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Abstract
Phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) signaling pathway play a central role in multiple cellular 
functions such as cell proliferation and survival. The forkhead box O (FOXO) transcription factors are negatively regulated 
by the PI3K/AKT signaling pathway and considered to have inhibitory effect on cell proliferation. Psoriasis is a multifacto-
rial disease with a strong genetic background and characterized by hyperproliferative keratinocyte. PI3K signaling regulates 
proliferation of keratinocyte by activating AKT and other targets, and by inducing FOXO downregulation. The amplification 
of PI3K and AKT and the loss of the FOXO are gradually being recognized in psoriatic lesions. The upstream and down-
stream of PI3K/AKT signaling molecules such as tumor suppressor phosphatase and tensin homolog (PTEN) and mam-
malian target of Rapamycin (mTOR), respectively, are also frequently altered in psoriasis. In this review, we highlight the 
recent studies on the roles and mechanisms of PI3K and AKT in regulating hyperproliferation of keratinocyte, and the roles 
of the downstream targets FOXO in psoriasis. Finally, we summarized that PI3K/AKT/FOXO signaling and its upstream 
and downstream molecule which could be underlying therapeutic target for psoriasis. This article is part of a special issue 
entitled: PI3K–AKT–FOXO axis in psoriasis.
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Abbreviations
PI3K  Phosphatidylinositol-4,5-bisphosphate 

3-kinase
AKT/PKB  Protein kinase B
FOXO  Forkhead box O
PTEN  Phosphatase and tensin homolog
mTOR  Mammalian target of Rapamycin complex
PDK1  Phosphoinositide-dependent kinase-1
GFR  Growth factor receptor
PH  Pleckstrin homology
PIP3  Phosphatidylinositol 3–5 triphosphate
AFX  Acute-lymphocytic-leukemia-1 fused gene 

from chromosome X
FKHR  Forkhead in rhabdomyosarcoma
FKHR-L1  FKHR-like 1
IL-22  Interleukin 22

FasL  Fas ligand
TRAIL  TNF-related apoptosis-inducing ligand
TRADD  TNF receptor type 1 associated death domain
BCL2  B-cell lymphoma 2
BIM  Bcl-2-like protein 11
BAD  Bcl-2-associated death promoter
FLS  Synovial cells
NHEK  Normal human epidermal keratinocyte
IMQ  Imiquimod
ROS  Reactive oxygen species

Introduction of PI3K/AKT signaling pathway

The Phosphoinositide 3-kinases (PI3Ks) in mammalian 
cells form a family which share the primary biochemical 
function to phosphorylate the 3-hydroxyl group of phos-
phoinositides [21]. PI3K is activated by diverse growth 
factor receptors(GFR) and oncogenes, and the rise of PI3K 
signaling is considered a characteristic of cancer [41, 50]. 
Based on their different structures, functions and substrate 
preferences, PI3Ks can be divided into three classes, class 
I, II, and III [36, 42]. Among these classes, class I PI3Ks 
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are the best understood to play vital roles in regulating 
cell proliferation, growth, and survival initiated by many 
growth and survival factors [57]. Akt/PKB (also known 
as protein kinase B) is a growth factor regulated serine/
threonine kinase, a key downstream target of PI3K and a 
central medium for the PI3K pathway, which has multiple 
downstream effectors, shares structural homology within 
its catalytic domain and contributes to a variety of cellular 
processes. AKT family has three isoforms: AKT1, AKT2, 
and AKT3 (also known as PKBα, PKBβ, and PKBγ, 
respectively) [43, 110].

AKT consists of three conserved domains including a 
specific N-terminal pleckstrin homology (PH) domain, a 
central kinase catalytic domain and a C-terminal regulatory 
domain. After activated by GFR tyrosine kinase, PI3K is 
activated and produces phosphatidylinositol 3–5 three phos-
phoric acid (PIP3) on the plasma membrane. PIP3 functions 
as a docking site for PDK1 and AKT. The product of PI3K, 
PIP3, combines with AKT and causes the membrane recruit-
ment of AKT, and also combines with upstream kinases 
including phosphoinositide-dependent kinase 1 (PDK1) 
through their PH domains [34, 36], then PDK1 phosphoryl-
ates AKT in the kinase domain (Thr 308 in AKT1). The 
complete activation of AKT requires the phosphorylation 
within the carboxyl-terminal hydrophobic motif (Ser 473 
in AKT1) of AKT by PDK2 [52, 102, 112]. Once activated, 
AKT moves to the cytoplasm and nucleus, where a number 
of downstream targets are phosphorylated, activated, or sup-
pressed to provide a survival signal that protects cells from 
apoptosis induced by various stresses, and also mediates a 
variety of metabolic effects [119]. The PI3K/AKT signal 
transduction pathway is mainly focused on regulating of a 
variety of important physiologic cellular functions, such as 
cell metabolism, protein synthesis, cell survival/inhibition 
of apoptosis, and cell cycle progression, cell proliferation, 
growth, and angiogenesis [1, 41, 81, 120]. The pathway is 
frequently deregulated in different malignancies [27, 63] 
and recent data indicate its clinical relevance in inflamma-
tory diseases, including psoriasis [24, 25, 54]. PI3K/AKT 
axis has vital function in inflammatory skin diseases, espe-
cially its downstream signaling target mammalian target 
of Rapamycin (mTOR) plays a central role in some of the 
most common inflammatory dermatoses [5], such as mTOR 
expression is confirmed increased in acne patients’ skin [86]. 
The pathway involves human diseases, and understanding 
the complexity of this pathway may provide new avenues 
for therapeutic intervention. Over the past decade, PI3K/
AKT has become the core participant in the signal transduc-
tion pathways activated in response to growth factors and is 
thought to contribute to multiple cellular functions [10]. In 
this review, we will focus on the roles and mechanisms of 
PI3K, AKT and its downstream target FoxO in regulating 
proliferation of keratinocyte in psoriasis.

Canonical FOXO regulation and function

The forkhead box O (FOXO) transcription factor family 
has emerged as a central player in an evolutionary con-
served pathway downstream of PI3K/AKT signaling [18]. 
The FOXO family of transcription factors and this signal-
ing pathway was identified for the first time in the nema-
tode worm Caenorhabditis elegans, where it plays a role 
in regulation of the life span of the organism [95]. Four 
isoforms of FOXO proteins (FOXO1/FKHR/FOXO1a, 
FOXO3/FKHRL1/FOXO3a, FOXO4/AFX and FOXO6) 
have been found to share high protein homology [58] and 
regulated by AKT and 14-3-3 protein [113]. The FOXO1, 
FOXO3 and FOXO4 transcription factors are directly 
phosphorylated by AKT, leading to nuclear export and 
transcriptional inhibition [8, 60]. Researches have shown 
that the phosphorylation of FOXO proteins can regulate 
cell survival by manipulating their target genes and some 
of the target genes may play an important role in the sup-
pressing cell proliferation [16]. The target genes for the 
FOXO family are considered to be extracellular ligands, 
including the Fas ligand(FasL), TRAIL (TNF-related 
apoptosis-inducing ligand) and TRADD (TNF receptor 
type 1 associated death domain), as well as intracellu-
lar apoptotic components such as Bim (bcl-2 interacting 
mediator of cell death), a pro-apoptotic Bcl-2 family mem-
ber, and Bcl-6 [8, 18].

FOXO transcription factors are negatively regulated by 
AKT-mediated phosphorylation and constitute and have 
been mainly considered to regulate the expression of a 
number of genes that are crucial for the proliferative status 
of a cell [37, 117]. As such, FOXO transcription factors 
appear to play an essential role in many of the effects of 
AKT on cell proliferation and survival [61, 80]. Transcrip-
tional activity of FOXOs is regulated through shuttling 
between the nucleus and the cytoplasm. Phosphoryla-
tion of nuclear FOXOs by AKT induces the binding to 
14-3-3 proteins, which facilitate nuclear export of FOXO1, 
FOXO3 & FOXO4 and simultaneously obstruct reloca-
tion into the nucleus [11, 12, 62]. Upon loss of GFR sign-
aling, next dephosphorylation of PIP3 by PTEN results 
in reduced AKT activity, loss of FOXO phosphorylation 
and subsequent nuclear accumulation of FOXOs. In the 
nucleus, FOXOs mediate transcription of a wide array of 
target genes involved in proliferation, cell cycle and sur-
vival inhibition, apoptosis and so on (Fig. 1) [35, 59].

The early findings suggest in cells of the hematopoi-
etic system, mere activation of a FOXO factor is sufficient 
to activate a variety of pro-apoptotic genes and to trig-
ger apoptosis. In contrast, in most other cell types, acti-
vation of FOXO blocks cellular proliferation and drives 
cells into a quiescent state [18]. In agreement with these 
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views on the role of FOXOs in psoriasis, clinic may use 
FOXO levels or activity as prognostic markers for psoria-
sis patient disease progression. In conclusion, the discov-
ery and lucubration that certain FOXO family members 
(FOXO1,FOXO3,FOXO4,FOXO6) are targets of PI3K/
AKT signaling provides new insights into the mechanism 
of AKT-induced abnormal hyperplasia [8, 60, 72], but 
possibly also into hyperproliferation of keratinocyte in 
psoriasis.

Proliferation of keratinocyte regulated 
by PI3K/AKT/FOXO signaling pathway

Cell proliferation is one of the important functions of the 
PI3K/AKT signaling cascade. And in this cascade, PI3K 
and AKT are the key upstream molecules that link the liga-
tion of the phosphorylation and activation state of FOXO 
and mTOR with the GFR [81, 105]. In recent years, many 
reports clarify the importance of PI3K/AKT signaling in 
cell survival in several kinds of cancer [7, 46, 107, 118]. In 
a variety of malignancies, PI3K/AKT signaling has been 
found to be constitutionally active which correspondingly 

indicate the important roles of this signaling in cellular pro-
liferation [81].

The PI3K–AKT–FOXO signaling network provides a 
major intracellular hub for the regulation of cell proliferation 
[115]. PI3K/AKT signaling promotes cell survival by phos-
phorylating and inhibiting a FOXO transcription factor and 
influences cellular proliferation by inactivating cell cycle 
inhibitors (p27 and p21) and promoting cell cycle proteins 
(c-Myc and cyclin D1) [11, 32, 69]. Survival factors can 
suppress apoptosis in a transcription-independent manner 
by activating AKT, which then phosphorylates and inac-
tivates components of the apoptotic machinery, including 
the pro-apoptotic Bcl-2 related protein BAD [122]. AKT 
phosphorylates FOXO, leading to FOXO’s retention in 
the cytoplasm. Survival factor withdrawal leads to FOXO 
dephosphorylation, nuclear translocation, and target gene 
activation. Within the nucleus, FOXO triggers apoptosis and 
inhibits proliferation most likely by inducing the expression 
of genes that are critical for cell death and growth [11]. 
PI3K/AKT signaling has been reported in the epidermis 
associated with keratinocyte survival and differentiation 
and favored the execution of epidermal keratinocyte terminal 
differentiation program [19, 91, 96]. Recently, it has been 
found that candidate molecules implicated in keratinocyte 
regulation downstream of AKT are the mechanistic target 
of rapamycin complex one (mTORC1) signaling complex, 
positively regulated by AKT signaling [124], and the FOXO 
family of transcription factors, which are directly inhibited 
by AKT-dependent phosphorylation [11, 45, 93]. Thus, 
PI3K/AKT signaling that is believed to promote keratino-
cyte proliferation by phosphorylating and inhibiting a FOXO 
transcription factor.

Psoriasis is a multifactorial heritable disease character-
ized by severe inflammation resulting in poorly differenti-
ated, hyperproliferative keratinocyte. Although studies over 
recent years have shown that the pathogenesis of psoriasis 
is closely related to the abnormality of T-lymphocytes in 
psoriatic lesions, the cause of excessive proliferation and 
abnormal apoptosis of keratinocyte remains unclear [90]. 
Interleukin 22 (IL-22), a relatively new Th17 cytokine has 
been found to induce significant proliferation of human 
keratinocyte and plays a critical role in the pathogenesis of 
autoimmune diseases like psoriasis [49, 83]. Recent results 
showed that IL-22 induced proliferation of NHEK (normal 
human epidermal keratinocyte) is dependent on PI3K/AKT 
signaling pathway [83, 84, 100]. The previous data indi-
cated that FOXOs cross-talk with keratinocyte fate-regula-
tory genes [20, 114] and nuclear AKT2 can oppose normal 
epithelial stem cell and limbal keratinocyte stem cell self-
renewal by repressing a FOXO-mTORC1 signaling pathway 
[2, 56, 79, 101]. Thereby, in keratinocyte hyperproliferative 
autoimmune diseases like psoriasis this PI3K/AKT/FOXO 

Fig. 1  The PI3K/AKT/FOXO signaling pathway. The PI3K/AKT 
pathway is the canonical pathway regulating transcriptional activity 
of FOXOs. Upon activation of GFR tyrosine kinases, PI3K becomes 
activated and generates PIP3 at the plasma membrane. PIP3 facili-
tates the phosphorylation of AKT by PDK1. Subsequently, phos-
phorylates nuclear FOXOs, facilitate nuclear export of FOXOs and 
simultaneously obstruct relocation into the nucleus. Upon accumula-
tion in the nucleus FOXOs can bind various transcription-cofactors 
and regulate the transcription of genes involved in the cell prolif-
eration, growth, survival, cell cycle, apoptosis and metabolism, etc. 
Pathway activity is negatively regulated by PTEN feedback loop



86 Archives of Dermatological Research (2019) 311:83–91

1 3

signaling pathway may be considered as new therapeutic 
target.

Abnormal expressions of PI3K, AKT, 
and FOXO in psoriasis

It is well-established that psoriasis is an autoimmune and 
incurable chronic inflammatory dermatosis that impacts 
2–3% of the world population [28, 48, 70]. The etiology of 
psoriasis is not completely clear, but the disease is character-
ized by erythema scalelike skin plaques caused by epidermal 
keratinocyte hyperplasia, aberrant differentiation, paraker-
atosis, and chronic dermis inflammation [89]. Nowadays, 
PI3K signaling can be targeted to determine its contribu-
tion to psoriatic arthritis where deregulated proliferation of 
keratinocytes, activated immune cells and synovial fibro-
blasts [9, 76, 77]. In recent researches also discovered that 
PI3K/AKT/FOXO to be pivotal in the regulation of mam-
malian keratinocyte proliferation [29].

Deregulation of several elements of the PI3K signaling 
cascade is recognized in psoriasis, the occurrence of which 
promotes pathway activation. In previous study, Pike et al. 
[97] measured PI3K activity in epidermal keratome biopsies 
and found out that compared with the epidermis from normal 
skin, the PI3K activity in the epidermis of psoriatic plaques 
was increased 6.7-fold, but not statistically different in biop-
sies of non-lesional psoriatic epidermis. And Zhang et al. 
[121] also disclosed that overexpression of PI3K specifically 
in psoriatic lesions in comparison with that in lesions of 
chronic dermatitis, keratosis seborrheica, squamous cell car-
cinoma, basal cell carcinoma. Extensive researches revealed 
P-AKT protein level and expressions of PI3K and AKT in 
the keratinocyte in psoriasis lesions were elevated domi-
nantly compared with normal and non-lesional skin [73, 92, 
116, 123]. Further study on investigating the significance of 
the expression of three isoforms of AKT in the pathogen-
esis of psoriasis found out that the increased expression of 
AKT3 might be correlated to the elevation of phosphoryl-
ated AKT and AKT activity in psoriatic lesions [78]. Higher 
expression of PI3K may lead to excessive activity of AKT, 
which might promote keratinocyte proliferation through 
phosphorylation of the downstream target proteins FOXO 
and so on. At present, there were studies investigated the 
relationship between FOXO and the proliferation of psoriatic 
keratinocyte, and found out that FOXO isoform expression 
was mostly in nucleus, but it was localized mainly in cyto-
plasm of psoriatic keratinocyte, the transcription activities 
of FOXO isoforms were almost absent, and the protein level 
of FOXO4, the gene expression of FOXO1 and the activity 
of FOXO3A are both significantly decreased in psoriatic 
lesions compared with that uninvolved psoriatic lesions and 
normal skin [68]. The current knowledge also discovered 

that P-FOXO1 and P-AKT is significantly up-regulated in 
psoriatic lesions compared with the normal skin which may 
leads to the reduction of FOXO1 gene expression [53].

Therefore, the downregulation and inactivation of FOXO 
isoforms in psoriatic lesions might be related to the hyper-
proliferation of psoriatic keratinocyte and PI3K/AKT/FOXO 
signaling pathway may participate in the occurrence and pro-
gression of psoriasis. We can speculate that the up-regulated 
of P-AKT may change the localization of FOXO isoforms, 
transferring it from nucleus to cytoplasm, losing transcrip-
tion factor activity, reducing the synthesis of downstream 
target genes, thereby losing the inhibition of proliferation 
and resulting in keratinocyte hyperproliferation. Whether 
selective blocking or inhibiting PI3K/AKT/FOXO signaling 
pathway might improve the clinical presentation of psoriasis 
need to be investigated in the future.

The upstream signaling molecule PTEN 
of PI3K/AKT in psoriasis

PTEN (Phosphatase and tensin homolog deleted on chro-
mosome 10) is a well-established tumor suppressor gene 
that first discovered on human chromosome 10q23 in 1997 
[111], and it was found as a putative phosphatase mutated in 
many human tumors [64, 74]. PTEN is a constitutive inhibi-
tor of the PI3K/AKT pathway that induces apoptosis and 
controls cell growth by suppressing this pathway, and plays 
an important role in multiple cellular functions such as cell 
proliferation and survival [22, 57]. The product of PI3K, 
PIP3, is a second messenger for promoting cell proliferation 
and survival, PTEN hydrolyzes the 3- phosphate on PIP3 to 
produce PIP2, and inhibits PIP3-mediated signaling path-
ways [75]. It has been elucidated that in cells carried the 
PTEN mutation, the PI3K pathway is usually constituently 
active and resulting in inactivation of endogenous FOXOs 
[44]. Phosphorylation-dependent nuclear/cytoplasmic shut-
tling of FOXOs is major modulated by AKT and PTEN. 
AKT phosphorylates FOXO leads to of cytoplasm FOXOs 
sequestration and target gene transcription inhibition. FOXO 
dephosphorylation brings about translocation of nuclear and 
activation of target gene [17]. Accordingly, PTEN is also 
a FOXO target gene, FOXOs can strengthen PTEN tran-
scription to enhance the biological function of keratinocyte 
hyperproliferation inhibition.

Loss of function or mutations in PTEN is not only related 
to the development of cancer but also exhibits histrionic 
consequences for proliferative disorders. The elevated activ-
ity and phosphorylation level of AKT in psoriatic lesions 
might be concerned with the imbalance of PTEN, and more 
researches concentrated upon the expressions of PTEN pro-
tein and gene in psoriatic lesions [77]. Lately, it has been 
illuminated that compared with that in normal skin, mRNA 
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expression and protein levels of PTEN in psoriatic skin 
were lessened [51, 66]. These results indicated decreased of 
PTEN and corresponding overactivation of AKT play a role 
in psoriatic lesions. Loss of PTEN expression in basal cells 
could demonstrate the excessive hyperplasia and anti-apop-
tosis in psoriatic epidermis; in normal skin, the PI3K/AKT 
pathway is vital for cell proliferation in the basal epider-
mis and for terminal differentiation in the upper layers [87]. 
Consequently, PTEN may be participate in the proliferation 
of psoriatic keratinocyte. It is necessary to in-depth study 
on the signaling mechanisms downstream of PTEN activity 
to elucidate the exact role of PTEN in the hyperplasia and 
abnormal apoptosis of psoriatic keratinocyte. Further work 
on the interaction between PTEN and psoriasis will undoubt-
edly contribute to the comprehension of the pathogenesis of 
psoriasis, and provide the basis to find therapeutic targets 
for psoriasis.

The downstream signaling molecule mTOR 
mediated by PI3K/AKT in psoriasis

mTOR is the target of a molecule named rapamycin or siroli-
mus, which is a macrolide produced by Streptomyces Hygro-
scopius bacteria and that first gained attention because of its 
broad anti-proliferative properties [63]. The mTOR complex 
is a central hub of the PI3K/AKT/mTOR signal transduction 
pathway and the serine/threonine protein kinase TOR forms 
two structurally and functionally distinct complexes, termed 
TOR Complex 1 (TORC1) and TORC2 [3]. mTORC1 posi-
tively regulates anabolic processes such as protein synthe-
sis, and mTORC2 signaling regulates many cellular pro-
cesses such as ribosome biogenesis [104]. PI3K/AKT and 
mTOR signaling which regulate cell proliferation, survival, 
apoptosis, and frequently deregulated in diverse cancers, 
being fundamental components of immune cell-signaling 
networks, play a crucial role in skin homeostasis and mor-
phogenesis, especially in the regulation of keratinocyte dif-
ferentiation and epidermal stratification [31, 33, 94], and it 
has recently emerged as a clinical relevant target for inflam-
matory diseases including psoriasis [26, 54]. PI3K activa-
tion triggers the phosphorylation of phosphatidylinositol on 
the 3-hydroxyl group to PI (3, 4, 5) P3, then activates AKT 
kinase and which in turn activates mTOR, thus promoting 
keratinocyte hyperproliferation and inhibiting differentia-
tion, as observed in psoriasis [98]. It has been reported that 
the mechanisms for the role of the mTOR pathway in pso-
riasis may be the dysregulation cytokines and growth factors 
in this inflammatory disease activates the mTOR signaling 
system, and the activated mTOR kinase system may be a key 
regulator of the inflammatory and proliferative cascades of 
psoriatic disease process [30, 103]. It have already reported 
that relevant growth factors and relevant cytokines (IL-17 

and IL-22) activate mTOR signaling proteins in effectors 
cells (keratinocytes and synovial cells (FLS)) for psoria-
sis [30, 67, 71, 84, 99]. These researches suggest a role for 
mTOR signaling in the epidermal changes leading to the 
psoriatic phenotype.

The previous studies shown that the PI3K downstream 
effector, mTOR kinase itself and its downstream targets are 
hyperactivated in psoriatic lesions [5, 13, 108]. In a research 
by direct immunofluorescence studies have observed that 
mTOR is activated throughout the whole epidermis in 
lesional psoriatic skin [13], and the recent investigations 
suggest that is specifically mTORC1 to be involved in pso-
riasis pathogenesis [4, 6, 82]. Recently, it has been reported 
that there is increase in mTOR expression and its phos-
phorylation in lesional psoriatic skin compared to that of 
non-lesional psoriatic skin [98]. In addition, the PI3K/AKT/
mTOR pathway is thought to play a role in Th1–Th2–Th17 
imbalance in the pathogenesis of psoriasis [54]. Recent data 
have also shown that the mTOR signaling proteins are upreg-
ulated in psoriatic skin and proliferation of keratinocytes and 
synovial cells (FLS) of psoriatic arthritis are dependent on 
the PI3K–AKT–mTOR kinase system [98]. Taken together, 
the mTOR pathway is hyperactivated in lesional psoriatic 
skin, which probably contributes to the disease by interfer-
ing with maturation of keratinocyte [14]. And because the 
PI3K/AKT/mTOR pathway is hyperactivated both in human 
and murine psoriasis, it is an attractive antipsoriatic drug 
target [24, 38].

Inhibition of PI3K/AKT signaling pathway 
for psoriasis treatment

In view of the vital function of PI3K signaling pathway in 
regulating keratinocyte proliferation, development of thera-
peutic drugs using PI3K and AKT inhibitors is of great sig-
nificance for the treatment of psoriasis [39]. As we know 
psoriasis is an immune-mediated disease with process of 
chronic recurrence, and the especially serious forms that 
are refractory to traditional therapies are often difficult to 
manage [47]. At present, palliative care is the main treat-
ment option for psoriasis, including corticosteroids, UV-
light therapy and immunomodulatory therapy. The PI3K/
AKT pathway is aberrantly stimulated in hyperprolifera-
tion keratinocyte and has emerged as a therapeutic target. 
Recently, the results of researches in psoriatic arthritis using 
PI3K signaling inhibitors enlightenments that small mol-
ecule inhibitor strategies directed at PI3K signaling may be 
a useful treatment for immune-mediated diseases includ-
ing psoriasis [76, 77]. Hence, it is urgent to exploit novel 
PI3K/AKT-based targets and mechanism-based strategies 
to improve treatment effectiveness.
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As we know the PI3K/AKT inhibitors were primitively 
investigated as antifungal agents and were used for its immu-
nosuppressant properties and also showed anti-tumourigenic 
potential [15]. Initial evidence from clinical data suggests 
that PI3K/AKT inhibitors may improve therapeutic benefit 
for psoriasis [40], and calcitriol, a well-known anti-psoriatic 
drug, regulates the proliferation/survival of keratinocytes by 
inhibiting the phosphorylation of mTOR and this could be a 
possible mechanism for its therapeutic efficacy [30]. Rapa-
mycin and its analogs are the best-known allosteric inhibi-
tors of the PI3K/AKT/mTOR pathway and are being used 
for treating several types of cancers [88, 109]. The previous 
evidences placed the rapamycin has long been known for 
its immune suppressive properties, but it has shown lim-
ited therapeutic success when given systemically to patients 
with psoriasis [108]. Recently, studies have pointed out that 
IL-22-induced proliferation of normal human epidermal 
keratinocytes and FLS was inhibited by the dual kinase, 
PI3K/mTOR inhibitor, NVP-BEZ235 and specific mTOR 
inhibitor, rapamycin [84]. Recent data also have indicated 
that topical rapamycin can ameliorate the imiquimod 
(IMQ)-induced psoriatic phenotype in mice through block-
ing mTOR signaling [15]. Additionally, research have point 
out that delphinidin, a dietary antioxidant found abundantly 
in pigmented fruits and vegetables for the management of 
psoriasis, can inhibit PI3K/AKT and mTOR involved in 
psoriasis pathogenesis and alleviates IMQ-induced murine 
psoriasis-like disease [23, 25]. Some studies found that 
matrine, a low-toxic alkaloid extracted from dry roots of 
Sophora flavescens Aiton, may inhibit cell proliferation 
through FOXO and PI3K/AKT signaling pathways [65] and 
silibinin exerts its effects through down-regulation of PI3K/
AKT pathways [55]. Moreover, previous study reported that 
Britannin, a sesquiterpene lactone and a class of secondary 
metabolites, which is able to induce mitochondrial apop-
totic pathway through ROS production and modulation of 
the AKT-FOXO1 signaling axis [85]. The research indicated 
that activation of FOXO transcription factors through inhi-
bition of PI3K/AKT pathway may have physiological sig-
nificance in management of psoriasis [106]. Taken together, 
inhibition of PI3K/AKT signaling pathway could be devel-
oped to be a novel way to treat psoriasis.

Conclusions and future directions

Previous studies have shown that PI3K/AKT/FOXO signal-
ing pathway plays a central role in regulating various kinds 
of cellular functions such as cell proliferation. The intensive 
interests are on the study of PI3K/AKT and FOXO in tumo-
rigenesis. Emerging new evidence has indicated that PI3K/
AKT/FOXO signaling involved in chronic inflammatory 
skin condition of psoriasis [19]. Psoriasis is characterized 

by keratinocyte hyperproliferation and associated with 
significant decline in quality of life and an increased risk 
of arthritis and cardiovascular disease. We surveys recent 
developments in understanding the molecular mechanisms 
of PI3K/AKT/FOXO signaling and its roles in keratinocyte 
proliferation in psoriasis. Our understanding of this complex 
network and tight regulation is probably at its beginning and 
will require much more work to fully unfold this pathway. 
Now targeting PI3K/AKT pathway, such as FOXO, mTOR, 
has been shown to prevent keratinocyte hyperproliferation 
[96, 98, 101]. Indeed, some inhibitors, targeting PI3K/AKT 
pathway, prevented psoriasis development in IMQ-induced 
mouse models [15, 23]. Given the importance of the PI3K/
AKT/FOXO pathway in the psoriatic phenotype, further 
optimization of the clinical use of these inhibitors in the 
coming years is warranted and should lead to better patient 
outcomes. We anticipate that the therapeutic methods target-
ing PI3K/AKT/FOXO pathway would represent the promis-
ing psoriasis therapy in the near future.
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