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Abstract The use of dermal substitutes is increasingly
widespread but the outcomes of substitute-assisted healing
remain functionally deWcient. Presently, the most success-
ful scaVolds are acellular polymer matrices, prepared
through lyophilization and phase separation techniques,
designed to mimic the dermal extracellular matrix. The
application of scaVolds containing viable cells has proven
to be problematic due to short shelf-life, high cost and
death of transplanted cells as a result of immune rejection
and apoptosis. Recent advances in biomaterial science have
made new techniques available capable of increasing scaV-
old complexity, allowing the creation of 3D microenviron-
ments that actively control cell behaviour. Importantly, it
may be possible through these sophisticated novel tech-
niques, including bio-printing and electrospinning, to accu-
rately direct stem cell behaviour. This complex proposal
involves the incorporation of cell-matrix, cell-cell, mechan-
ical cues and soluble factors delivered in a spatially and
temporally pertinent manner. This requires accurate model-
ling of three-dimensional stem cell interactions within
niche environments to identify key signalling molecules
and mechanisms. The application of stem cells within

substitutes containing such environments may result in
greatly improved transplanted cell viability. Ultimately this
may increase cellular organization and complexity of skin
substitutes. This review discusses progress made in improv-
ing the eYcacy of cellular dermal substitutes for the treat-
ment of cutaneous defects and the potential of evolving
new technology to improve current results.
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Introduction

Tissue engineering and regenerative medicine are necessi-
tated by the limited reparative capacity of post-natal tissues
and organs. In the treatment of cutaneous defects, the use of
tissue-engineered dermal substitutes, in their various forms,
is increasingly routine, particularly as a life saving tool fol-
lowing acute thermal trauma. However, at present, even the
most successful amongst these, cannot restore the full func-
tionality and appearance of uninjured dermis.

Dermal substitute construction is variable and a range of
materials, designs and cell sources have been investigated.
Most commercially available products are based around
polymer matrices, derived from both natural and synthetic
sources. The majority of these, however, were developed
during the 1990s and are designed to mimic the basic prop-
erties of the extracellular matrix (ECM).

Physiologically, on the simplest level, the ECM supplies
the structural and organizational framework of developing
and mature dermal tissue. This framework is created in the
main through highly hydrated insoluble macromolecules
such as Wbrillar proteins (e.g. collagens), glycoproteins (e.g.
elastin or Wbronectin) and proteoglycans with associated
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glycosaminoglycans (e.g. versican). The tunability of this
system is such that cells are able to create cell-speciWc
micro-environments through bidirectional interaction with,
and remodelling of, the ECM surrounding them.

Following damage to or destruction of dermal tissue,
granulation tissue is formed. This loosely woven immature
neomatrix is deposited by invading monocytes (mainly
macrophages) and Wbroblasts following platelet-mediated
establishment of haemostasis. The early granulation tissue
contains large quantities of Wbrin, Wbronectin, hyaluronan
and also collagen types I and III [165]. Several growth fac-
tors have been identiWed as important for cell invasion of
the site, proliferation and matrix deposition/remodelling
including transforming growth factor (TGF)-� [164], plate-
let derived growth factor (PDGF) [85, 109, 142], Wbroblast
growth factors (FGFs) [85, 160] and matrikines released by
matrix damage and remodelling. This early tissue provides
the framework for the deposition of neodermis. Within a
few weeks the Wbronectin-rich matrix disappears. Hyaluro-
nan is reduced and collagen type I/III Wbres are slowly
remodelled to contain less collagen III and reorganized into
large bundles. The anisotropic architecture of the mature
Wbrillar matrix consists of both rigid supporting collagens,
Xexible elastic networks of elastin, and molecular connec-
tors. This arrangement not only confers important mechani-
cal properties but inXuences cell behaviour by the manner
in which cells bind to, and therefore sense their microenvi-
ronment [134].

Cells adhere to the diVerent ECM components either
directly through cell surface receptors (e.g. integrins) or via
intermediate factors with varying degrees of speciWcity and
aYnity. The density and number of speciWc cell surface
receptors that bind the ligand initiates corresponding intra-
cellular signalling events. These speciWc interactions, in
part, control cell survival, cell phenotypes and drive cell
fate decision [44, 66, 94]. Of additional importance is the
spatial orientation of activated cell surface receptors. In
some cases three-dimensional integrin activation is
required to initiate a cellular response. An example of this
is the regulation of MMP-13 production through 3D activa-
tion of �1�1 and �2�1 integrins in collagen substrates, which
results in the coordinated stimulation of three MAPK
classes (ERK1/2, JNK and p38). In this example, it is the
balance between the p38 (activating) and ERK1/2 (sup-
pressing) pathways through integrin-mediated ECM-cell
signalling that aVects the rate of enzymatic degradation of
the matrix [134].

The extent and complexity of the inherent bioactivity of
native dermal ECM has only recently been fully realized
and is not yet understood fully. The ECM environment,
which a transplanted cell is subjected to, inXuences cell sur-
vival and behaviour. The current gap in knowledge into
what speciWc environmental cues are required for maximizing

therapeutic eYcacy of transplanted cells could explain the
failure of early cellular dermal substitutes to behave as
designed once in the wound bed [78, 79, 98]. It is probable
that a more detailed knowledge of the complex interactions
involved will allow improved substitute design. Recent
advances in material synthesis and processing have facili-
tated a developmental move towards more sophisticated
bio-inspired materials and away from educated trial and
error bio-mimicry [43, 79, 176].

This review will discuss the current status of dermal sub-
stitutes and the biomaterial design that they are based on.
The use of stem cells in regenerative medicine is reviewed
in this context along with the characteristics and potential
of various stem cell sources for application in this Weld. The
article then moves on to focus on novel emerging tech-
niques and materials that are likely to become important in
future dermal substitutes, in particular, those containing
stem cells.

Biomaterials

Perhaps unsurprisingly, given its natural prevalence, colla-
gen is the most widely utilized scaVold biopolymer available
for use in skin substitutes. It is obtained from allogeneic or
xenogeneic sources, with suYcient molecular homology
existing to prevent a signiWcantly detrimental immune
response in most cases [16]. The collagen in these scaVolds
is often reconstituted into porous, Wbrous and hydrogel struc-
tures with physical properties that can be controlled through
manufacture conditions, such as chemical cross-linking to
prevent degradation. However, such treatments may com-
promise eVectiveness, for example extensive cross-linking
increases matrix rigidity and reduces cell attachment and
viability [24, 143]. In its natural state, collagen has a superior
degradation rate (up to 6 weeks) in comparison to reconsti-
tuted collagen (1 week) [19, 62, 72].

Numerous other natural materials have been used in
scaVolds for engineered dermis including hyaluronic acid
[25], Wbrin [2], laminin [51] and elastin [60]. These materi-
als are usually processed into porous scaVolds through
lyophilization (freeze-drying) or phase separation pro-
cesses. (Fig. 1) Naturally occurring ECM molecules are
considered advantageous due to their cell interaction, adhe-
sion and signalling properties. These interactions could
include direct matrix-cell interactions, through the uptake
of soluble factors or through the interaction of enzymati-
cally degraded fragments, or matrikines, with cell surface
receptors [17, 20, 154]. However, with the exception of
elastin, the mechanical properties of these materials are
often poor in comparison to the properties of synthetic
materials, which can be tailored across a broad spectrum.
Even elastin, with a half life of around 70 years [27], must
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be organized into its naturally occurring network to
function properly and retain its stability [27]. When using
natural materials disease transmission and immunogenicity
remain a concern. In addition to these concerns, further
complications include the availability of materials; espe-
cially allogeneic material, puriWcation of selected materials,
and batch-to-batch and source variability. These also serve
to increase the cost of utilizing some raw materials,
meaning substitutes developed from these materials are
potentially more expensive. A possible way of side stepping
these problems could be through the use of recombinant
technology in their production. Due to these issues, there is
a desire to develop synthetic materials that can be designed
to best mimic the natural ECM.

Synthetic materials oVer the possibility of improving
material control, reducing batch variation, eliminating dis-
ease transmission and providing more cost-eVective scala-
bility. Synthetic materials investigated as scaVold materials
include polyurethane (PU), polypropylene (PP) [138],
poly(ethylene glycol), polyglycolide (PGA), polylactide
(PLA) and polylactide-coglycolide (PLGA) [29, 101, 108],
polytetra Xuoroethylene (PTFE), polycaprolactone

(PCL)[119], polyethylene terephthalate (PET), Poly(l-lac-
tide) (PLLA)[169] and poly(ethyleneglycolterephthalate)-
poly(butylenes terephthalate) (PEGT/PBT) [21, 39], [157]
Despite their ease of manipulation and manufacture, the
safety of these materials remains a concern [57]. Although
they may not be directly toxic, the use of synthetic materi-
als has in some cases been found to lead to a foreign body
response and Wbrous capsule formation surrounding the
material [138, 155]. Even though, cell interaction with
these materials can be limited; they can often be easily and
eVectively modiWed through the attachment of growth
factors, attachment sites or coating with ECM molecules to
improve cellular performance. Zisch et al. [176] covalently
decorated PEG hydrogels with vascular endothelial growth
factor (VEGF) which led to improved vascularization fol-
lowing grafting to chick chorioallontoic membrane and
subcutaneous implantation in rats. A more simplistic
approach was applied by Chen et al. [29] who investigated
a hybridized PLGA/collagen mesh as a 3D culture system
for tissue engineering skin and found that hybridization
resulted in improved cell attachment and ECM deposition
of dermal Wbroblasts.

Fig. 1 Current strategies for the production of dermal substitutes.
Current scaVolds tend to be in several main forms: a Hydrogels,
b porous sponge (lyophilization/particulate leaching/phase separa-
tion), c non-woven Wbre, d woven Wbre, e honey comb mesh. These

can be inserted as acellular scaVolds or can be seeded with autologous/
allogeneic cells harvested from bioposy or cell line. Alternatively cell
suspensions can be directly applied to skin defects as a liquid or spray
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Aside from manufactured matrices, several products
exist that consist of intact de-cellularized dermal matrices
of allogenic or xenogeneic origin (e.g. Alloderm™,
Oasis™, FortaFlex™, Repliform™). The hypothesis being
that these matrices oVer an ideal scaVold environment for
the migration and proliferation of dermal cells through the
retention of structure, attachment sites and matrix-bound
growth factors. Reports demonstrate that 3D adhesions are
formed rapidly in cells seeded to tissue-, or cell-derived
acellular matrices [33]. This suggests that these matrices if
processed competently may retain and present important
information that promotes attachment, proliferation and
migration to a further extent than other three-dimensional
and two-dimensional materials [33]. However, problems
can arise when using harsh de-cellularization protocols that
may remove or denature growth factors and damage matrix
architecture [30, 69]. Conversely, mild protocols may fail
to remove cellular material eYciently, resulting in a subse-
quent immune reaction in response to retained foreign cell
fragments [34, 52, 166]. Of the commercially available
products mentioned above; Alloderm™ and Oasis™ have
had relative success in their clinical application in the treat-
ment of chronic ulcers and as dressings for split thickness
graft donor sites. Accelerated healing and decreased pain
were reported in some cases in comparison to conventional
treatments [88, 111, 121, 136, 158, 159]. It is worth noting
that intact de-cellularized ECM represents a mature end-
point structure, both in terms of architecture and molecular
composition. It is possible that this environment is not ideal
for inducing a regenerative wound healing response from
host cells. Finally, although a scaVold material can be
designed as “permanent”, generally it is considered desir-
able that the transplanted scaVold can be safely assimilated
into the body as new matrix is generated by the populating
cells.

Stem cells

Currently, the transplantation of cells in regenerative
medicine is limited by the poor survival rates and persis-
tence of the transplanted material [83, 129]. The cellular
constituents of current dermal substitutes only remain
present for approximately 1 month after application with
only a few percent of cells surviving initial engraftment
[31, 147]. If cellular dermal substitutes are to succeed,
further improvements need to be made. This could be
achieved through the delivery of stem and progenitor cell
populations within protective and bioinstructive environ-
ments [3].

Stem cells are deWned by their ability to self-replicate and
produce more specialized progeny [87, 141]. Their incorpo-
ration into dermal substitutes could lead to improved thera-

peutic activity by directly contributing to cellular content of
the healing wound, the release of paracrine factors and acti-
vation of host stem and somatic cell populations [3]. Further-
more due to their plasticity, it may be possible to increase the
non-Wbroblastic cell content of substitutes without the need
to incorporate several diVerent cell populations. Previous
work has sought to identify suitable stem or progenitor popu-
lations for tissue engineering applications. Several candidate
populations have been identiWed drawing from embryonic
stem cell (ESC), adult stem cell (ASC) sources and more
recently through induced pluripotent stem cells (iPS cells)
(Table 1). Each source has advantageous characteristics,
though none are without disadvantages.

Embryonic stem cells are pluripotent stem cells derived
from the inner cell mass of the blastocyst, which forms sev-
eral days after fertilization [152]. Due to their pluripotency,
and unique ability to maintain pluripotency in long-term
culture, these cells make an attractive single source to gen-
erate cells of multiple, diverse lineages [18]. However, the
use of ESCs has attracted widespread public controversy
leading to complex and stringent regulations governing
their use. Additional safety concerns exist with the use of
these cells due to reports of teratoma formation [172].
However, since the generation of the Wrst human ESC line
in 1998, at least 225 subsequent human ESC lines have
been generated [64, 152].

The physiological function of ASCs is the maintenance
and repair of the tissues in which they reside. ASC popula-
tions reside within niches in tissue incorporating cell-cell,
cell-matrix, soluble cues, mechanical properties and soluble
factor gradients to maintain steady numbers of stem cells in
a stable undiVerentiated state within them [161] (Fig. 2). It
was previously thought that ASCs were lineage restricted to
their host-tissue. However, recent work has shown that
some populations of these cells are multipotent and possibly
even pluripotent [74], and, therefore, capable of diVerentia-
tion into a wider range of cells than anticipated [84, 130].
Certain populations of these stem cells have characteristics
such as abundance and ease of extraction, facilitating their
use in regenerative medicine and tissue engineering [63]. Of
these, bone marrow-derived mesenchymal stem cells
(BM-MSCs) and adipose-derived stem cells (Ad-MSCs) are
perhaps the most promising candidates for stem cell therapy.
BM-MSCs are the most characterized ASC population
[23, 54]. They are present in bone marrow in low density
(»1 MSC per 5 £ 103 mononuclear cells) [77]. Although no
single BM-MSC speciWc marker has been identiWed positive
expression of CD73, CD90 and CD105, when not express-
ing CD34, CD14 and CD45 has been used to identify MSCs
from mixed populations [7, 153]. Bone marrow-derived
stem cells have been used clinically in the treatment of
cutaneous defects, showing improved healing outcomes in
comparison to conventional treatments [13, 42].
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Adipose-derived stem cells oVer an attractive alternative
to BM-MSCs. Adipose tissue has the highest abundance of
stem cells of any tissue in the body, which can be easily
harvested through liposuction surgery and demonstrate
multipotency in vitro [55, 179]. Flow cytometric analyses
of Ad-MSCs have revealed that they share similar surface
receptors with BM-MSCs. This importantly includes the
activated lymphocyte adhesion molecule CD166, which has
been shown to identify BM-MSC populations with multi-
potent diVerentiation potential, and integrin �1 which is
also associated with the cells in the epidermal stem cell
compartment [53, 75, 89]. Ad-MSCs have yet to be used in
the clinic to treat cutaneous injury but have shown promise
in animal wound healing models [5].

Hair follicle-derived stem cell (HFSC) populations oVer
a further option for application in stem cell therapy due to
their natural position and roles within the skin, their ease of
extraction and multipotency [4, 32, 70, 135]. Of the dis-
cussed ASC populations HFSC have been least investigated
for tissue engineering skin. However, they may represent
an important future resource in the development of dermal
substitutes.

Another candidate population of cells for use in the
development of cell instructive dermal substitutes would be
the newly promising iPS cells. Since the discovery by

Takahashi and Yamanaka [150] that pluripotency could be
induced in somatic cells through the delivery of several
growth factors, the Weld of iPS cells has rapidly expanded.
Their research elegantly demonstrated the direct repro-
gramming of mouse embryonic Wbroblasts through the
enforced expression of four transcription factor genes
(Oct3/4, Sox2, Klf4 and c-Myc) [112, 150]. Since this initial
work, several groups have conWrmed and improved this
technique and generated human iPS cells that are epigeneti-
cally and developmentally indistinguishable from ES cells
[92, 97, 123, 124, 162]. The c-Myc gene has since been
shown to be dispensible for reprogramming which has
resulted in reduced incidence of malignant transformation
in iPS derivatives [112]. Recently, virus-free generation of
iPS cells was achieved by Zhou et al. [174] and Kim et al.
[80] using recombinant proteins. Zhou et al. [174] used pol-
yarginine protein transduction domain tagged proteins
repeatedly added to culture media containing valproic acid
(VPA) to reprogramme murine Wbroblasts. In a similar
way, Kim et al. [80] used proteins tagged with a highly
basic peptide sequence derived from human immunodeW-
ciency virus-TAT protein to reprogramme human Wbro-
blasts. These tagged proteins were released from HEK293
(human embryonic kidney) cells engineered to over express
them [80]. The virus free reprogramming of cells, removes

Table 1 Advantages/disadvantages of selected stem cell sources for use in dermal substitutes

Source Advantages Disadvantages Refs

Embryonic stem cells Pluripotent Teratoma formation [26, 82, 140, 152]

Can be propagated indeWnitely

Some demonstrated immune-privileged properties Legal/ethical restrictions

DiYcult to isolate

Open to genetic manipulation Currently allogeneic only—
immunosuppressive 
therapy required

Adult stem cells

Bone-marrow derived 
mesenchymal stem cells

Multipotent Careful control of diVerentiation 
needed

[1, 50, 71, 110, 126]

Demonstrate immune-privileged properties—no 
immunosuppressive therapy required

Can be autologous

Adipose stem cells Available in large quantities and easily harvested

Most abundant tissue source of adult stem cells

Demonstrate immune-privileged properties—no 
immunosuppressive therapy required

Isolation can be diYcult for some 
populations

Can be autologous

Hair-follicle stem cells Physiologically involved in the repair of damaged 
dermis and epidermis

Several populations identiWed

Easily extracted

Induced pluripotent stem cells Autologous pluripotent cells generated from 
somatic cells

Long term safety unknown [149, 150]

No standard practices or 
procedures in place
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the major safety concern of retroviral gene transfer-induced
mutagenesis. This technique potentially means that a tailor
made population of pluripotent stem cells can be con-
structed rapidly from a small sample of the patient’s own
somatic cells. Several safety concerns, such as tumor for-
mation potential, remain to be addressed prior to clinical
application of stem cells from this source. Although this
Weld is progressing rapidly, akin to other breakthroughs, it
is likely to be some time before the transition from labora-
tory to clinic is made possible [12, 28, 112].

The transplantation of stem cells, notwithstanding the
source of the cells, has encountered several obstacles, in
particular, controlling the fate of the engrafted cells once
applied to the wounded dermis. Several schemes have been
suggested such as those by Discher et al. in which materials
could be engineered to contain stem cells within niche envi-
ronments designed to maintain the ‘stemness’ of the cells.
As progenitor cells move out from this niche environment,
diVerentiation could be directed through engineered ECM

design, as in natural tissue [9, 106, 156]. An alternative
approach could be to attract circulating native stem cell
populations once a scaVold is transplanted. This could be
achieved through incorporation of some homing signal and/
or speciWc binding sites to mobilize resident stem cell pop-
ulations and encourage residence within the substitute [35].
Sasaki et al. [139] investigated whether systemically deliv-
ered MSCs are able to diVerentiate into multiple skin types
and contribute to wound healing in murine models. They
found that wound-site intradermal injection of the chemo-
kine SLC/CCL21 increased MSC homing to the defect and
resulted in accelerated wound repair. A related factor, stro-
mal cell-derived factor-1 (SDF-1), is rapidly overexpressed
following tissue injury [10] and is known to recruit endo-
thelial progenitor cells to wound sites [14, 15, 46].
Recently, Rabbany et al. [132] investigated the eVects of a
SDF-1-releasing alginate scaVold on cutaneous wound
healing in a porcine model [132]. The authors reported that
wounds treated with SDF-1 fully closed without scar for-
mation. Interestingly, they go on to link this Wnding to the
sonic hedgehog (Shh)-Gli pathway, which is responsible
for regulating foetal organ development and implicated in
scarless wound healing [36]. Sonic hedgehog has been
shown to upregulate SDF-1 and also enhance SDF-1’s
recruitment of progenitor cells to wound sites [8, 86]. The
authors suggest that Shh-mediated SDF-1 upregulation may
be the mechanism by which decreased scarring is achieved
in foetal wound healing and could be exploited to achieve
similar results in adult tissues [132]. Materials designed to
deliver these chemokines and other factors in conjunction
with stem cell transplantation could result in increased
eYcacy of stem cell treatments.

Aside from the delivery of soluble factors, substrate stiV-
ness is now recognized as an important factor aVecting the
lineage commitment of stem cells [41, 137]. Engler et al.
[41] and Saha et al. [137] demonstrated that in 2D culture.
MSCs cultured on soft substrates commit to neurogenic
fates, on moderately soft substrates commit to myogenic
fates and on rigid substrates commit to osteogenic fates.
Recently, Pek et al. [125] demonstrated that substrate stiV-
ness has a similar eVect on MSCs cultured in 3D systems.
By utilizing an inert thixotropic polyethylene glycol–silica
nanocomposite gel, Pek et al. [125] were able to demon-
strate the direct eVect of matrix stiVness whilst controlling
the biological cues presented to the cells within the system,
in particular, the eVect of integrin-ligand binding mediated
cell responses [125].

Current strategies for stem cell-assisted cutaneous repair

It is hypothesized that stem cells can improve healing
through three basic mechanisms; (1) creation of an environ-
ment that enhances the regenerative capacity of endogenous

Fig. 2 Schematic representation of adult stem cell niche and factors
involved in controlling stem cell behaviour within it. The undiVerenti-
ated stem cell (blue) is situated within the niche surrounded by support-
ing cells (red), speciWc extracellular matrix molecules and in proximity
to microvasculature. The fate of the stem cell is controlled within the
niche through direct interactions with the ECM and supporting somatic
cells. Further to this, the release of paracrine and autocrine factors
alters the behaviour of the resident stem cells. The release of these
factors can be inXuenced by cytokine/growth factor release and/or
neuronal signalling (green cell) to tune stem cell behaviour to the tissue
requirements, e.g. increased division and migration during wound
healing
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cells, (2) transdiVerentiation, and (3) cell fusion [99, 131,
145, 146]. Numerous studies have demonstrated the poten-
tial of transplanted ASCs to improve wound healing rates in
animal models and clinical trials [5, 42, 47, 48, 114, 133].
These early trials have shown that cell preparation and
delivery methods alter the therapeutic eYcacy of the trans-
planted stem cells leading to contrasting reports in the liter-
ature [5]. For example, a murine model treating dermal
wounds in diabetic mice with human adipose-derived stem
cells, found that when the cells were delivered as a suspen-
sion, no advantageous healing eVect was observed [5].
However, when cells were delivered as three-dimensional
aggregates, wound healing was signiWcantly accelerated
[5]. Other studies deliver Ad-MSCs [3, 117, 120] and
BMSCs [59, 93, 99, 107, 114, 173] in dermal substitutes.
One reason for the observed beneWt of cells delivered in
this way could be that the harsh, necrotic environment of
the wound may lack the appropriate milieu to support the
transplanted stem cells. It is clear that the environment in
which the cells are delivered must confer some level of pro-
tection to maintain viability whilst allowing direct contact
with, and migration into, the wound environment.

Designing 3D biomaterials to control stem cell-assisted 
dermal regeneration

The challenge, thus, lies in the identiWcation, design and
manufacture of dermal scaVolds which maximize the heal-
ing potential of transplanted stem cells. EVectively manip-
ulating the enormously complex cell interactions and
regulators of cell fate in three dimensions still represents a
signiWcant problem even in vitro. The majority of informa-
tion that we have about cell signalling networks and
interactions has been derived from 2D in vitro culture sys-
tems. It is a challenge, therefore, to micro-engineer a 3D
environment when mechanisms of intra- and inter-cellular
signalling networks in this setting are not well known [95].
This situation is exacerbated by the tissue-dependent
variability of the niche itself down to the molecular level
and the dissimilar responses of stem cells from diVerent
sources to similar materials and microenvironments [118].
The materials present may as a result have a diVerential
eVect depending on cell source. This, and the lack of
understanding of how dimensionality aVects signal trans-
duction pathways could be addressed with the develop-
ment of quantitative models [95, 96]. Using high
throughput techniques to test biologically driven assump-
tions into cell behaviour through accurate creation of spe-
ciWc cell-matrix interactions is likely to be an eYcient
method for the development of materials with the com-
plexity needed to accurately direct cellular processes [6,
45, 100, 115].

Several materials and fabrication techniques have been
developed or recently applied to tissue engineering that
have the potential to make the manufacture of such com-
plex materials possible (Table 2; Fig. 3). The presentation
and release of growth factors as a means of instructing cell
behaviour is an area which has received considerable inter-
est. Micro- and nano-spheres incorporated into matrices of
various forms can be designed with release proWles to
deliver factors in a concentration and time-speciWc manner
[148, 163, 170]. This approach also protects the growth
factors from degradation. Alternative approaches tether
growth factors to scaVold polymers to be released and acti-
vated through cell-mediated enzymatic action. One exam-
ple of this cell-demanded release, pioneered by Hubbell,
involves VEGF covalently bound to poly (ethylene glycol)
hydrogel matrices [38, 177, 178]. This couples growth
factor concentration directly to cell remodelling and was
shown to induce controlled, natural-like blood vessel
growth and formation in chick chorioallontoic membrane
and rats [38].

Matrix tethering and micro/nano-sphere incorporation
could also be used to create spatial and temporal concentra-
tion gradients in three dimensions [144]. Gradients of bio-
instructive molecules presented in these ways, eVectively
reduce the amount of the particular molecular factors
needed to produce the desired cellular response [144].
Aside from chemical gradients, the incorporation of other
gradients such as (but not exclusive to) pore size, substrate
stiVness and cell attachment site distribution or type are
also important. Spatial patterning of some or all of these
physical and biological cues mimics the natural composition
of dermis and other tissues. For example, the recreation of
the dermal–epidermal bilayer could be facilitated by gradi-
ents of keratinocyte/Wbroblast-speciWc attachment sites,
growth factors, diVerentiation factors and scaVold proper-
ties. These factors could work synergistically to induce
correct cell fate decisions from transplanted and endoge-
nous stem and progenitor populations for rapid, successful
wound healing.

One of the promising novel techniques to emerge in
recent times is bioprinting. Bioprinting can be deWned as
the automated, computer-aided deposition of biological
materials and cells in a predesigned pattern [102]. It is
possible through this relatively new technique to construct
3D-engineered tissues via layer-by-layer deposition. The
layered structure of the skin may mean that this technique is
particularly applicable to the creation of dermal substitutes.

The term bioprinting encompasses a number of tech-
niques including inkjet [116, 167], laser guidance direct
write [122], laser-induced forward transfer (LIFT) [65],
extrusion-based printing [168] and electrostatic-based jet-
ting [58]. These techniques have several characteristics that
can be harnessed for the creation of next generation dermal
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substitutes. The computer-aided nature of the technique
means that precision deposition of cells, ECM and bioac-
tive agents in deWned amounts is possible with relative ease
[116]. Importantly, through the diVerent ink dispensers of
printers, it is possible to use multiple ECM components
simultaneously. Non-contact processes, where a jet is
formed for microsecond time-scales, also mean that the
deposition of bio-ink can be made on a variety of substrates
and even liquid [37]. Ink-jet delivery systems have received
particular attention but several limitations currently exist
such as high shear stress on extrusion and high impact on
deposition of the bio-ink droplet [104]. In bio-printing
cells, maintaining viability and gene expression proWles
represents a challenge, with some success reported [56,
113, 116]. The viscosities, surface tensions and densities of
the bio-inks used in these systems are limited by the

process requirements, restricting the concentrations of
some ECM molecules that may be used [104]. This
becomes important in the construction of 3D bio-printed
substitutes where deposited material must be capable of

Table 2 Current advantages/disadvantages of some novel fabrication techniques

Technology Description/application Advantages Disadvantages Refs

Electrospinning Electrical charge used to 
draw micro/nano-scale 
Wbres from polymer 
solutions which can be 
used to construct 3D 
cell scaVolds. These may 
be randomly arranged 
or aligned

Simple, cost eVective 3D factor gradients 
diYcult to achieve 
in one step procedures

[11, 22, 90, 91, 
128, 171, 175]

NanoWber matrices morphologically 
similar to ECM characterized by 
ultraWne continuous Wbres, high 
surface-to-volume ratio 
and high porosity

Fluorinated and toxic organic 
solvents often used to 
dissolve polymers

Can incorporate nanotopographic 
features

EYciency of nanoWbre 
production requires 
improvement

Can act as a carrier for bioactive 
molecules and enzymes.

Mechanical properties often 
poor in comparison to 
equivalent material forms

High surface area-volume ratio

Viable cell encapsulation is possible

Nanosphere/ 
microsphere 
encapsulation

The release of growth 
factors and other bioactive 
molecules can be 
temporally and spatially 
controlled through 
encapsulation in passively 
or actively degradable 
artiWcial vesicles. Single 
viable cells can be 
encapsulated within speciWc 
microsphere environments

Simple fabrication Large scale production [40, 67, 68, 
81, 151]Protect vulnerable growth factors 

from degradation and control 
their release proWle

Size of encapsulated 
factors limited

Control 3D individual cell 
microenvironments

Only soluble factors

Not as spatially tunable as 
techniques using matrix 
bound factors

3D bioprinting The selective deposition of ‘bioinks’ 
of bioactive components including 
proteins, peptides, DNA, cells, 
hormones (including cytokines, 
growth factors and synthetic 
hormonal signaling peptides), 
ECM molecules, native or 
synthetic biopolymers. 
Can also include 
the selective deposition 
of viable cells

Diverse array of bioactive 
components suitable for use

No studies demonstrating 
therapeutic beneWt 
at present

[37, 56, 65, 102, 
103, 105, 116, 
122, 
167, 168]High precision, complex 3D 

matrices containing viable 
cells possible

At present constructed 
printed hydrogels are 
diYcult to handle

Growth factor gradients easy 
to construct

Including vasculature in larger 
constructs and ‘plugging’ this 
into host vasculature could 
be diYcult

Fig. 3 Flow chart representing some of the design considerations for
next generation dermal substitutes. The design of dermal substitutes
starts with the choice of substrate material which can be from a biolog-
ical source or a synthetic material. The grey box represents selected
instructive cues and promising methods of incorporation into sub-
strates. This instructive scaVold may then be inserted as an acellular
substitute or cells may be introduced (purple box). The incorporation
of viable cells into the designed substrate is also an important design
consideration with several populations to select from. The 3D spatial
positioning of these cells within scaVolds should improve the speed
and functionality of substitute assisted healing. The eYcacy of trans-
planted cells is dependent on delivery method and scaVold material
design

�
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retaining shape and oVering structural support. At present
3D construction relies on either layer-by-layer deposition
of bio-inks which can be geliWed or through the use of a 2D
‘bio-paper’ material which is then stacked sequentially to
give a 3D structure [105, 116]. It has been suggested that
the latter method may be the only feasible solution to
mechanical problems arising when using direct 3D gel-based
approaches [56]. This approach could also improve general
handling properties for clinical application of dermal bio-
printed constructs. In addition, the form of bio-paper
utilized for 3D construction may allow the combination of
bio-printing with another emerging processing technique,
electrospinning. Ultimately it may be possible to develop in
situ bio-printing clinical tools. This technology could feasi-
bly allow the direct regeneration of cutaneous injury [103].

Electrospinning supplies a simple, cost-eVective method
to construct porous scaVolds with uniform Wbres in the nano-
scale [22]. The process involves charging a polymer solution
or melt to a high potential and injecting it through a blunt
needle towards a grounded collector, typically 10–30 cm
away. The electrical potential of the resulting Wbre drives it
across the air gap between the needle and collector, with the
solvent evaporating during this transit. This results on
the formation of dry polymer Wbres on the collector [11].
The scale of the Wbres can be produced in these scaVolds
corresponds to the natural ECM, with reports demonstrating
that they promote normal cell-cell and cell-matrix interac-
tions [61, 91]. The majority of the natural and synthetic bio-
materials used to construct nanoWbrous scaVolds are those
previously used to construct scaVolds by other methods.
Electrospun scaVolds have been shown to promote Wbroblast
proliferation in vitro [175]. Working on full thickness
wounds in mice, superior ‘take’ and levels of contraction
were observed in collagen electrospun scaVolds in compari-
son to freeze-dried scaVolds [128].

The electrospinning technique lends itself to the creation
of sequentially layered scaVolds [11]. Through altering the
spin parameters, physical properties such as Wbre diameter,
porosity and Wbre alignment (anisotropy) can be adjusted.
As an example, Wbre diameter, alignment and density could
be adjusted to create a scaVold that structurally mimic the
reticular and papillary dermis. Yang et al. [171] electrospun
a collagen-PCL multi-layered scaVold containing viable
human dermal Wbroblasts and keratinocytes deposited
directly through the electrospinning process. Although via-
bility of the cells was maintained it has been suggested that
care needs to be taken when spinning cells directly due to
exposure to high electrical Weld and organic solvents often
used in the process [11]. To create biologically instructive
scaVolds growth factors may be directly added to the
polymer solution prior to spinning with studies indicating
that biological activity is maintained in vitro and in vivo
[49].

Conclusion

Over recent years, biomaterials science has developed
novel techniques which can be applied to tissue engineering
and regenerative medicine. Amongst these newly emerging
techniques, bio-printing and electrospinning have the
potential to produce scaVolds which incorporate instructive
factors and viable cells. A number of studies have demon-
strated the principles of viable cell positioning and bioac-
tive molecule patterning [73, 116] and managed to control
stem cell fate [76, 127]. The translation from these
improved scaVolds to instructive three-dimensional dermal
substitutes is not a simple task. Mimicking the complexity
of the natural matrix may not be a practical option when
producing commercial dermal substitutes. Which factors
and properties are essential to create a niche for stem cells
conducive for the regeneration of dermal tissue requires
further investigation. The precise positioning of molecules
and cells may allow the construction of diVerentiated struc-
tures currently lacking from dermal substitutes like nerves,
sweat glands and pilosebaceous units. The precise and auto-
mated nature of bio-printing makes it a particularly attrac-
tive choice for the fabrication of dermal substitutes
containing stem cells. In the future, it may even be possible
to bio-print bespoke dermal substitutes in situ.

ConXict of interest The authors declare that they have no conXict of
interest.
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