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Abstract Ultraviolet (UV)-induced skin cancers, including
melanomas and basal/squamous cell carcinomas, occur more
frequently in individuals with fair skin than in those with
dark skin. Melanin plays an important role in protecting the
skin against UV radiation and levels of melanin correlate
inversely with amounts of DNA damage induced by UV in
human skin of diVerent racial/ethnic groups. The objectives
of this study are to review recent progress in our understand-
ing of mechanisms underlying diVerences in cancer inci-
dence in skins of diVerent colors, particularly between Black
and White skin. More speciWcally, we review DNA dam-
age and apoptosis in various types of skin before and after
exposure to UV in our human study protocols using a single
UV dose, either one minimal erythema dose (MED) or a sim-
ilar low dose of 180–200 J/m2. Our data and other published
reports indicate that several major mechanisms underlie the
increased rates of photocarcinogenesis in fair/light skin.

First, UV-induced DNA damage in the lower epidermis
(including keratinocyte stem cells and melanocytes) is more
eVectively prevented in darker skin. Second, rates of repair of
DNA damage can diVer signiWcantly in individuals. Third,
UV-induced apoptosis to remove potentially precancerous
cells is signiWcantly greater in darker skin. These results sug-
gest that pigmented epidermis is an eYcient UV Wlter and
that UV damaged cells are removed more eYciently in
darker skin. The combination of decreased DNA damage and
more eYcient removal of UV-damaged cells may play a crit-
ical role in the decreased photocarcinogenesis seen in indi-
viduals with darker skin.
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Abbreviations
6,4PP (6-4) Photoproducts
CPD Cyclobutane pyrimidine dimers
MC1R Melanocortin 1 receptor
MED Minimal erythema dose
MITF Microphthalmia transcription factor
PAR-2 Protease activated receptor-2
PI Propidium iodide
TUNEL TdT-mediated dUTP nick end labeling
UV Ultraviolet

Introduction

Responses against environmental stresses including ultra-
violet (UV) radiation are diverse in human skin pheno-
types among racial/ethnic groups. It is well documented
that Black skin (alternatively called “African–American”
or “dark” skin) is dramatically more resistant to the damaging
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eVects of UV, including photocarcinogenesis and photo-
aging, than is White skin (alternatively called “Caucasian” or
“light/fair” skin) [1–3]. Indeed, rates of basal/squamous
cell carcinomas and melanomas in the United States are
50- and 13-times higher in White skin than in Black skin,
respectively [4, 5]. Additionally, the incidence of mela-
noma worldwide is increasing steadily. Whether the
photoprotective eVects of melanin are due solely to its
role as a UV Wlter, or whether other properties of melanin
are also involved, is an important question to be investi-
gated since there are still major and signiWcant gaps in our
understanding of the biosynthesis, structure(s), role(s) and
distribution of melanin, and the regulation of those pro-
cesses, in the skin.

Our research has aimed at providing a scientiWc basis
for public health policies to minimize the risk of photocar-
cinogenesis and photoaging, interests shared by many
other groups. Our studies in this area compared the eVects
of a single dose of UV on various types of human skin.
This single dose was either one minimal erythemal dose
(MED) or a standard comparable UV dose of 180–200 J/
m2. The subjects studied represented six racial/ethnic
groups in six distinct phototypes as deWned by Fitzpatrick
[3]. In this review, we mainly focus on diVerences between
White skin and Black skin, with the goal of summarizing
our current understanding of the eVects of UV on human
skin, and with emphasis on a novel mechanism identiWed
that removes UV-damaged cells, i.e., melanin-mediated
apoptosis.

Melanin distribution and its response to UV

Melanins are synthesized in diVerent types (eumelanin
and pheomelanin) and amounts by melanocytes. Szabo [6]
and colleagues made the Wrst important observations of
the melanocyte distribution in human skin about 50 years
ago when they developed an immunohistochemical analy-
sis using DOPA as a melanogenic precursor. They ini-
tially examined White skin but later expanded their
studies to other racial/ethnic skin types [7]. The sum of
those studies [8] provided evidence that the densities and
distribution of melanocytes in diVerent types of human
skin are quite similar in comparable areas of the body.
Szabo and colleagues concluded that the production of
diVerent amounts of melanins by melanocytes and their
distribution by neighboring keratinocytes resulted in the
large diVerences in pigmentation of the skin among racial/
ethnic groups. Indeed, melanin is actively transferred to
keratinocytes for distribution towards the surface of the
epidermis or in hair shafts. White skin has less melanin
and what is produced is typically found in small clusters of
melanosomes in keratinocytes while Black skin has more

melanin and the melanosomes are distributed individually
in keratinocytes (thus absorbing light and UV more
eYciently) [9]. Szabo’s[6] group also observed that the
density of melanocytes varied according to body location,
being the highest on the upper dorsal skin and lower in
other areas.

Recent studies by our group [10, 11] and one other [12]
reported that the density of melanocytes in various types of
racial/ethnic skin is virtually identical, as measured by the
expression of melanosomal proteins including tyrosinase,
TYRP1, dopachrome tautomerase, gp100, MART-1 and
microphthalmia-associated transcription factor (MITF). We
also found that the amount of melanin detected by Fontana–
Masson stain or by chemical analysis varied greatly and
correlated well with visible pigmentation [3]. In other stud-
ies, we found that melanin distribution is signiWcantly
decreased in skin of the palms and soles and that melano-
cyte density in those areas is about 10–20% that in skin on
other areas of the body [13]. Concerning the melanosome
transfer from melanocytes to keratinocytes, both types of
cells actively regulate that process [14, 15]. It seems clear
at this time that protease activated receptor-2 (PAR-2),
which is expressed on keratinocytes [16, 17], as well as
keratinocyte growth factor [18], expressed by keratino-
cytes, play important roles in regulating the transfer of pig-
ment, but much work remains to be done to more fully
elucidate that process physiologically.

UV-induced tanning of human skin can be divided into
three phases: immediate pigment darkening, persistent pig-
ment darkening and delayed tanning. Several potential
mechanisms are probably involved in the phenomenon of
UV-induced tanning: the redistribution of existing melanin
from the basal layer to the suprabasal layer, changes in the
shape and the intracellular localization of melanin and de
novo melanin synthesis, among others. We investigated
melanin content in the skin and its distribution following
UV exposure using Xuorescent FS Lamps (National
Biological, Twinsburg, OH, USA) and Kodacel Wlters
(Eastman Chemical Products, Kingsport, TN, USA) [10].
The calculated erythemal eVective energy (EEE) of the
UVB content was 40% and that of the UVA was 60% [19].
We found that changes in the distribution of melanin from
the lower layer upwards to the middle layer of the skin
were more pronounced in Black skin 1 week after UV
exposure than in White skin [10]. Rees’s group developed
a novel method to eliminate the eVects of erythema on the
measurement of melanin pigment and reported that skin
tanning peaked at 1 week following UV exposure [20].
They also reported that skin containing lower levels of
constitutive pigment had higher degrees of epidermal
hyperplasia measured by skin thickening and that this
played more of a protective role in UV responses than did
increased pigmentation in lighter skin types [21]. Taken
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together, these studies showed that White skin contains
less melanin pigment in upper layers of the epidermis
and becomes thicker in response to UV compared to
Black skin.

DNA damage in upper and lower epidermis

Kaidbey et al. compared Black and White skin for
responses to UV and found that up to Wve times as much
UV reaches the upper dermis of White skin compared
with Black skin [1]. They concluded that this is due to
increased melanin content, its more eYcient distribution
and the thickness of the stratum corneum in Black skin.
The relationships between skin color, melanin content,
race/ethnicity and UV-induced DNA damage have been
recently reviewed [22, 23] and the evidence suggests that
melanin is signiWcantly involved in photoprotection, but

not merely as a sunscreen. Two major types of melanin
are produced in human skin (reviewed in [24]), termed
eumelanin and pheomelanin. Pheomelanin seems to be
toxic in response to UV compared to eumelanin and pheo-
melanin is found in relatively higher proportions in red-
haired sun-sensitive individuals [25]. However, both
types of melanin can be a two-edged sword, having bene-
Wcial and detrimental eVects on melanocytes and on skin
tissues exposed to UV [26]. It has been shown that the
levels of both types of melanin increase gradually in tan-
dem rather than independently following UV exposure [3,
21, 27]. The most important role of melanin is protection
against UV-induced DNA damage, but it also play an
important role as an inducer of apoptosis, which will be
discussed later.

UV irradiation of human skin results in two major
types of DNA lesions; (6-4) photoproducts (6,4PP) and
cyclobutane pyrimidine dimers (CPD) [28]. As mentioned

Fig. 1 TdT-mediated dUTP 
nick end labeling (TUNEL) 
staining in White skin 7 min 
(upper two panels), 1 day 
(middle two panels), and 7 days 
(lower two panels) after 
180–200 J/m2 UV exposure. 
Green and red Xuorescence 
represent TdT to detect TUNEL 
and propidium iodide (PI) to 
detect DNA, respectively

TdT-FITC                                                                                PI
123



S46 Arch Dermatol Res (2008) 300 (Suppl 1):S43–S50
above, in one study we compared DNA lesions in the
lower epidermis compared with the upper epidermis in
response to UV among racial/ethnic groups [19]. That
study found that UV-induced DNA damage in the lower
epidermis (including keratinocyte stem cells and melano-
cytes) is more eVectively prevented in Black skin com-
pared with White skin even though the one MED of UV
used was »3.5-fold higher in Black skin. We also found
that the melanin content correlated inversely with CPD
damage much more signiWcantly in the lower epidermis
than that seen in the upper epidermis. These results dem-
onstrate that skin containing more melanin incurs less
DNA damage in the lower epidermis and that levels of
initial DNA damage in the upper epidermis are similar in
skins of diVerent color. Whether facultative pigmentation
induced by tanning provides additional photoprotection in
White skin is a potentially independent issue to be eluci-
dated in future studies [29–31].

Melanin-related apoptosis

UV-damaged cells often undergo apoptosis [32], presum-
ably to prevent those cells (i.e., cells with potentially risky
mutations) from proliferating. We measured apoptotic cells
in the skin after exposure to one MED or to the same dose
of 180–200 J/m2 UV using TdT-mediated dUTP nick end
labeling (TUNEL) assay and immunostaining for proteins
involved in apoptosis pathways [19,33]. Our initial expec-
tation was that White epidermis would contain more
UV-induced apoptotic cells than Black epidermis since
UV-induced DNA damage is signiWcantly higher in White
skin as noted above. However, sevenfold more TUNEL-
positive cells were observed in Black skin than in White
skin after one MED UV exposure [19]. We then speculated
that the »3.5-fold higher physical UV dose at one MED
used for Black skin might have elicited the increase of
apoptotic cells and we performed a similar study but using

Fig. 2 TUNEL staining in 
Black skin 7 min (upper two 
panels), 1 day (middle two 
panels), and 7 days (lower two 
panels) after 180–200 J/m2 UV 
exposure. Green and red Xuores-
cence represent TdT to detect 
TUNEL and PI to detect DNA, 
respectively

TdT-FITC                                                                                PI
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a constant low dose of UV (180–200 J/m2) [19]. Again,
whereas almost no apoptotic cells were observed in White
skin (Fig. 1), Black skin (Fig. 2) expressed 5.4 § 2.2 (average
number of apoptotic cells § standard deviation) and
7.9 § 3.5 TUNEL-positive cells per Weld at 1 day and at
7 days, respectively, after a constant low UV exposure
(Fig. 3a). Increased levels of melanin measured by Fon-
tana–Masson staining correlated with the number of
TUNEL-positive cells in the epidermis at 1 day (r2 = 0.350,
p < 0.05) and at 7 days (r2 = 0.312, p < 0.05) after a similar
low dose of UV exposure (Fig. 3b).

A reasonable explanation for those observations is that the
melanin within keratinocytes (as determined by the location
of apoptotic cells in suprabasal levels of the epidermis) is
actively involved in the induction of apoptosis in response to
UV. We hypothesized that since the only apparent diVerence
between Black and White skin is the amount and distribution
of melanin pigment, as noted above. We then obtained addi-
tional evidence to support that hypothesis. Originally, we
took biopsies from dorsal skin of the subjects meticulously
not to include even vellus hair [3, 23] since follicular epider-
mis is diVerent from interfollicular epidermis in terms of the
amount and distribution of melanin: even White skin con-
tains much melanin around hair follicles. However, we occa-

sionally observed sections containing hair follicles and found
that numerous TUNEL-positive cells were present in outer
root sheath cells, which were located around hair shafts and
contained melanin (Fig. 4). We also performed ex vivo stud-
ies using reconstructed three-dimensional human skin equiv-
alents (termed MelanoDerm®) which contained melanocytes
derived from Black or White donors, but used keratinocytes
from the same Hispanic donor [19]. The diVerences in
amount and distribution of melanin are signiWcant among
these skin composites, and accurately represent typical skin
morphologies of those types of skin [34]. More apoptotic
cells were found in Black skin equivalents than in White skin
equivalents 2 days after low doses of UVB radiation [19],
which demonstrates that the melanin is responsible since the
keratinocyte populations were identical.

The results from other studies also support the concept
of melanin-mediated apoptosis as seen in in vivo human
[35], in vivo animal [36] and in vitro studies [37, 38].
Although one White and one Black subject showed similar
numbers of sunburn cells, characterized as cells with con-
densed nuclei and with no cytoplasmic substances by
hematoxylin–eosin staining, after irradiation with four
MED UV, melanin pigment was more apparent in the sun-
burn cells than in the surrounding cells [35]. A study in

Fig. 3 a TUNEL-positive cells 
per Weld in White skin (left) and 
Black skin (right) 7 min, 1 day 
and 7 days after 180–200 J/m2 
UV exposure. b TUNEL-posi-
tive cells per Weld sorted by mel-
anin content at 1 day (left) and at 
7 days (right) after 180–200 J/
m2 UV exposure
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mice showed that eumelanin or pheomelanin elicited apop-
tosis in skin exposed to UV [36]. Finally, in vitro studies
show that melanophages, i.e., macrophages containing mel-
anin particles, undergo cell death after UV exposure [37]

and that melanocytes in White skin are likely to prevent
sunburn cell formation [38]. Taken together, it is clear that
the presence of melanin in cells facilitates the apoptotic
eVect of UV. It might be possible that low doses of UV
cause melanin-speciWc photothermolysis, which could be
considered another form of photoprotection, as 351 nm
pulse lasers cause highly selective injury to melanocytes
containing melanosomes [39].

Pathways involved in melanin-related apoptosis

We are now focusing on investigating various factors that
are involved in melanin-induced apoptosis to test whether
that results from the generation of heat from the absorbed
UV energy or whether other properties of melanin are
actively involved.

The oncogene p53 plays important roles in responses not
only to DNA damage and its repair process but also to UV-
induced apoptosis through its phosphorylation at Ser-46
[40]. As expected, more p53 protein accumulated in the
nuclei of White skin than of Black skin since p53 nuclear
accumulation is primarily associated with the process of
overall DNA damage and its repair [19]. On the contrary,
p53 phosphorylated at Ser-46 was not seen in White skin
after UV exposure, but similar numbers of TUNEL-positive
cells were readily seen in Black skin, suggesting that Ser-

Fig. 4 TUNEL staining in White perifollicular skin at 1 day after
180–200 J/m2 UV exposure. Green and red Xuorescence represent TdT
to detect TUNEL (upper panel) and PI (middle panel) to detect DNA,
respectively. Lower panel shows the merged image, which represents
the colocalization of TUNEL and DNA

Fig. 5 Comparison of White skin and Black skin in terms of DNA
damage and apoptosis after UV exposure
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46 phosphorylated p53 is actively involved in UV-induced
apoptosis [19]. The apurinic–apyrimidinic endonuclease/
redox eVector factor-1 (APE/Ref-1) is a DNA-repair endo-
nuclease and is associated with the induction of apoptosis
through p53: over-expression of APE/Ref-1 increases the
ability of p53 to induce apoptosis and down-regulation of
APE/Ref-1 reduces that ability [41]. We have shown that
the nuclear translocation of APE/Ref-1 is more readily
observed in Black skin than in White skin after UV expo-
sure, suggesting that the APE/Ref-1-p53 pathway is
involved in UV-induced apoptosis [33].

In contrast, we have shown that staining for active/
cleaved caspase-3 was highest 1 day after UV exposure and
that cleaved caspase-3 returned to baseline levels by day 7
with no signiWcant diVerence between White and Black
skin. Those results suggest that melanin-induced apoptosis
occurs through caspase-3 independent pathways [19].

One of the most important receptors on melanocytes is
the melanocortin 1 receptor (MC1R), which is a member of
the G-protein-coupled receptor family. It is well docu-
mented that activation of MC1R, either by �-MSH or
ACTH, increases the intracellular cAMP concentration.
That in turn stimulates the activity of various transcription
factors, including MITF, and melanogenic enzymes,
including tyrosinase, which modulate the biosynthesis of
melanins [42]. Mutations in MC1R elicit the red hair light
skin phenotype, which correlates with increased risk for
skin cancer. We have recently reported that Black skin has
higher absolute levels of MC1R350 [43], a new human
MC1R isoform distinct from the MC1R315 form reported
by Tan et al. [44]. The function of the novel MC1R350 iso-
form needs to be further elucidated, but it suppresses the
expression of MITF and tyrosinase [43], which suggests
that Black skin has a greater amount of overall MC1R and
that MC1R may be involved with melanin-induced apopto-
sis in response to UV.

Conclusions

In summary, we conclude that several distinct mecha-
nisms act in concert to result in the dramatic diVerences in
rates of photocarcinogenesis in Black skin and White skin
(Fig. 5). First, UV-induced DNA damage in the lower epi-
dermis (which includes melanocytes and keratinocyte
stem cells) is not eVectively prevented in White skin,
although DNA damage in the upper epidermis is similar
between the two ethnic groups, suggesting that pigmented
epidermis is an eYcient UV Wlter. Second, less eYcient
DNA repair caused by the severe damage from UV in
lighter skin may result in inherited mutations in critical
genes involved in photocarcinogenesis. Third, UV-
induced apoptosis is less frequent in White skin after low

doses of UV, although it is signiWcant in Black skin, sug-
gesting that Black skin removes UV-damaged cells by
apoptosis more eVectively. The combination of decreased
DNA damage and more eYcient removal of damaged
cells plays an important role in the decreased photocarci-
nogenesis seen in Black skin. There may of course be
additional important factors that play roles, e.g., the more
immunosuppressed condition of White skin in response to
UV may trigger carcinogenesis (as shown in mouse mod-
els [45], although further studies will be necessary to
examine those mechanisms.
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