related	 to	
the composition of the tumor microenvironment (TME), 
which comprises a complex interplay of immune cells, 
stromal cells, and extracellular matrix molecules [8–15]. 
Within the TME, two distinct categories of immune cells 
can be distinguished: innate immune cells and acquired 
immune cells. Innate immune cells comprise neutrophils, 
dendritic cells, and macrophages, whereas acquired immune 
cells encompass T cells and B cells [14–16].	High	 levels	
of	tumor-infiltrating	T	lymphocytes	in	SKCM	patients	have	
been linked to improved treatment outcomes [17, 18].	How-
ever,	T	cells	cannot	autonomously	implement	effector	func-
tions, such as the initiation, maintenance of T cell responses, 
and the development of long-term protective memory T 
cells and they all require the participation of innate immune 
cells [18].	Otherwise,	stromal	cells	within	 the	TME	affect	
SKCM patients’ prognosis by participating in the processes 
of tumorigenesis, progression, and metastasis [19, 20]. For 
example,	CXCL12	produced	by	carcinoma-associated	fibro-
blasts (CAFs) can stimulate cancer cell proliferation while 
restricting	T	 cell	 infiltration,	 and	CAFs	 from	 the	 original	
tumor have been found in metastases [21, 22].

As a traditional transcriptomic analysis tool, bulk RNA 
sequencing (bulk RNAseq) solely enables the detection of 
the average expression level of genes within the cell pop-
ulation so that may cover up the heterogeneity informa-
tion in the cell population, which is not conducive to our 
exploration of TME [23]. In recent times, the expeditious 
advancement of single-cell RNA sequencing (scRNA-seq) 
technology has made it an important tool to reveal informa-
tion on cellular transcriptome heterogeneity [24, 25]. There-
fore, conducting a thorough analysis of bulk RNA-seq and 

scRNA-seq	to	find	TIMAGs	to	establish	prognostic	markers	
is	 the	key	 to	 solving	 the	 current	poor	 immune	efficacy	 in	
melanoma patients.

In this study, we clustered non-malignant cells in 
scRNA-seq into 9 immune/stromal cells as a basis for 
exploring the TME of melanoma. We separated TCGA-
SKCM patients into two distinct immunity clusters based on 
the	degree	of	 infiltration	of	 immune-related	gene	sets.	We	
discerned	 the	 differentially	 expressed	 immune-associated	
genes (DEIAGs) within patients exhibiting distinct immune 
infiltration	 profiles,	 subsequently	 integrating	 them	 into	
weighted gene co-expression network analysis (WGCNA) 
to uncover hub genes associated with the melanoma TME. 
Based on the hub genes, potential drugs which could assist 
in treating patients of SKCM were explored. We then con-
structed and validated a tumor immune microenvironment-
associated	signature	(TIMAS)	consisting	of	five	TIMAGs.	
We elucidated the molecular and immunological charac-
teristic of TIMAS and compared the predictive ability for 
immunotherapy outcomes of patients among TIMAS, tumor 
immune dysfunction and exclusion (TIDE) as well as tumor 
inflammatory	 markers	 (TIS).	 The	 findings	 suggested	 that	
TIMAS developed in this study was a promising prognostic 
signature in SKCM immunotherapy.

Methods

Acquisition of SKCM patient dataset

Bulk RNA-seq data for 457 SKCM patients and clinical 
case information and somatic mutation data for 466 patients 
were made available through the TCGA data portal (https://
tcga-data.nci.nih.gov/tcga/). Single-cell RNA-seq dataset 
GSE115978, encompassing a table comprising 7186 cells 
extracted from 31 SKCM patients along with their respec-
tive annotations, was procured from the GEO database 
(https://www.ncbi.nlm.nih.gov/geo/). The GSE65904 data-
set, comprising 214 samples obtained from the GEO data-
base, served as the external validation data for this study. To 
assess the immunotherapy predictive capacity of TIMAS, 
both the phs000452.v2.p1 and GSE78220 datasets were 
examined.

Single-cell analysis

The conversion of non-malignant cells from GSE115978 to 
Seurat objects was performed by the Seurat R package. We 
filtered	out	cells	with	less	than	2500	genes	and	normalized	
the selected cells using the LogNormalize method. Based 
on the FindVariableFeatures function, we screened for 
highly variable genes between cells. Subsequently, principal 
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component analysis (PCA) was employed for dimensional-
ity reduction of the single-cell samples, and the available 
dimensions of samples were determined by combining 
ElbowPlot and JackStrawPlot. Next, we visualized the 
selected principal components (PCs) using the umap algo-
rithm [26] and clustered the cell samples by SingleR [27]. 
Finally,	the	cells	were	annotated	based	on	HumanPrimary-
CellAtlasData, BlueprintEncodeData, MonacoImmuneData 
in Celldex.

Immunity subtype clustering and cell subgroups 
analysis

Quantification	of	immune	infiltration	status	in	TCGA-SKCM	
patients was achieved by single-sample gene set enrichment 
analysis (ssGSEA) based on the degree of enrichment of 29 
immune-related gene sets [28]. The TCGA-SKCM samples 
were then hierarchically clustered according to immunity by 
the	sparcl	R	package.	We	then	explored	differences	in	prog-
nosis	between	different	 immunity	 subtypes.	Next,	we	cal-
culated	the	expression	levels	of	cell	subgroups	in	different	
immunity clusters based on the TCGA dataset. Furthermore, 
we investigated the biological processes associated with the 
differentially	expressed	genes	(DEGs)	among	cell	subtypes	
using Gene Ontology (GO) analysis.

TIMAGs and potential small molecule drugs 
identification

Based on LIMMA, DEGs satisfying |logFC| greater than 1 
and false discovery rate (FDR) less than 0.01 were obtained 
in	different	immunity	clusters.	To	identify	DEIAGs,	DEGs	
were then included in a comprehensive consideration 
with immune-associated genes in ImmPort (https://www.
immport.org/shared/home) and InnateDB (https://www.
innateDBdb.com/). We performed WGCNA analysis and 
constructed the network by selecting genes (weight > 0.2) 
from	 the	 significant	 correlation	 module.	 We	 conducted	
enrichment	 analysis	 of	 genes	 in	 significantly	 correlated	
modules using GO and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [29]. As hub genes, the network’s genes 
with degrees greater than 20 were chosen.

Our training set was derived from a random allocation of 
two-thirds of the TCGA-SKCM samples (n = 306), and the 
remaining third as the test set (n = 151). Then, to identify 
TIMAGs from the hub genes, we employed univariate Cox 
regression and LASSO regression analyses [30]. By GEPIA 
(http://gepia.cancer-pku.cn/), the relationship between 
TIMAGs and overall survival (OS) in SKCM patients was 
explored. Biological characterization of hub genes was 
performed in Metasscape (https://metascape.org) [31]. The 
CMap information portal (http://www.broadinstitute.org/) 

was used to explore potential SKCM drugs related to the 
hub genes [32]. Finally, the 3D structures of the potential 
medication candidates were obtained by accessing the Pub-
Chem database (https://pubchem.ncbi.nlm.nih.gov/).

TIMAS design and validation

Cistrome Cancer database (http://cistrome.org/Cistrome-
Cancer/CancerTarget/) provided 318 transcription factors 
(TFs) [33],	and	we	then	chose	differentially	expressed	TFs	
from	DEIAGs.	Using	Pearson	correlation	coefficient	analy-
sis,	 a	 regulatory	network	based	on	TFs	and	five	TIMAGs	
was	created	(coefficient	of	correlation	> 0.4, P-value < 0.05).

The TIMAGs were added to the formula below to get the 
TIMAS for each patient:

TIMAS =β1×exp G1+β2×exp G2+ . . .+βn× exp Gn

The	 β	 in	 the	 formula	 is	 derived	 from	 the	 coefficient	 cor-
responding to each TIMAGs in the LASSO regression 
analysis.

We grouped patients based on their median TIMAS, 
and	then	explored	differences	in	OS	among	patients	in	dif-
ferent TIMAS subgroups. Three time periods of 1, 3, and 
5 years were set to analyze the time-dependent ROC of 
TIMAS [34]. The TIMAS formulation was applied to the 
internal and external validation sets, repeated the above 
Kaplan-Meier and ROC curve analysis. The independence 
of	TIMAS	was	then	verified	by	univariate	and	multivariate	
Cox analyses, and factors from the Cox regression model 
were incorporated into the nomogram.

Characteristic analysis of TIMAS

In signaling pathway analysis, DEGs (P-value < 0.05) 
between TIMAS subgroups were involved in gene set 
enrichment analysis (GSEA). In addition, we performed 
Signaling pathways and tumor mutational burden (TMB) 
analysis	of	patients	in	different	TIMAS	subgroups.

The	 immune	 characteristics	 of	 different	 TIMAS	 sub-
groups in patients were assessed by analyzing the composi-
tion of 22 immune cells through the utilization of CiberSort 
[35]. Furthermore, we compared the ability of TIMAS, 
TIDE, and TIS to predict immunotherapy outcome by time-
dependent ROC curves.

Statistical analysis

GSE65904 data were normalized and transformed based on 
log2 by the limma R package. The association of the two 
datasets	 was	 estimated	 by	 the	 Pearson	 correlation	 coeffi-
cient.	The	 calculation	 of	 the	TIDE	 score	was	 finished	 on	
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TIMAGs and potential small molecule drugs

We	 identified	 the	 intersection	 of	 DEGs	 (n = 1049) and 
immune-related gene lists (n = 1520), a total of 192 eli-
gible DEIAGs were included in the following study (186 
genes upregulated, 6 genes downregulated). We performed 
WGCNA analysis on DEIAGs using weighted gene co-
expression network (Fig. 3a,	b).	Finally,	five	modules	 are	
determined based on the mean connectivity and the opti-
mal soft threshold power (Fig. 3c). Genes within the blue 
and turquoise modules, which exhibited strong associations 
with SKCM TME, were selected according to the modules 
and immune/stromal cells (Fig. 3d). The module networks 
with threshold weight > 0.2 were shown in Supplementary 
Fig. 1. Supplementary Fig. 2a-c presented the results of 
the GO and KEGG enrichment analyzes conducted on the 
genes belonging to blue and turquoise module genes. We 
obtained 37 hub genes (degree > 20).

We used univariate Cox regression analysis on 37 hub 
genes based on the training set and obtained 12 hub genes 
with prognostic features (Fig. 3e). We then performed Lasso 
Cox regression on 12 prognosis-related hub genes and 
identified	five	TIMAGs	 (CD86,	CD80,	SEMA4D,	C1QA,	
IRF1),	which	were	most	 significant	 in	 terms	of	prognosis	
in SKCM patients (Fig. 3f). The GEPIA results revealed a 
favorable association between the expression levels of the 
five	TIMAGs	 and	 the	 patients’	 prognosis	 (Supplementary	
Fig. 3).

We investigated the biological information of hub genes, 
including functions and potential pathways (Fig. 4a, b). We 
selected	five	compounds	with	connectivity	scores	less	than	
−	99	as	five	candidate	small	molecule	drugs	(Table	1) and 
obtained their 3D conformations from the PubChem data-
base (Fig. 4c).

Survival analysis of TIMAS in the training set

We	built	TIMAS	based	on	five	TIMAGs	with	independent	
regression	 coefficients.	 The	 formula	 for	 constructing	 the	
prognostic model:

TIMAS = − (0.031715671 × exp CD86 + 0.568057562 × exp CD80
+ 0.106772225 × exp SEMA4D + 0.001166651 × exp C1QA
+ 0.031326470 × exp IRF1)

Using the median TIMAS of SKCM patients as a group-
ing basis, we obtained TIMAS-low patients (n = 229) and 
TIMAS-high patients (n = 228).

According	to	a	heatmap	we	created	of	five	TIMAGs	in	
TIMAS subgroups, patients with TIMAS-low had higher 
expression	 levels	 of	 the	 five	 TIMAGs	 than	 those	 with	
TIMAS-high. (Fig. 5a). In the regulatory mechanism analy-
sis of 5 TIMAGs, we selected six TFs from the DEIAGs of 

the TIDE database (http://tide.dfci.atherard.edu/). The TIS 
score was computed by averaging the expression levels 
of six characteristic genes [36]. This study was based on 
R (version 4.1.2) for data analysis, model construction and 
validation.

Results

Identification of cell subgroups in SKCM single-cell 
RNA-seq

After excluding non-compliant cells, a total of 4569 cells 
were collected (Fig. 1a).	We	 identified	 2000	 highly	 vari-
able genes and annotated the top 10 genes (Fig. 1b). After 
performing dimensionality reduction on single-cell samples 
using PCA, we comprehensively analyze JackStrawPlot and 
ElbowPlot to determine the actual number of PCs available. 
The JackStrawPlot showed that from the 15th PC onwards, 
the P-values			for	the	PCs	drop	significantly	(Fig.	1c). It could 
be	seen	from	the	ElbowPlot	that	the	inflection	point	of	the	
curve appeared near PC14 (Fig. 1d). These results implied 
that	the	first	14	PCs	were	actually	usable.	Then	we	visual-
ized the selected 14 PCs using umap, which were clearly 
divided into 14 clusters (Fig. 1e). Based on the SingleR 
package and Celldex package, we successfully clustered 
single-cell samples into 9 cell subgroups. After annotation, 
nine types of immune/stromal cells including B cells, CD4 
T	cells,	CD8	T	cells,	dendritic	cells,	endothelial	cells,	fibro-
blasts, macrophages, neurons, and natural killer (NK) cells 
were obtained (Fig. 1f).

Relationship between immunity subtypes and cell 
subgroups

Tumor	 immunotherapy	 is	affected	by	 the	state	of	 immune	
cell	infiltration	within	the	TME.	The	samples	were	stratified	
into immunity-high (n = 342) and immunity-low (n = 115) 
groups based on ssGSEA scores. Survival analysis results 
showed	that	a	good	immune	infiltration	state	could	improve	
the OS of patients (Fig. 2a). We found that high expres-
sion of immune/stromal cells in SKCM patients within the 
TCGA dataset was strongly associated with high immune 
infiltration	(Fig.	2b). In addition, we performed GO analy-
sis on DEGs between 9 kinds of immune/stromal cells, and 
the	analysis	 revealed	a	significant	enrichment	of	DEGs	 in	
immune-related pathways, including neutrophil activa-
tion, immune response involving neutrophil activation, and 
neutrophil-mediated immunity (Fig. 2c). The above results 
demonstrated the accuracy of the clustering method and the 
significant	 correlation	 of	 immunophenotype	 with	 SKCM	
progression and patient prognosis.
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Fig. 1 Clustering of cell subtypes in SKCM scRNA-seq data. a Qual-
ity-compliant cell information visualization. b	Highly	variable	genes	
in scRNA-seq. c	JackStrawPlot	identified	PCs	available	in	samples.	d 

ElbowPlot	identified	PCs	available	in	samples.	e Visualization of 14 
PCs clustering. f Visualization of cell subgroups in scRNA-seq
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Fig. 2 Immunity subtypes and cell subgroups a Kaplan-Meier analysis of OS for the immunity subtypes. b Expression levels of cell subgroups on 
different	immunity	subtypes.	c Enrichment analysis of DEGs among 9 kinds of immune/stromal cells
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Fig. 3	 Identification	of	TIMAGs.	a, b Estimation of the optimal soft-
thresholding power in the WGCNA analysis. c WGCNA analysis of 
DEIAGs	with	soft	threshold	β	= 4. d Gene modules and immune/stro-

mal cells correlation analysis. e Univariate Cox regression analysis of 
hub genes. f Lasso Cox regression analysis of 12 prognosis-related 
hub genes
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Table 1	 Five	most	significant	candidate	small	molecule	drugs
ID Name Description Score
BRD-K14880289 GW-501,516 PPAR receptor agonist -99.86
BRD-K99063460 didanosine Nucleoside reverse transcriptase inhibitor agonist -99.58
BRD-K76064317 tyrphostin-AG-1296 FLT3 inhibitor -99.44
BRD-K15868788 SDZ-205-557 Serotonin receptor antagonist -99.28
BRD-K87696786 LY-456,236 Glutamate receptor antagonist -99.23

Fig. 4 Analyses of the candidate small molecule drugs. a	Hub	gene	enrichment	analysis.	b The hub gene interaction network. c 3D conformers of 
five	potential	SKCM	drugs
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three time periods reached above 0.6, indicated that TIMAS 
had	acceptable	sensitivity	and	specificity	 for	survival	pre-
diction (Fig. 5e).

Stability verification of TIMAS

In the validation set, it was observed that the survival curves 
of patients in the TIMAS-low subgroup were all above those 
of patients in the TIMAS-high subgroup, indicating that 
TIMAS-low patients had better OS (Fig. 6a, b). The patient 
distribution and survival status of TIMAS in two validation 
cohorts demonstrated TIMAS built using the TCGA train-
ing set to be reliable. (Fig. 6c-f). Figures 4h and 6g showed 

the immunity subgroup, of which 24 pairs of TIMAGs inter-
acting	with	transcription	factors	were	significantly	correla-
tion. We constructed regulatory networks and draw Sankey 
diagrams	to	show	the	relationship	between	five	TIMAGs	and	
TFs (Fig. 5b). We conducted an analysis of the OS among 
the patients and found that TIMAS-low patients lived lon-
ger and had a better survival probability than TIMAS-high 
patients (P-value < 0.001, Fig. 5c). We explored the distri-
bution and survival status of patients based on TIMAS built 
on the training set (Fig. 5d). Their survival status showed 
a clear separation between TIMAS subgroups, with more 
patients surviving in the TIMAS-low group. The area under 
the time-dependent ROC curve (AUC) of TIMAS in the 

Fig. 5 Characterization of TIMAGs and construction of TIMAS. a 
Heatmap	of	five	TIMAGs	 in	different	TIMAS	subgroups.	b Sankey 
diagram	of	 the	 regulatory	network	of	five	TIMAGs	and	TFs.	c Sur-
vival	prognostic	analysis	of	different	TIMAS	subgroups	of	patients	in	

the training set. d TIMAS distribution (top) and survival status plot 
of patients (bottom) in TIMAS subgroups. e Time-dependent ROC 
curves of TIMAS
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Fig. 6 TIMAS in validation set. a Kaplan-Meier analysis of TIMAS in 
testing set. b Survival prognostic analysis of TIMAS in GSE65904. c-f 
The distribution (c, d) and survival state (e, f) of patients for TIMAS 

in internal and external cohorts. g Time-dependent ROC analysis of 
TIMAS in testing set. h Time-dependent ROC curves of TIMAS in 
GSE65904 cohort

 

1 3

262 Page 10 of 19



Archives of Dermatological Research (2024) 316:262

The immune microenvironment of different TIMAS 
subgroups

Upon	analyzing	 the	 content	of	 22	 immune	cells	 in	differ-
ent TIMAS subgroups, it was discovered that the relative 
proportions of memory B cells, plasma cells, CD8 T cells, 
activated memory CD4 T cells, and M1 macrophages were 
significantly	greater	in	the	TIMAS-low	subgroup	compared	
to the TIMAS-high subgroup. The TIMAS-high subgroup 
was enriched in resting memory CD4 T cells, M0 macro-
phages, M2 macrophages and resting mast cells (Fig. 9a). 
Figure 9b displayed the clinicopathological characteristics 
of the TIMAS subgroups along with other immune land-
scape-related factors.

Compared with TIMAS-high patients, TIMAS-low 
patients had lower TIDE and T-cell exclusion score, 
higher T-cell dysfunction score and TIS score, implied 
that TIMAS-low patients performed better on ICI therapy 
(Fig. 10a, b). We explored the association of TIMAS with 
key immune checkpoints genes (Fig. 10c). We compared 
the time-dependent ROC curves among TIMAS, TIDE, and 
TIS three algorithms in 6, 12, and 24 months, and found 
that the performance of TIMAS is the best (Fig. 10d-f). The 
above results implied that this TIMAS might have potential 
value in predicting SKCM patients’ survival prognosis and 
the	effect	of	 ICI	 treatment	based	on	 the	 immune	status	of	
patients’ TME.

Discussion

Compared with traditional therapy, ICI therapy is con-
sidered as a promising treatment option that has greatly 
improved survival in patients with advanced (metastatic) 
SKCM [3–5].	Taking	difference	between	 the	outcomes	of	
immunotherapy in patients with SKCM into consideration 
[6, 7], understanding and elucidating the TME of SKCM 
will help to identify a biomarker that can predict immu-
notherapy response and OS. The scRNA-seq can be used 
to	define	cell	subgroups,	providing	new	avenues	 to	reveal	
the impact of TME on ICI treatment [37]. Therefore, we 
comprehensively analyzed bulk RNA-seq and scRNA-seq 
to identify IAGs closely related with TME in SKCM and 
to establish a robust signature that characterizes the tumor 
immune microenvironment and guides immunotherapy 
strategies for patients with SKCM.

In our study, we clustered 4569 cells in scRNA-seq into 
9 non-malignant cell subgroups composed of immune cells 
and stromal cells (B cells, CD4 T cells, CD8 T cells, den-
dritic	cells,	endothelial	cells,	fibroblasts,	macrophages,	neu-
rons,	 and	NK	cells)	 to	 explore	 the	TME	 that	 could	 affect	
ICI therapy. Subsequently, we divided SKCM patients into 

the AUC of TIMAS in 1, 3, and 5 years in the TCGA test set 
and GSE65904.

Age, Breslow depth, Stage, Malignant neoplasm mitotic 
count rate, Melanoma Clark level, T, N, and TIMAS were 
all	 significantly	 correlated	 with	 patients’	 overall	 survival,	
according to a univariate Cox analysis of SKCM patients 
(Supplementary Fig. 4a). Next, we used multivariate Cox 
analysis	 on	 the	 variables	 that	were	 significant	 in	 the	 uni-
variate	Cox	model.	TIMAS	was	 found	 to	 be	 significantly	
associated with patients’ OS in both Cox models, implying 
that TIMAS was an indicator that could independently pre-
dict the patient’s OS (Supplementary Fig. 4b). Furthermore, 
we constructed nomograms for OS prediction in SKCM 
patients	based	on	significant	prognostic	factors	in	multivari-
ate Cox analysis and 1-year, 3-year and 5-year patient sur-
vival (Supplementary Fig. 4c). The above results implied 
the validity of TIMAS for predicting survival outcomes in 
SKCM patients.

Signaling pathways and tumor mutational burden 
(TMB) in different TIMAS subgroups

Among	the	signaling	pathways	we	identified	to	be	enriched	
in	 different	 TIMAS	 subgroups,	 37	 KEGG	 pathways	 and	
14	 HALLMARK	 pathways	 were	 included.	 The	 signaling	
pathway	information	of	patients	with	different	TIMAS	sub-
groups in GSEA was summarized in Supplementary Tables 
1 and Supplementary Tables 2, and representative pathways 
in TIMAS-low patients with SKCM were shown in Fig. 7a, 
b. Signaling pathways in TIMAS-low patients are immune-
related,	including	interferon	gamma	(IFN	γ)	response,	cyto-
kine and cytokine receptor interaction, IL2 STAT5 signaling 
pathway, while signaling pathways in TIMAS-high patients 
are tumor-related, such as MYC targeting V1 MYC targets 
V2, oxidative phosphorylation, and ribosomes.

Moreover, we found that missense mutations and single 
nucleotide polymorphism (SNP) accounted for the high-
est	 proportion	 in	different	 classification	methods	 (Fig.	8a, 
b). Single nucleotide variants (SNVs) mainly appeared in 
the form of C > T (Fig. 8c). The mutation counts for each 
sample and the corresponding mutation type were shown in 
Fig. 8d, e. Among the ten most frequently mutated genes, 
TTN,	MUC16,	BRAF,	DNAH5,	PCLO,	ADGRV1,	LRP1B,	
and RP1 had mutation rates above 30% in both subgroups 
(Fig. 8f).	Whereas	HYDIN	and	XIRP2	mutations	were	more	
common	 in	TIMAS-high	 patients,	DNAH7	 and	THSD7B	
mutations were more common in TIMAS-low patients.
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DEGs between immune/stromal cells were enriched in path-
ways related to immune cells such as neutrophils. The above 
results indicated that the heterogeneity of these TME cells 
in	tumor	immune	infiltration	was	closely	related	to	the	effect	
of ICI therapy [38].

immunity-high and immunity-low groups based on their 
level	of	 immune	 infiltration	and	calculated	 the	expression	
levels	of	9	immune/stromal	cells	in	different	immunity	sub-
types and found that these cells were highly expressed in 
patients	with	high	immune	infiltration.	We	also	found	that	

Fig. 7 GSEA analysis of TIMAS-low subgroups. a KEGG pathway enrichment analysis. b	HALL-MARK	pathway	enrichment	analysis
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Fig. 8	 Summary	 of	TMB	 analysis	 of	 different	TIMAS	 groups.	 a, b 
Mutation	 classification	 of	 TIMAS	 subgroups	 under	 different	 clas-
sification	categories.	c	SNVs	class	 in	different	TIMAS	subgroups.	d 

Mutation	counts	per	sample	 in	different	TIMAS	subgroups.	e Muta-
tion	classification	per	sample	in	different	TIMAS	subgroups.	f Top 10 
mutated	genes	in	different	TIMAS	subgroups
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the	state	of	low	immune	infiltration	in	SKCM	patients	using	
the CMap database. It has been reported that GW-501,516 
could inhibit the development and metastasis of melanoma 
by inhibiting cathepsin B [39, 40]. Previous study has 
found that the co-application of low-dose didanosine and 

To	further	identify	the	genes	that	affect	the	TME,	we	con-
ducted WGCNA to screen hub genes closely associated with 
9 immune/stromal cells. Based on these hub genes, we found 
five	potential	drugs	(GW-501,516,	didanosine,	Tyrphostin-
AG-1296, SDZ-205-557 and LY-456,236) that might alter 

Fig. 9	 TME	landscape	and	immune	features	in	different	TIMAS	subgroups.	a	Content	of	22	immune	cells	within	the	TME	in	different	TIMAS	
subgroups	(ns:	not	significant,	**:	P-value <	0.01,	***:	P-value < 0.001). b Immune landscape of TIMAS subgroups
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expression of serotonin receptors may promote tumor pro-
gression, SDZ-205-557 may have antitumor potential as a 
serotonin receptor antagonist [43]. Metabotropic gluta-mate 
receptor	1	 (GRM1)	has	been	 reported	 to	affect	 tumor	cell	

azidothymidine	 could	 play	 an	 anti-tumor	 effect	 [41]. Tyr-
phostin-AG-1296 was found to potently inhibit the viabil-
ity of melanoma cells, and its combination with PLX4032 
had	an	additive	effect	in	reducing	cell	viability	[42].	High	

Fig. 10 The value of TIMAS in immunotherapy. a Analysis results of 
TIDE	for	different	TI-MAS	subgroups	(TIDE	score,	exclusion	score,	
dysfunction score). b	 TIS	 score	 in	 different	 TIMAS	 subgroups.	 c 

Chord diagram of TIMAS and immune checkpoint-related genes. d-f 
TIDE, TIS, TIMAS time-dependent ROC curves in 6, 12, 24 months
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levels	of	CD8	T	cells,	M1	macrophages,	IFN	γ,	and	T	cell	
inflammatory	signals	[55]. Therefore, TIMAS-low patients 
with	high	MUC16	mutations	have	high	immune	infiltration,	
good	survival	outcomes	and	immunotherapy	efficacy,	sug-
gesting	that	our	findings	were	accurate.

Considering	 the	 influence	 of	 TME	 on	 SKCM	 immu-
notherapy, we further analyzed the immune cell composi-
tion	in	different	TIMAS	subgroups	of	patients.	The	results	
showed	that	immune	cell	composition	is	different	in	patients	
with	 different	 TIMAS	 subgroups.	 TIMAS-low	 patients	
had higher proportions of CD8 T cells, activated memory 
CD4 T cells, and M1 macrophages in immune cells, while 
TIMAS-high patients had more abundant resting memory 
CD4 T cells, M2 macrophages in the TME. Numerous stud-
ies	have	shown	that	therapeutic	efficacy	is	dependent	on	the	
degree	of	infiltration	of	T	cells,	especially	CD8	T	cells	[56]. 
M1	macrophages	 are	 pro-inflammatory	macrophages	 that	
respond defensively to tumors and are abundant in primary 
and thin melanomas and decreased in advanced (metastatic) 
melanomas [13, 57]. In contrast, M2 macrophages are an 
anti-inflammatory	macrophage	and	were	found	to	promote	
melanoma tumor angiogenesis and tumor growth [57]. 
These	 findings	 indicated	 that	TIMAS	has	 the	 potential	 to	
predict	immune	infiltration	in	SKCM	patients.

To compare the predictive ability of TIMAS with known 
immunotherapy predictive biomarkers (TIDE, TIS), we 
analyzed their performance in predicting anti-CTLA-4 and 
anti-PD-1/PD-L1 immunotherapy. Ipilimumab, a CTLA-4 
inhibitor that blocks the suppression of activated T cells, 
was	 the	 first	 medication	 to	 demonstrate	 an	 improvement	
in overall survival. At the same time, Wbber et al. found 
that the PD-1 inhibitor nivolumab was also applicable to 
patients with advanced melanoma [3, 58]. TIDE and TIS 
signatures are commonly used to predict patient response 
to ICI therapy, TIDE has been shown to accurately predict 
response in melanoma patients receiving immuno-therapy 
(anti-PD-1 therapy or anti-CTLA-4 therapy), and TIS can 
predict an-ti-PD-1/PD-L1 therapy outcomes [36, 59]. Dif-
ferences	in	patient	TIMAS	might	reflect	different	treatment	
outcomes for patients treated with anti-PD1 or anti-CTLA4 
immunotherapy. We found that TIMAS-high patients had 
higher TIDE scores, T cell exclusion scores, and lower TIS 
scores compared with TIMAS-low patients. The higher the 
T	cell	exclusion	score,	the	lower	the	infiltration	of	cytotoxic	
T lymphocytes (CTL), and tumors with low CTL were not 
conducive	to	T	cell	infiltration,	which	might	cause	immune	
evasion and lead to poor ICI response [59]. Unfortunately, 
comparing TIMAS, TIDE and TIS were more biased to 
reflect	 the	 function	 and	 status	of	T	 cells,	 rather	 than	 con-
sidering the important role of TME in immunotherapy 
response. In addition, these two markers were more focused 
on	predicting	the	immune	efficacy	of	patients,	which	did	not	

survival [44]. LY-456,236 as a glutamate receptor antago-
nist targeting GRM1 might have antitumor potential. Next, 
we	 identified	 five	TIMAGs	 from	 the	 hub	 genes	 and	 built	
TIMAS. We grouped patients according to TIMAS. Patients 
with	TIMAS-low	demonstrated	significantly	enhanced	rates	
of survival compared to those with TIMAS-high in both the 
TCGA and GEO datasets. Univariate and multivariate Cox 
regression analyses revealed that TIMAS was an indepen-
dent prognostic factor for OS in SKCM patients. We then 
constructed a nomogram which consists of TIMAS and 
clinical factors had excellent predictive ability. The above 
results showed that our TIMAS could accurately predict OS 
in SKCM patients.

TIMAS	consisted	of	5	TIMAGs	significantly	associated	
with OS (CD86, CD80, SEMA4D, C1QA, IRF1). CD80 
(B7-1) and CD86 (B7-2) are proteins belonging to the B7 
family, expressed on antigen-presenting cells (APCs), that 
actively participate in the stimulation of T cell activation 
via costimulatory signaling [45, 46]. Moreover, CD80/
CD86 has been observed to correlate with elevated levels of 
M1 macrophage expression [13]. Ipilimumab has clinically 
achieved	 favorable	 immunological	 efficacy	 by	 inhibiting	
the interaction between CTLA-4 and CD80/CD86 on APCs, 
which indicated the importance of CD80/CD86 in anti-
CTLA-4 immunotherapeutic strategies [47, 48]. SEMA4D 
(CD100) is a class IV semaphores that inhibits tumor cell 
invasion in SKCM by inhibiting activation of the tyrosine 
kinase receptor Met induced by hepatocyte growth factor 
(HGF)	 and	 Plexin-B1	 expression	 [49, 50]. C1QA is the 
gene encoding the A chain of the complement subcompo-
nent C1q, patients with high C1QA expression have a better 
prognosis. This may be due to the fact that SKCM belongs 
to cancers with protective complement, and high expression 
of genes encoding classical and alternative pathways in such 
cancers leads to good prognosis [51]. IRF1, also known as 
IFN-regulatory factor 1, involved in the transcription of 
genes related with the body’s response to viruses and asso-
ciated with tumor suppression, innate and acquired immune 
responses [52]. Overall, we constructed TIMAS consisting 
of	five	TIMAGs,	and	found	that	patients	with	higher	expres-
sion	of	the	five	TIMAGs	had	lower	TIMAS	and	improved	
prognoses.

In order to investigate its immunological properties, we 
analyzed	gene	mutations	in	different	TIMAS	subgroups	of	
SKCM patients. Missense mutations, SNP, and C > T muta-
tions accounted for the largest percentages in their respec-
tive	classification	categories	[53]. The greatest variation in 
mutation frequency between risk subgroups was MUC16, 
which was more frequently mutated in low-risk patients 
[54].	 Higher	 TMB	 and	 better	 OS	 were	 seen	 in	 patients	
with MUC16 mutations. In addition, it was discovered that 
patients with MUC16 mutations had considerably higher 
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include the survival time of patients. In our study, TIMAS 
had the ability to predict immunotherapy not inferior to 
TIDE	and	TIS,	TIMAS	could	much	fully	reflect	the	impact	
of TME in immunotherapy and better predict the long-term 
OS of patients, and also showed excellent accuracy in time-
dependent ROC analysis.

In conclusion, the tumor immune microenvironment-
related signature TIMAS had potential. Grouping patients 
according	to	their	TIMAS	might	help	differentiate	immune	
and molecular signatures, predict patient outcomes. None-
theless, the sample cohort we used to construct TIMAS was 
retrospective, so further experimental studies of the predic-
tive power of TIMAS are needed.
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