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Abstract The mechanistic target of rapamycin (mTOR)

is involved in the regulation of cellular growth, prolifera-

tion, lipid synthesis, and protein translation. The mTOR

pathway involves two complexes: the mechanistic target of

rapamycin complex 1 (mTORC1) and the mechanistic

target of rapamycin complex 2 (mTORC2). Both mTOR

complexes have been implicated in the development and

progression of various skin diseases including melanoma,

psoriasis, and acne vulgaris. Here, we review the role of

both mTORC1 and mTORC2 as well as their upstream

modulators, phosphoinositide 3-kinase (PI3K) and protein

kinase B (Akt), and their downstream targets in various

dermatologic diseases. Phytochemicals, plant-derived nat-

urally occurring compounds, have been shown to regulate

the mTOR pathway and may serve as novel therapeutic

agents in dermatological disease. Here, we review phyto-

chemicals in the context of the mTOR pathway and their

potential use in cutaneous disease.
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Introduction

The mechanistic target of rapamycin, also known as the

mammalian target of rapamycin, (mTOR) responds to

numerous environmental signals and plays a role in reg-

ulating multiple cellular functions including proliferation,

lipogenesis, and gluconeogenesis [42]. Multiple diseases

have altered mTOR pathway regulation, such as cancer,

obesity, diabetes, and psoriasis [4, 14, 18, 23, 24, 30, 38,

42, 75]. Some phytochemicals, which are plant-derived

naturally occurring chemicals, act as mTOR pathway

inhibitors and may serve as a source of novel topical and

oral therapies for dermatological disease. Here, we

review the mTOR pathway, their relevance in dermato-

logical disease, and discuss several phytochemicals that

have been evaluated for their role in mTOR pathway

inhibition.

Mechanistic target of rapamycin (mTOR)-signaling

pathway

A serine/threonine protein kinase, mTOR responds to cell

membrane ligand binding signaling pathways and inter-

faces with other proteins to form two different com-

plexes, mTORC1 and mTORC2 [42]. The various

proteins forming mTORC1 and mTORC2 and their sig-

naling pathways are depicted in Fig. 1. Three highly

researched upstream modulators of mTOR are the phos-

phatidylinositol 3-kinases (PI3Ks), protein kinase B (Akt)

that is regulated by PI3K, and tumor necrosis factor alpha

(TNFa). Increased expression of PI3K, Akt, and TNFa
increases mTORC1 activity [2, 3, 58, 65, 84, 89]. PI3K is

currently the only known upstream modulator of

mTORC2 and its expression leads to increased mTORC2

M. S. Leo

Department of Dermatology, University of California,

San Francisco, CA, USA

M. S. Leo

School of Medicine and Public Health, University of Wisconsin-

Madison, Madison, WI, USA

R. K. Sivamani (&)

Department of Dermatology, University of California, Davis,

3301 C Street, Suite 1400, Sacramento, CA 95816, USA

e-mail: rksivamani@ucdavis.edu

123

Arch Dermatol Res (2014) 306:861–871

DOI 10.1007/s00403-014-1480-8



activity [19]. PI3K is capable of signaling mTORC1

through activating Akt, which then prevents the proper

formation of the tuberous sclerosis complex (TSC).

Similarly, TNFa is capable of activating mTORC1

through inhibiting TSC [43]. Once active, mTORC1

phosphorylates the translational regulators eukaryotic

translation initiation factor 4E (eIF4E)-binding protein 1

(4E-BP1) and S6 kinase 1 (S6K1) [9, 10]. Likewise,

mTORC2 activation leads to increased Akt and serum

and glucocorticoid-induced protein kinase 1 (SGK1)

phosphorylation [47, 72]. The importance of and details

concerning these upstream and downstream targets to

dermatologic diseases will be addressed.

mTORC1 regulation and activity

The phosphatidylinositol 3-kinases (PI3Ks) phosphorylate

and activate protein kinase B (Akt), a serine/threonine

kinase [2]. PI3K can activate 3-phosphoinositide-depen-

dent protein kinase-1 (PDK1) to phosphorylate Akt at

Thr308 as well [3]. Upon activation, Akt phosphorylates

the tuberous sclerosis complex 2 (TSC2) preventing it from

forming a complex with TSC1 [65]. TSC1/2 negatively

modulates mTOR activity by converting the Ras homolog

enriched in brain (Rheb) to its inactive GDP form [32, 80].

Akt can also activate mTORC1 through disassociating

proline-rich Akt substrate 40 kDa (PRAS40) from regula-

tory-associated protein of mammalian target of rapamycin

(raptor) [84] and/or by directly phosphorylating mTORC1

at Ser2448 [58]. Therefore, Akt has multiple modes

through which it activates mTORC1. There are also other

methods reviewed in Laplante and Sabatini [42] that reg-

ulate mTORC1 through modulation of TSC1/2 such as the

Wnt pathway, adenosine monophosphate-activated protein

kinase (AMPK), and the amino acids leucine and arginine

that are not discussed here.

Once active, mTORC1 phosphorylates the translational

regulators eukaryotic translation initiation factor 4E

(eIF4E)-binding protein 1 (4E-BP1) and S6 kinase 1

(S6K1) [9, 10]. Phosphorylated eIF4E is necessary to form

the eIF4F complex that is essential for translation initia-

tion. 4E-BP1 binds to eIF4E to inhibit it and phosphory-

lation of 4E-BP1 causes it to dissociate. Phosphorylation of

S6K1 leads to its activation and an increase in protein

translation and cell proliferation. mTORC1 is also involved

in the regulation of lipid synthesis by downstream activa-

tion of sterol regulatory element-binding protein, a tran-

scription factor that upregulates lipogenesis [41, 76].

mTORC2 regulation and activity

In contrast to mTORC1, mTORC2 is less responsive to

rapamycin treatment [70]. Growth factors induce mTORC2

activity via PI3K but other upstream modulators of

mTORC2 remain unknown [19]. It has been proposed that

PI3K promotes mTORC2 binding to ribosomes, which

directly activates mTORC2 [92]. mTORC2 activates Akt

through phosphorylation at Ser473 [72], but prolonged

treatment with rapamycin of 24–72 h inhibited mTORC2

assembly through dissociation of the rictor–mTOR com-

plex [71]. However, rapamycin treatment had varying

efficacy on decreasing Akt phosphorylation depending on

cell type [71]. mTORC2 is capable of regulating cellular

growth, proliferation, and apoptosis from its control over

Akt. mTORC2 also phosphorylates serum and glucocorti-

coid-induced protein kinase 1 (SGK1) at Ser422, which

plays a role in stimulating sodium ion transport and regu-

lating cellular growth [47]. Rapamycin treatment decreased

S6K1 activity regulated by mTORC1, but not SGK1

phosphorylation [25]. Furthermore, mTORC2 can affect

the actin cytoskeleton and impact cell shape through its

regulation of specific kinases [35].

Fig. 1 Phytochemical targets of the PI3K/Akt/mTOR pathway
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Dermatological diseases associated with the mTOR

pathway

Skin cancers

The mTOR pathway is associated with many diseases

including the development of melanomas and skin cancers

caused by UVA and UVB exposure. Exposure of human

keratinocytes to UVA and UVB led to an increased acti-

vation of PI3K with a more pronounced activation by UVB

and phosphorylation of Akt at Ser473 by UVB and at

Thr308 by UVA. UV exposure also led to increased mTOR

and S6K1 phosphorylation as well [78]. Supporting this

theory, UV exposure was shown to increase S6K1 phos-

phorylation in mouse epidermal JB6 Cl41 cells caused by

mTOR and not Akt. Pretreatment with rapamycin,

decreased S6K1 phosphorylation when exposed to UVB

and UVC but knockdown of Akt did not affect S6K1

phosphorylation [31]. This suggests that UVB and UVC

exposure is capable of activating the PI3K/Akt/mTOR

pathway downstream of Akt although mTOR activation

was not directly tested. Deletion of mTOR in mice and

keratinocyte cells exposed to UVB rays led to increased

apoptosis and decreased S6K1 and Akt phosphorylation.

mTORC2 negatively regulates UVB-induced apoptosis as

shown through rictor knockdown in mice embryoblasts,

while mTORC1 is responsible for phosphorylating S6K1

[12].

mTOR is a major contributor to melanomas. 76 out of

107 melanomas had moderately to severely increased

S6K1 phosphorylation, while only 3/67 benign nevi

showed moderately increased phosphorylation [38]. Fur-

ther studies were conducted on six distinct melanoma cell

lines and treatment with rapamycin was shown to inhibit

proliferation in three of the cell lines. Four of six lines also

showed increased S6K1 phosphorylation only 30 min after

amino acid withdrawal thereby showing mTOR dysregu-

lation in melanocytes [38]. Increased Akt phosphorylation,

an upstream regulator of mTOR activity, was present in

71 % of primary melanomas and rapamycin treatment

resulted in decreased proliferation in three different cell

lines [54].

Using reverse phase protein microarray analysis,

increased activation of PI3K/Akt and mTOR was observed

in advanced and non-advanced squamous cell carcinomas

compared to actinic keratoses [22]. Cyclin-dependent

kinase 2 (CDK2) activation strongly correlated with Akt

and mTOR phosphorylation suggesting that it may be a

target for the Akt/mTOR pathway in squamous cell carci-

noma [15]. While significantly elevated levels of phos-

phorylated mTOR were found in all 15 human squamous

cell carcinoma samples, it was completely absent in 12/13

basal cell carcinoma samples [37]. This result likely

explains the increased efficacy of mTOR inhibitors on

squamous cell carcinomas compared to basal cell

carcinomas.

An overexpression of Rheb was found to be present in

several different carcinoma histotypes, and a meta-analysis

of published cancer cytogenetic and transcriptome database

showed an increase in the activity of the RHEB locus.

Increased Rheb expression in murine epidermal keratino-

cytes led to mTOR activation and induction of skin tumors

[48]. Mutations in the BRAF gene is a marker of malignant

melanoma and show higher p90 ribosomal S6 kinase

(RSK) activity [26]. The activated BRAF gene leads to the

activation of mTORC1 to increase protein translation and

cell proliferation in human melanoma cell lines. Further-

more, knockdown of RSK using RNAi led to decreased

mTORC1 activity [68]. Activating mutations in the

PIK3CA gene that promotes PI3K activity is present in a

subset of merkel cell carcinomas 6/60. Furthermore, PI3K

activity that leads to Akt and mTOR activation was present

in all merkel cell carcinoma lines that lacked the merkel

cell polyoma virus, which usually indicates a worse prog-

nosis [57]. Taken together, the mTOR pathway is activated

in both nonmelanoma and melanoma skin cancers.

Tuberous sclerosis complex

TSC is an autosomal dominant disorder that is character-

ized by the development of benign tumor-like lesions in

multiple organ systems. As discussed above, TSC1/2 is

important upstream modulator for mTORC1 and mutations

in both TSC1/2 tumor suppressor genes leading to

mTORC1 activation. Current mTOR inhibitors that can be

used for the treatment of TSC are reviewed elsewhere [18].

Vascular lesions and neoplasms

Failure of endothelial cells to remodel or undergo pro-

grammed cell death can lead to vascular malformations,

which are abnormal persistence of blood vessels. Overex-

pression of Akt in murine endothelial cells leads to vas-

cular malformations [63]. Since Akt regulates mTORC1

and is activated by mTORC2, the mTOR pathway is likely

to be involved in vascular malformations as well. Expres-

sion of both Akt and mTOR was increased in human

hemangioma tissue samples in the proliferative phase, but

decrease in the involutive phase and mTOR inhibition

resulted in cell apoptosis and cell cycle arrest in prolifer-

ating hemangioma samples [62].

Kaposi’s sarcoma is a connective tissue cancer often

associated with HIV infections and activates the PI3K/Alt/

mTOR pathway [7]. PI3K and Akt were shown to be active

in mice induced with KS tumors. Inhibition of the KS-

associated herpesvirus used to infect the mice decreased
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Akt phosphorylation suggesting that the mTOR pathway

may be involved in this disease as well [75]. Furthermore,

infection of human umbilical vein endothelial cells with

Kaposi’s sarcoma herpesvirus resulted in increased phos-

phorylation of PI3K, Akt, and mTOR [86]. Similarly,

transfection with the Kaposi’s sarcoma-associated herpes-

virus G protein-coupled receptor (KSHV-GPCR) promoted

human umbilical endothelial cell survival via activation of

Akt [55]. Expression of the K1 glycoprotein encoded by

Karposi’s sarcoma-associated herpesvirus, in B-lympho-

cytes and endothelial cells increased PI3K phosphorylation

and Akt phosphorylation at Ser473 and Thr308 [81, 87].

Furthermore, K1 expression in human endothelial cells also

increased mTOR phosphorylation [87].

mTOR has also been shown to be involved in heman-

giosarcomas (HSA) which are tumors derived from endo-

thelial cells. Phosphorylated Akt at serine473, the

mTORC2-specific phosphorylation site, was present in

86.5 % of HSA’s compared to just 15 % of hemangiomas

(HA) in canines. Phosphorylated mTOR at Ser2448, the

Akt specific phosphorylation site for mTORC1, was found

to be present in 35 % of HSA’s and 7 % of HA’s. mTOR’s

downstream target 4E-BP1 was phosphorylated in 81 % of

HSA’s and 26 % of HA’s [56]. Similar levels of phos-

phorylated Akt were observed in human patients with

angiosarcoma [40]. This data suggests that mTORC2 is

more heavily involved in the development of tumors in

HSA and HA than mTORC1.

Mycosis fungoides

Mycosis fungoides (MF) is a type of cutaneous T cell

lymphoma. mTOR has been shown to directly phosphor-

ylate the signal transducers and activators of transcription

factor 3 (STAT3) [88], which has been implicated in

mycosis fungoides [51]. Accordingly, active mTOR was

found to be present with phosphorylated S6K1 in 67 % of

lesions taken from 50 patients with MF [44].

Pemphigus vulgaris

Pemphigus vulgaris is an autoimmune disease caused by

recognition of the transmembrane glycoprotein desmoglein

3 by IgG auto-antibodies. Phosphorylated mTOR was

highly localized in the basal cells of mice injected with

pemphigus vulgaris IgG and was scattered when the mice

were injected with normal human serum. Treatment with

rapamycin in mice injected with PV IgG showed no signs

of suprabasal acantholysis showing that mTOR activity

contributes to the development of lesions in pemphigus

vulgaris [66]. Neural nitric oxide synthase (nNOS) has

been linked to pemphigus vulgaris acantholysis as well as

mTOR. Mice pre-treated with nNOS before injection of PV

IgG showed a significantly decreased amount of phos-

phorylated mTOR compared to mice without the nNOS

knockdown [23].

Psoriasis

Psoriasis, a disease of increased epidermal proliferation of

keratinocytes, leads to a compromised barrier and inflam-

mation due to an abnormal stratum corneum. Analysis of

punch biopsies from patients with severe plaque psoriasis

revealed elevated levels of phosphorylated mTOR at

Ser2448 in the stratum basale as well as its downstream

target S6K1 in suprabasal layers [11]. This suggests that

mTORC1 plays a role in the pathogenesis of psoriasis.

Infections can trigger acute guttate psoriasis or exacer-

bate chronic plaque psoriasis. The chemokine (C–C motif)

ligand 3 (CCL3) downregulates forkhead/winged helix

transcription factor 3 (FOXP3) which is believed to have a

role in psoriasis development [13]. The ratio of FOXP3 to

activated effector T cells was reduced in progressive pso-

riasis skin samples as well as in severe psoriatic samples

[13]. CCL3 regulates FOXP3, found in lower levels in

patients with psoriasis, through the PI3K/Akt/mTOR

pathway, which decreases FOXP3 stability. Akt phos-

phorylation at Ser473 by mTORC2 was required for the

degradation of FOXP3 and overexpression of the mSin1

component of mTORC2 reduced the stability of FOXP3.

Furthermore, CCL3 did not affect 4E-BP1 phosphorylation

and rapamycin treatment did not affect FOXP3 stability

suggesting that mTORC1 does not affect FOXP3 [14].

TNFa modulates inflammatory cytokines and activates

mTORC1 as well and rapamycin treatment has been shown

to inhibit the expression of TNFa mRNA in human

keratinocytes [89]. Since TNFa is upregulated in psoriatic

lesions, this further suggests that the mTOR pathway is

involved in the pathogenesis of psoriasis. Taken together,

psoriasis appears to have increased activity of both

mTORC1 and mTORC2 activity.

Certain vitamins have demonstrated therapeutic effects

on psoriasis. Studies have examined the efficacy of 1a,25-

dihydroxyvitamin D3 (Vit-D) and 1a,25-dihydroxyvitamin

D3-3-bromoacetate (BE) for the treatment of psoriasis [20].

Both Vit-D and BE exhibited antiproliferative effects and

induced apoptosis in keratinocytes through downregulation

of phosphorylated Akt and mTOR with BE being signifi-

cantly more potent. Furthermore, Vit-D and BE treatment

inhibited IL-22 induced psoriasis-like characteristics in a

reconstructed human epidermis model with BE producing a

more potent effect again [20]. BE was discovered to

decrease the IL-22 induced expression of Akt and mTOR

by nearly 17-fold. This suggests that both BE and Vit-D

may be potential therapeutic agents for psoriasis through

inhibition of Akt/mTOR inhibition. These cell culture
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findings warrant further examination in animal and human

tissue to assess the clinical significance.

Acne vulgaris

Acne vulgaris is a widely prevalent skin disease. Insulin

growth factor 1 (IGF-1) is involved in stimulating seba-

ceous gland lipogenesis through upregulating sterol

response element-binding protein-1 (SREBP-1) [74].

Stimulation of the Seb-1 human sebocyte cell line with

IGF-1 increased Akt phosphorylation as well as lipo-

genesis in sebocytes. Furthermore, inhibition of PI3K

inhibited Akt phosphorylation as well as the production

of SREBP-1 mRNA and protein thereby revealing the

importance of the PI3K/Akt pathway to lipogenesis in

sebocytes [74]. Since the PI3K/Akt pathway is an

upstream modulator of mTORC1 and Akt is a down-

stream target of mTORC2, the mTOR pathway is likely

to play a role in the pathogenesis of acne vulgaris

although no direct evaluations of mTOR in regards to

acne vulgaris have been examined. It has also been

recently suggested that a deficiency of the forkhead box

O1 transcription factor (FoxO1) is responsible for the

pathogenesis involved in acne vulgaris [50]. This evi-

dence strongly suggests that mTORC2 activation is vital

to the development of acne since decreased Akt phos-

phorylation by mTORC2 decreased the phosphorylation

of certain downstream targets of Akt such as forkhead

box O1/3a leading to a deficiency of FoxO1 [28, 34].

Wound healing

Considering that the mTOR pathway promotes cellular

growth and proliferation, the pathway likely plays a role in

wound healing. Increased expansion of phosphorylated Akt

at serine473 and S6K1 from the granular layer to the spi-

nous layer was observed in the transitional epithelium of

mice with incisional skin wounds undergoing the healing

process [77]. Furthermore, knockdown of phosphatase and

tensin (PTEN) gene which is a tumor suppressor gene that

negatively regulates PI3K and Akt led to increased phos-

phorylated Akt and accelerated wound healing. Treatment

with rapamycin delayed wound healing [77]. To further

validate the significance of mTOR in wound healing,

excision of TSC1, the upstream inhibitor of mTORC1,

accelerated wound healing in mice [77]. These results are

consistent with another study that determined that the

mTOR inhibitor everolimus decreased the proliferation of

squamous cell carcinomas, but also increased wound-

healing times in vivo in humans [24]. Table 1 reviews the

target of the PI3K/Akt/mTOR pathways for the previously

mentioned diseases.

Phytochemical regulation of the PI3K/Akt/mTOR

pathway

Rapamycin (sirolimus)

Rapamycin is a macrolide isolated from Streptomyces

hygroscopicus in 1972 and it specifically targets mTOR

and was originally developed to be an antifungal agent

[73]. It was shown to have numerous properties including

immunosuppressive effects, antibacterial and antifungal

capabilities. Rapamycin is mainly used as an immuno-

suppressive medication in patients with renal transplants.

Rapamycin appears to primarily target mTORC1 although

it also exhibits cell-specific mTORC2 inhibition [71].

Furthermore, clinical studies have demonstrated rapamycin

to be a promising treatment for psoriasis [61, 67]. Two

derivatives of rapamycin: temsirolimus and everolimus are

FDA approved mTOR inhibitors for oncological indica-

tions [27].

Curcumin

Curcumin (diferuloylmethane) is a phytochemical derived

from turmeric (Fig. 2). Curcumin arrests the growth of

rhabdomyosarcoma cells in the G1/G0 phase by inhibiting

S6K1 and 4E-BP1 phosphorylation, which are both

downstream targets for mTOR, in Rh1 and Rh30 cells [6].

Table 1 PI3K/Akt/mTOR pathway targets as a function of disease

type

Disease Effect

on

PI3K/

Akt

Effect on

mTORC1

Effect on

mTORC2

Downstream

modulators

Melanoma : : Unknown : S6K1

Pemphigus

vulgaris

No

effect

: Unknown Unknown

Mycosis

fungoides

: : in most

cases

Unknown : S6K1 67 %

of lesions

Kaposi’s sarcoma : Unknown Unknown Unknown

Hemangiosarcoma : : in 35 %

of cases

: in

86.5 %

of cases

: 4E-BP1

81 % of

cases

Hemangioma : : 7 % of

cases

: 15 %

of cases

: 4E-BP1

26 % of

cases

Tuberous sclerosis

complex

: : : : 4E-BP1

and S6K1

Psoriasis : : : : S6K1

Acne vulgaris : Unknown Unknown Unknown

Wound healing : : : : S6K1

‘‘;’’ indicates a decrease in phosphorylation while ‘‘:’’ indicates an

increase in phosphorylation
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Similar inhibition of S6K1 was seen with curcumin pre-

treatment in mice prior to the induction of squamous cell

carcinomas with an associated decrease in average tumor

volume [64]. Dose-dependent inhibition of mTOR phos-

phorylation by Akt and at its auto-phosphorylation site was

induced [6]. Curcumin inhibits Akt at high concentrations

(50–75 mM) [6] and at low concentrations (0.5–2.7 lM)

when combined with UVA or visible light exposure [21].

However, curcumin did not inhibit Akt phosphorylation in

mice [64]. This discrepancy may be due to the differences

in species-related responses between mice and human cells.

In addition, the systemic concentration in the mice may

have been too low to inhibit Akt, although the authors do

not report this [64].

Curcumin’s mechanistic inhibition of mTOR is due to

its ability to disrupt the stability of mTORC1 through

dissociating raptor from mTOR at low concentrations, and

it inhibits mTORC2 by disrupting rapamycin-insensitive

companion of mTOR (rictor) binding to mTOR at higher

concentrations (Table 2) [5]. This is consistent with

decreases in the phosphorylation of S6K1 and 4E-BP1 by

mTORC1 at lower concentrations and Akt phosphorylation

by mTORC2 at higher concentrations [6]. Overall, curcu-

min represents a viable inhibitor of the mTOR pathway by

disrupting mTORC1 at low concentrations and mTORC2 at

higher concentrations.

Resveratrol

Resveratrol (trans-3,4,5-trihydroxystilbene) (RSV) is a

naturally occurring phytochemical found in more than 70

plant species (Fig. 2) including grapes, cranberries and

peanuts [1]. Resveratrol inhibits PI3K and Akt phosphor-

ylation. Topical application of RSV decreased 12-O-tetra-

decanoylphorbol-13-acetate (TPA)-induced

phosphorylation of PI3K and Akt and the average number

and incidence of papillomas in mice induced by DMBA

and promoted by TPA [82]. Furthermore, RSV inhibits the

migratory and invasive properties of melanoma cells in

mice by inhibiting Akt phosphorylation at Ser473 and

Thr308 [8].

RSV inhibits mTOR activation and function. RSV

inhibited mTOR phosphorylation in TNFa-treated mouse

embryonic fibroblast cells [91]. RSV was determined to

inhibit the mTOR pathway through enhancing the binding

of the mTOR inhibitory subunit, DEP domain-containing

mTOR-interacting protein (DEPTOR), to the catalytic

mTOR kinase but had no effect on the expression of

DEPTOR (Table 2) [45]. Furthermore, RNAi knockdown

of DEPTOR decreased RSV’s inhibitory effects on mTOR

[45]. RSV also significantly decreased S6K1 and 4E-BP1

phosphorylation in mouse fibroblasts since mTOR was

inhibited [45]. In vitro human studies using RSV treatment

decreased phosphorylated S6K1 levels in HeLa cervical

cancer, HepG2 hepatocarcinoma, and MCF-7 breast cancer

cell lines [33]. Likewise in human U251 glioma cells, RSV

treatment produced a dose-dependent reduction in phos-

phorylated mTOR and Akt at serine473, the mTORC2

target site [36]. Furthermore, another study determined that

RSV treatment increased the phosphorylation of the raptor

subunit of mTORC1, thereby inhibiting the complex in

human embryonic kidney cells transfected with Alzhei-

mer’s disease amyloid protein [85]. However, another

study performed with esophageal squamous carcinoma

cells (ESCC) reported opposing results in terms of raptor

phosphorylation [79]. Both studies reported that RSV

treatment induced autophagy in their respective cell lines,

and the ESCC cells were also apoptotic upon treatment.

This discrepancy is likely due to RSV’s differing mode of

action in different cell lines considering that RSV induced

AMPK-dependent autophagy in myelogenous leukemia

cells, but was AMPK-independent in esophageal squamous

carcinoma cells [79].

Overall, RSV holds promise as a phytochemical inhib-

itor of both complexes of the mTOR pathway although its

mode of action is complex and includes upstream modu-

lation of Akt and PI3K as well.

Fig. 2 Chemical structures of curcumin, caffeine, resveratrol, and

epigallocatechin-3-gallate
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Epigallocatechin-3-gallate

Epigallocatechin-3-gallate (EGCG) is the most abundant

phytochemical catechin extract from green tea (Camellia

sinensis) (Fig. 2). EGCG increases Akt phosphorylation

through PI3K regulation in normal human epidermal

keratinocytes at low concentrations (0.5 lM), but demon-

strated no significant effect at high concentrations (50 lM)

[17]. PI3K inhibitors affected EGCG’s ability to phos-

phorylate Akt. EGCG also stimulates hair growth and

in vitro studies using EGCG formulations of various con-

centrations up to 0.5 lM demonstrated a 2.5-fold increase

in Akt phosphorylation compared to the ethanol control in

human dermal papilla cells [39].

In contrast to the experiments demonstrating that

EGCG increases PI3K and Akt phosphorylation, peracet-

ylated EGCG downregulated PI3K and Akt phosphory-

lation in mouse skin when induced by DMBA/TPA [16].

Although no studies were done on mice skin using just

EGCG to measure P-Akt, it is likely that EGCG alone

without peracetylation also downregulates PI3K and Akt,

since both EGCG and peracetylated EGCG treatment

decreased the percentage of mice with tumors and the

average number of tumors present in mice, except that

peracetylated EGCG had a more pronounced effect.

EGCG also appears to inhibit keloid fibroblast prolifera-

tion and collagen production via inhibition of the PI3K/

Akt-signaling pathways [90]. Furthermore, EGCG

decreases Akt phosphorylation in a dose-dependent man-

ner in human squamous carcinoma cells [17]. EGCG was

later determined to be an ATP-competitive inhibitor of

PI3K and mTOR in both mammary epithelial adenocar-

cinoma and alveolar basal epithelial adenocarcinoma cell

lines [83]. Phosphorylation of Akt at Ser473 was inhibited

by EGCG treatment, and immunoprecipitation studies

showed that EGCG inhibited both mTORC1 and

mTORC2 (Table 2) [83].

Some studies have also demonstrated that EGCG had no

effect on Akt phosphorylation in the PC3 and LNCaP

prostate adenocarcinoma cell lines, which may be due to

the fact that the cell lines were also unresponsive to insulin-

like growth factor 1 (IGF-1) stimulation that is involved in

activating the mTOR pathway [83]. This is likely due to the

fact that LNCaP and PC3 have mutations in the phospha-

tase and tensin (PTEN) gene, which is a tumor suppressor

gene that negatively regulates PI3K and Akt.

The discrepancy in EGCG’s different effects may be cell

specific. As mentioned above, rapamycin treatment had

varying efficacy on decreasing Akt phosphorylation

depending on cell type [71]. The cause behind this cell type

specificity to treatments is still unknown. However, there is

a general trend that EGCG tends to downregulate the PI3K/

Akt/mTOR pathways in carcinogenic cell lines or cells

induced to proliferate by various chemicals such as

DMBA/TPA or other processes. In contrast, EGCG stim-

ulated Akt phosphorylation in normal proliferating cell

lines such as dermal papilla cells and normal human epi-

dermal keratinocytes. EGCG is a complex regulator of the

mTOR pathway and appears to produce differing effects

depending on the baseline proliferative state of the cell.

Further studies are needed to better assess how EGCG

interacts with different cell lines.

Caffeine

Caffeine is a popular xanthine alkaloid found in various

products such as coffee, tea, cocoa beans, and soft drinks

(Fig. 2). In mouse epidermal JB6 cells induced by epi-

dermal growth factor (EGF) and TPA, caffeine decreased

the phosphorylation of Akt at Ser473 and its downstream

Table 2 Phytochemical targets of the mTOR pathway

Phytochemical mTOR Raptor DEPTOR Rictor PI3 K Akt 4E-BP1 S6K1

Curcumin ; X X ; ; ;

Resveratrol ; X ; ; ; ;

Epigallocatechin-3-gallatea :; :;

Caffeinea ; ; ; ;

Quercetin ; ; ; ;

Irradiated riboflavin ; ;

Gartanin ; ;

‘‘;’’ indicates a decrease in phosphorylation, while ‘‘:’’ indicates an increase in phosphorylation. Curcumin dissociates the raptor subunit from

mTOR and disrupts rictor binding to mTOR. Resveratrol enhances the binding of DEP domain-containing mTOR-interacting protein (DEPTOR)

to mTOR. Epigallocatechin-3-gallate (EGCG) was shown to upregulate Akt phosphorylation in normal human epidermal keratinocytes (NHEK)

and downregulate phosphorylation in carcinoma cells
a EGCG and caffeine were both shown to inhibit Akt at Ser473, which is phosphorylated by mTORC2 suggesting that these compounds inhibit

mTORC2; however, the specific subunits they regulate are still unknown
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target S6K1 (Table 2). However, caffeine did not affect

PI3K activation and did not directly inhibit Akt activation

as shown through immunoprecipitation assays [59]. This

suggests that caffeine interacts with the mTOR pathway

since Akt phosphorylation at Ser473 was affected, a

characteristic effect of mTORC2. These results are sup-

ported by Han et al. [29] who demonstrated that caffeine

increases UVB-induced apoptosis in human HaCaT

keratinocytes by inhibiting Akt activation. Furthermore,

caffeine inhibits formation of phosphorylated Akt in sar-

coma cells [52]. Caffeine also inhibits the downstream

targets of mTOR, 4E-BP1 and S6K1, in cervical cancer

cells (HeLa) and rat neuroendocrine tumor cells (PC12D)

[69]. Similarly, treatment with caffeine suppressed Akt/

mTOR/S6K1 activity in human osteosarcoma cells [53].

Taken together, caffeine inhibits mTORC1 and mTORC2

activity.

Other phytochemicals

The flavonoid quercetin (Fig. 3) was shown to reduce

phosphorylation of mTOR at Ser2448 and 4E-BP1 and

S6K1 in UVB-induced HaCaT cells [60]. Similarly, irra-

diated riboflavin (Fig. 3) inhibits mTOR phosphorylation

at Ser2448 in B16F10 mouse melanoma cells and reduces

melanoma metastasis in vivo in mice [49]. Gartanin, a

xanthone from mangosteen juice (Fig. 3), was shown to

inhibit the downstream targets of the mTOR pathway 4E-

BP1 and S6K1 but not mTOR itself [46]. Continued

research is necessary to determine the direct effect of these

phytochemicals specifically on mTOR to extend the

implications of these previous studies. All the reviewed

phytochemicals can be purchased from the suppliers listed

in Table 3.

Conclusion

The mTOR pathway is an important regulator of many

physiological processes and is active in several dermato-

logical diseases. As shown in Table 1, all the inflammatory

and proliferative diseases discussed in this review upreg-

ulated PI3K/Akt and mTORC1. This association is sug-

gestive that mTOR pathway activation may be a

commonality for both cutaneous inflammation and prolif-

eration. However, there may be some specificity as to how

mTORC1 and mTORC2 are balanced, but this will require

further research to better assess the commonalities and the

differences in mTOR activation between cutaneous

inflammation and proliferation. Furthermore, all the phy-

tochemicals discussed here were shown to downregulate

the mTOR pathway when applied in cells transfected or

induced into a disease state that has upregulated mTOR

pathway activation. EGCG was the only phytochemical

tested in cells in a normal state that increased Akt phos-

phorylation at low concentrations only. This suggests that

the mTOR pathway in diseased cells may respond differ-

ently to phytochemical treatment than normal cells. The

majority of the studies conducted on the mTOR pathway

have been in vitro and few in vivo studies have evaluated

the use of phytochemicals within dermatology. Future

animal studies will help elucidate in vivo mechanisms

more clearly, but the gold standard will be clinical testing.

Botanical and phytochemical evaluation for the

Fig. 3 Chemical structures of quercetin, riboflavin, and gartanin

Table 3 List of phytochemicals and supplier

Phytochemical Supplier Address

Curcumin Sigma St. Louis, MO,

USA

Resveratrol Sabinsa Corp. East Windsor, NJ,

USA

Epigallocatechin-3-

gallate

Sigma St. Louis, MO,

USA

Caffeine Wako Pure Chemical

Industries

Osaka, Japan

Quercetin Sigma St. Louis, MO,

USA

Irradiated riboflavin Sigma St. Louis, MO,

USA

Gartanin ChromaDex Irvine, CA, USA
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modification of skin structure/function or disease will

require either an investigational new drug (IND) approval

or an IND exemption for clinical testing. A careful

reconsideration of the requirements and impediments to

topical botanical testing may need to occur to move clinical

research forward more quickly. On the other hand, phyto-

chemicals are unlikely to receive any other distinction

when tested in purified form. Regardless, further interac-

tion between dermatologists, cell biologists, and plant

scientists will help continue to move this field forward in

hopes of developing novel therapies for cutaneous disease.
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