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Introduction

Total hip arthroplasty (THA) is one of the most common 
orthopedic procedures performed in the United States, with 
approximately 114,000 THA procedures performed each 
year [1]. Despite the high success rate of THA, approxi-
mately 4.3% of patients require revision THA within 10 
years [2]. Revision THA is associated with increased sur-
gical complexity, longer operating time, and a higher risk 
of complications compared to primary THA [3]. The cost 
of revision THA is also markedly higher, with the average 
cost per episode of care reported to be $87,000 in 2014 [2]. 
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Abstract
Introduction  Prolonged length of stay (LOS) following revision total hip arthroplasty (THA) can lead to increased health-
care costs, higher rates of readmission, and lower patient satisfaction. In this study, we investigated the predictive power 
of machine learning (ML) models for prolonged LOS after revision THA using patient data from a national-scale patient 
repository.
Materials and methods  We identified 11,737 revision THA cases from the American College of Surgeons National Surgical 
Quality Improvement Program database from 2013 to 2020. Prolonged LOS was defined as exceeding the 75th value of all 
LOSs in the study cohort. We developed four ML models: artificial neural network (ANN), random forest, histogram-based 
gradient boosting, and k-nearest neighbor, to predict prolonged LOS after revision THA. Each model’s performance was 
assessed during training and testing sessions in terms of discrimination, calibration, and clinical utility.
Results  The ANN model was the most accurate with an AUC of 0.82, calibration slope of 0.90, calibration intercept of 0.02, 
and Brier score of 0.140 during testing, indicating the model’s competency in distinguishing patients subject to prolonged 
LOS with minimal prediction error. All models showed clinical utility by producing net benefits in the decision curve analy-
ses. The most significant predictors of prolonged LOS were preoperative blood tests (hematocrit, platelet count, and leuko-
cyte count), preoperative transfusion, operation time, indications for revision THA (infection), and age.
Conclusions  Our study demonstrated that the ML model accurately predicted prolonged LOS after revision THA. The 
results highlighted the importance of the indications for revision surgery in determining the risk of prolonged LOS. With the 
model’s aid, clinicians can stratify individual patients based on key factors, improve care coordination and discharge plan-
ning for those at risk of prolonged LOS, and increase cost efficiency.
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Clinical decision support
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The total length of stay (LOS) after revision THA is an 
important factor that influences both patient outcomes and 
hospital expenditure [4–6]. Previous studies have predicted 
an extra day in the hospital to increase the cost burden by 
$2,000–$3,000 [7]. The ability to predict prolonged LOS in 
individual patients can encourage proactive measures and 
allocate resources for those patients, thereby improving 
treatment efficiency and reducing care costs [8].

Traditional statistical models have been historically used 
to predict prolonged LOS following total joint arthroplasty 
[9–12]. Yet, the model performances were inherently lim-
ited by the model linearity and simplification of the variable 
interrelationship. Recently introduced machine learning 
(ML) models have outperformed such statistical approaches 
in terms of accuracy and predictive performance in a variety 
of contexts [13–16]. As a result, ML models are increas-
ingly being used to predict outcomes in a clinical setting 
[17]. Previous studies have reported excellent ML model 
performance in identifying patients at high risk of prolonged 
LOS after primary total joint arthroplasty [18–21]. With ris-
ing interest in ML models, there has been an increased call 
for action to broaden the applicability of the model by incor-
porating multi-center patient data as a way to establish the 
model’s generalizability while maintaining a high level of 
accuracy [22, 23].

Large national datasets have been recommended due to 
their accessibility and availability of a variety of clinical 
and demographic data on surgical cases across the United 
States. The American College of Surgeons National Surgi-
cal Quality Improvement Program (ACS-NSQIP) is one 
such database that aggregates patient data from multiple 
sites in the United States [15]. This study aimed to develop 
ML models using the ACS-NSQIP dataset and evaluate their 
performance across three domains: discrimination, calibra-
tion, and clinical utility for the prediction of prolonged LOS 
after revision THA.

Materials and methods

Patient cohort, variables, and study outcomes

The ACS-NSQIP databases from 2013 to 2022 were 
reviewed to acquire the data of patients who underwent 
revision THA. The CPT codes 27,134, 27,137, and 27,138 
were used to identify our research population. The exclu-
sion criteria were age under 18 or above 100, body mass 
index (BMI) higher than 100, emergency surgery, bilateral 
arthroplasty, and incomplete/unclear hospital records. Data 
were also excluded if a negative value was recorded in any 
preoperative blood test. For example, a white blood cell 
count of -99 thousand/mm3 was considered a faulty entry 

as the value was physiologically impossible. This study was 
reviewed and approved by the institutional internal review 
board. The procedure for ML modeling in this study was 
reported following an established publication guideline 
[24].

The prediction target of the ML models was prolonged 
LOS following revision THA. In line with prior research 
[10, 25], we used the 75th percentile of all LOSs (3 days) as 
the cut-off value to divide the study cohort into two classes: 
normal LOS and prolonged LOS. Inputs to the ML models 
included sociodemographic variables (age, sex, race, eth-
nicity, BMI, and smoking history), comorbidities (dyspnea, 
diabetes, hypertension, bleeding disorders, congestive heart 
failure, etc.), and perioperative variables (American Society 
of Anesthesiologists (ASA) score, blood test results,  total 
operation time, blood loss, transfusion, anesthesia type, 
etc.).

Model development and performance analysis

The study cohort was split into training and testing datas-
ets at a ratio of 8:2 using the stratified slip technique [26]. 
Continuous variables were standardized and no imputation 
was performed for unknown feature values. ML models 
included in the study were: artificial neural network (ANN), 
random forest (RF), histogram-based gradient boosting 
(HGB), and k-nearest neighbors (KNN). These models 
were selected based on their previous performance on simi-
lar classification tasks [18, 26]. We applied recursive feature 
elimination using a rudimentary RF model (constructed by 
passing default values of the hyperparameters) to streamline 
the feature list while maintaining the model’s discrimina-
tion capacity, which was indicated by the area under the 
receiver operating curve (AUC). All patient variables were 
first fit to the model and ranked based on their contribution 
to the prediction, afterward the least important variable was 
removed. The procedure was repeated until the last variable 
remained. The model’s performance in each iteration was 
recorded to determine the optimal number of patient vari-
ables. We found that the model’s AUC value was steady at 
the beginning of elimination and gradually dropped after the 
number of remaining features was lower than 30. Therefore, 
the top 30 important patient variables were reserved for the 
subsequent model development. Important hyperparameters 
of each ML model were tuned using a coarse-grained grid-
search method. In brief, the value of each hyperparameter 
was allowed to vary within a predefined range based on our 
previous studies on similar topics [23, 27]. A “grid” was 
comprised of dots that represented all possible combina-
tions of the hyperparameter set. A “coarse-grained” method 
tested a subset of the dots and identified the combination 
that produced the best prediction accuracy of the model. 
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The hyperparameters and their corresponding ranges for 
each ML model are as follows: ANN: learning rate: 0.0001, 
0.001 … 0.1, the size of the hidden layer: 3 to 5, the number 
of neurons: 50 to 100 for each layer, and maximum epochs: 
30; RF: the number of trees: 5 to 100 at the interval of 5, 
and minimal sample leaf: 2 to 50 at the interval of 2; HGB: 
learning rate: 0.0001, 0.001 … 0.1, the maximum number 
of interaction: 60 to 160 at the interval of 20, and leaves: 21 
to 46 at the interval of 5; KNN: the number of neighbors: 50 
to 450 at the interval of 50, and distance metrics: weights: 
uniform or distance, and p: 1 or 2. Fivefold cross-validation 
with five repetitions was applied during model development. 
The training dataset was divided into five subsets, with each 
subset serving as a validation set once while the remaining 
four were used for training. This process was repeated five 
times with different data splits. The repetition of cross-val-
idation was implemented following the final feature selec-
tion to mitigate the risk of overfitting and reduce variances 
in the models’ performance metrics. After the training was 
completed, the models were applied to the testing dataset. 
The average computing time to develop the ML models 
ranged from 72 to 434 s on a computer running Microsoft 
Windows 10 Pro (Microsoft Corp., Redmond, Washington, 
USA), equipped with an Intel i7-13700 F CPU (Intel Corp., 
Santa Clara, California, USA), an NVIDIA GeForce RTX 
3060 GPU (NVIDIA Corp., Santa Clara, California, USA), 
and 32 GB RAM.

The model’s performance was assessed using several 
metrics. The first metric was AUC which determines the 
model’s discrimination. An AUC value greater than 0.80 
indicates that a model has excellent discrimination [22, 23]. 
The second metric used was calibration plots, which graphi-
cally represent the agreement between the actual outcomes 
and the model-predicted probability. A well-calibrated 
model has a slope of 1 and an intercept of 0. The third metric 
used was the Brier score, which measures the mean squared 
difference between the predicted probabilities and the actual 
outcomes of an event. A Brier score approximating 0 indi-
cates that a model has few prediction errors [28]. Lastly, 
the decision curve analysis was used to evaluate the benefit 
of using the model compared to treating all or none of the 
patients across a range of probabilities [29]. The model’s 
interpretability was explained globally and locally. The plot 
of feature importance identified the patient factors with the 
greatest influence on the model prediction, while a local 
explanation was provided for a representative patient to 
demonstrate the weight of each variable on the final predic-
tion of the machine learning model. Codes for ML modeling 
and computing performance metrics are accessible at https://
github.com/tlwchen/ML-models-for-event-prediction.

We anticipated that there may be differences in sex ratio 
between the normal LOS and prolonged LOS groups. As 

several measures of the patient characteristics, such as the 
hematocrit level, can vary in females compared to males, 
skewness in data distribution might bias the model perfor-
mance. We therefore stratified the study cohort by sex and 
performed secondary modeling for each subgroup using the 
ML model that demonstrated the best predictive metrics for 
prolonged LOS. The model performance was then com-
pared between the subgroups to ascertain the conjecture of 
sex-specific influences on prediction accuracy.

Data analysis

Baseline patient characteristics between the normal LOS 
and prolonged LOS groups were compared. Continu-
ous variables were analyzed using either the independent 
student T-test or the Mann-Whitney U-test, contingent on 
whether the assumptions of parametric tests were violated. 
The Chi-square test was utilized to examine nominal vari-
ables. Cohen’s d, rank-biserial correlation coefficient, and 
Cramér’s V were calculated to indicate effect sizes for 
corresponding statistical models used in primary exami-
nations. Effect sizes were interpreted using the Cohen con-
vention of negligible (< 0.20), small (0.20—0.49), medium 
(0.50—0.79), and large (> 0.80) values [30]. Statistical 
analyses were carried out utilizing Anaconda (version 
2.5.4, Anaconda Inc., Austin, TX, USA), Python (version 
3.11.4, Python Software Foundation, Wilmington, DE, 
USA), and SPSS (version 18.0, IBM Corp., Armonk, NY, 
USA). P < 0.05 was considered for the level of statistical 
significance.

Results

Patient characteristics

A total of 11,749 patients were included in the analysis, 
of which 26.8% had extended LOS (N = 3153). The per-
centage of male patients was slightly higher in the normal 
LOS group than in the prolonged LOS group (45.53% vs. 
44.21%, p < 0.001). Statistics showed that patients with 
prolonged LOS were older (68.55 years vs. 65.92 years, 
p < 0.001), had a higher ASA score (ASA level 3 or above: 
78.64% vs. 57.94%, p < 0.001) and comorbidity rates 
(hypertension, COPD, diabetes, etc. p < 0.005) compared to 
those with normal LOS (Table 1). A greater percentage of 
patients in the prolonged LOS group were smokers (17.69% 
vs. 13.91%, p < 0.001) and ethnic minorities (12.98% vs. 
11.35%, p = 0.07). Patients from the prolonged LOS group 
also presented suboptimal blood test results (higher leuko-
cyte counts and reduced hematocrit, p < 0.001), had longer 
total operation time (174.62 min vs. 136.47 min, p < 0.001), 
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Feature Extended LOS
(N: 3153)

Normal LOS
(N: 8596)

P-value Effect size

Sociodemographic
Age (years) 68.55 ± 12.53

(68.11—68.99)
65.92 ± 11.53
(66.16—65.67)

< 0.001 0.10

BMI (Kg/m2) 29.94 ± 7.54
(29.68—30.21)

30.00 ± 6.61
(29.87—30.15)

< 0.001 0.02

Sex (male, %) 44.21 (1394) 45.53 (3914) 0.200 0.01
Race (white, %) 88.65 (2795) 87.02 (7480) 0.070 0.03
Hispanic (%) 2.94 (93) 2.67 (230) 0.440 0.04
ASA score Level 1 (%) 0.38 (12) 1.30 (112) < 0.001 0.10

Level 2 (%) 20.96 (661) 40.75 (3503)
Level 3 (%) 67.96 (2143) 55.14 (4740)
Level 4 (%) 10.68 (337) 2.80 (241)

Indication for revision surgery Loosening/wear (%) 62.98 (1986) 82.89 (7125) < 0.001 0.16
Infection (%) 33.73 (1064) 9.67 (831)
Instability (%) 0.23 (7) 0.50 (43)
Stiffness (%) 3.06 (96) 6.95 (597)

Laboratory tests
Leukocyte count (thousands/mm3) 7.11 ± 2.47

(7.06—7.16)
7.90 ± 3.07
(7.80—8.01)

< 0.001 0.12

Hematocrit (%) 35.40 ± 5.67
(35.20—35.60)

39.85 ± 4.84
(39.75—39.95)

< 0.001 0.35

Platelet count (thousands/mm3) 257.75 ± 102.87
(254.16—261.34)

252.91 ± 78.83 (251.25—254.58) < 0.001 0.01

Comorbidities
Smoking (%) 17.69 (558) 13.91 (1196) < 0.001 < 0.01
Dyspnea (%) At Rest (%) 0.79 (25) 0.29 (25) < 0.001 0.02

Moderate (%) 6.34 (200) 4.43 (381)
None (%) 92.87 (2928) 95.28 (8190)

Severe COPD (%) 8.91 (281) 5.17 (444) < 0.001 0.02
Ascites (%) 0.22 (7) 0.03 (3) 0.005 0.02
Congestive heart failure (%) 2.15 (68) 0.52 (45) < 0.001 0.03
Hypertension (%) 66.25 (2089) 58.84 (5058) < 0.001 0.01
Dialysis (%) 1.77 (56) 0.46 (40) < 0.001 0.02
Disseminated cancer (%) 1.55 (49) 0.41 (35) < 0.001 0.04
Wound infection (%) 6.85 (216) 11.40 (980) 0.002 0.07
Preoperative steroid Use (%) 7.86 (248) 6.22 (535) 0.002 0.03
Diabetes 18.07 (570) 13.18 (1133) < 0.001 0.02
Preoperative transfusion (%) 4.19 (132) 0.32 (28) < 0.001 0.06
Intra-operation parameters
Operation time (min) 174.62 ± 84.48

(171.67—177.57)
136.47 ± 63.79
(135.13—137.82)

< 0.001 0.22

Wound classification Clean (%) 74.05 (2335) 92.25 (7930) < 0.001 0.10
Clean/contaminated (%) 2.41 (76) 2.07 (178)
Contaminated (%) 2.91 (92) 1.52 (131)
Dirty/infected (%) 20.61 (650) 4.15 (357)

Anaesthesia General (%) 85.50 (2696) 69.45 (5970) < 0.001 0.09
Spinal (%) 6.97 (220) 16.97 (1459)
MAC/IV sedation (%) 6.53 (206) 11.47 (986)
Regional (%) 0.72 (23) 1.58 (136)
Others (%) 0.25 (8) 0.52 (45)

Table 1  Baseline characteristics of patients undergoing revision total hip arthroplasty in the study cohort
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best results in predicting prolonged LOS after revision THA 
(AUC: 0.82, calibration slope: 0.90, calibration intercept: 
0.02, Brier score: 0.140, Fig. 1A—B). The decision curve 
analysis demonstrated that ANN produced higher net ben-
efits than the default strategies that assumed all or no obser-
vations were positive (Fig. 1C). ANN was therefore selected 
for secondary modeling for each sex subgroup. Following a 
similar modeling procedure, the results showed comparable 
performance metrics of ANN between sexes (Table 3).

Model interpretation

The plot of feature importance revealed that the patient fac-
tors that most contribute to prolonged LOS after revision 
THA were preoperative blood tests (hematocrit < 36.81%, 
platelet count > 253.54 thousand/mm^3, and white blood 
cell count > 7.51 thousand/mm^3), preoperative transfusion, 

and were more likely to receive transfusion before surgery 
(Table 1). A larger fraction of the revision surgeries were 
caused by infection (33.11% vs. 9.31%, p < 0.001) in the 
prolonged LOS group. Despite the statistical significance, 
the effect sizes of the differences between the two patient 
groups were generally small across the patient variables 
(Table 1).

Assessment of model performance

All models showed excellent discrimination and calibration 
performance in the training session. The five-fold cross-
validation for all models reported an AUC of 0.83 to 0.88, 
a calibration slope of 0.84 to 1.32, a calibration intercept of 
-0.08 to 0.03, and a Brier score of 0.087 to 0.132 (Table 2). 
A similar level of performance was retained across the mod-
els with the testing dataset (Table  3). ANN delivered the 

Table 2  Discrimination and calibration performance of the machine learning models for predicting LOS during training
Metric ANN RF HGB KNN
AUC 0.84

(0.82–0.86)
0.82
(0.80–0.83)

0.82
(0.81–0.82)

0.82
(0.81–0.85)

Calibration (slope) 0.96
(0.90–1.03)

1.03
(0.98–1.06)

0.91
(0.86–1.02)

1.36
(1.22–1.57)

Calibration (intercept) 0.02
(0.01–0.04)

-0.01
(-0.03–0.01)

0.03
(-0.02–-0.05)

0.01
(-0.01–0.05)

Brier score 0.136
(0.123–0.143)

0.142
(0.139–0.147)

0.143
(0.137–0.147)

0.153
(0.147–0.158)

ANN: artificial neural network; RF: random forest; HGB: histogram-based gradient boosting; KNN: k-nearest neighbor; AUC: area under the 
receiver operating characteristic curve. An AUC value higher than 0.8 indicates an excellent discrimination capacity of a machine learning 
model. A calibration slope and calibration intercept equal to 1 and 0 respectively indicate an ideally calibrated model, by which the predicted 
values completely match the actual outcomes. A Brier score approximating 0 indicates that a model has few prediction errors

Table 3  Discrimination and calibration performance of the machine learning models for predicting LOS during validation
Metric ANN RF HGB KNN ANN (secondary modeling)

For females For males
AUC 0.82 0.83 0.83 0.83 0.80 0.84
Calibration (slope) 0.90 1.03 0.89 1.32 0.88 0.87
Calibration (intercept) 0.02 -0.01 0.03 0.02 0.05 0.06
Brier score 0.140 0.140 0.139 0.151 0.150 0.133
ANN: artificial neural network; RF: random forest; HGB: histogram-based gradient boosting; KNN: k-nearest neighbor; AUC: area under the 
receiver operating characteristic curve. The second to fifth columns display the performance metrics of the included machine learning models 
during the testing session. The sixth and seventh columns show ANN’s performance during secondary modeling for the female and male sub-
groups respectively. An AUC value higher than 0.8 indicates an excellent discrimination capacity of a machine learning model. A calibration 
slope and calibration intercept equal to 1 and 0 respectively indicate an ideally calibrated model, by which the predicted values completely 
match the actual outcomes. A Brier score approximating 0 indicates that a model has few prediction errors

Feature Extended LOS
(N: 3153)

Normal LOS
(N: 8596)

P-value Effect size

Hospitalization
Total length of stay (days) 8.29 ± 5.05

(8.11—8.47)
2.33 ± 1.02
(2.31—2.35)

< 0.001

Continuous variables are presented as mean ± standard deviation (95% CI). Categorical variables were presented as percentage occupied (raw 
number). BMI: body mass index; ASA: American Society of Anesthesiologists; COPD: chronic obstructive pulmonary disease; MAC/IV: 
monitored anesthesia care/intravenous

Table 1  (continued) 
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Fig. 1  Plots of performance met-
rics for artificial neural network. 
(A) the receiver operating char-
acteristics curve is a plot of the 
true positive rate (TPR) against 
the false positive rate (FPR) of 
the model prediction at different 
classification thresholds. With 
a lower threshold, more items 
will be classified as positive, 
which increases both TPR and 
FPR. The area under the curve 
(AUC) is an aggregate mea-
sure of the model performance 
across all possible classification 
thresholds. A good model that 
is able to effectively distinguish 
between positive cases and 
negative cases will generate high 
TPR/FPR ratios at any threshold 
and therefore produce a high 
AUC value. (B) the calibra-
tion plot shows the agreement 
between the model predictions 
and observations in different 
percentiles of the predicted val-
ues. A complete match between 
predictions and observations will 
generate a diagonal line (slope: 
1, intercept: 0). (C) the decision 
curve analysis compares the 
net benefit (a trade-off between 
the benefits and harms of a 
particular decision) of using a 
predictive model to those of two 
baseline strategies: “treating all” 
and “treating none” at different 
probability thresholds. A model 
showing higher net benefit than 
the baseline strategies possesses 
clinical utility
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indicated that the ML model was able to retain a high-level 
performance across different arthroplasty types as it consis-
tently required several key variables to predict LOS, such 
as age, BMI, operation time, ASA score, and comorbidities 
[33]. In a retrospective study including 1,278 patients under-
going primary THA, Farley et al. [34] found that increasing 
age, high BMI, and comorbidities contributed to increased 
LOS. Roger et al. [35] identified older age, high ASA score, 
comorbidities, and long operation time as the risk factors 
of prolonged LOS following total joint arthroplasties. In 
addition to these previously established determinants, our 
models also highlighted the role of laboratory tests (total 
leukocyte count, hematocrit, and platelet count) in making 
accurate predictions, which was consistent with a previous 
report on using ML models to identify patients predisposed 
to prolonged LOS after primary THA [26]. Despite the cor-
relation between sex and the level of these blood biomark-
ers, the result of secondary modeling in our study did not 
support the influence of sex-specific data skewness on the 
ML model’s performance. The reliance of the model predic-
tion on an isolated factor appeared to be insensitive to sex 
types. Another explanation may be that the difference in sex 
ratio between the two LOS groups was small, therefore lim-
ited class imbalance effects were introduced during model 
development to bias the model decision.

Our study also found indication for revision TKA to be 
an important determinant of LOS after surgery, with infec-
tion being a significant contributor to prolonged LOS. 
This finding is in concordance with reports by Klemt et al. 
[32]. Periprosthetic infection is one of the most commonly 
seen indications for revision TKA and oftentimes results 
in patient dissatisfaction and poor surgical outcomes [36]. 
Infection is also associated with increased complexity of 

operation time (> 135.26 min), indications for revision THA 
(infection), and age (> 76 years) (Fig. 2). A local explana-
tion of an individual who stayed 2 days following revision 
THA featured a male aged 65 years with an ASA level of 
3 and normal laboratory test results. The patient required 
transfusion before surgery and underwent revision THA for 
145 min. ANN predicted that his probability of experiencing 
prolonged LOS was 38.33%.

Discussion

The study developed four ML models to predict prolonged 
LOS using a comprehensive national dataset containing over 
11,749 revision THA patients. Our findings indicated that 
all models had great prediction performance during train-
ing and testing sessions. ANN provided the most accurate 
predictions of patients subject to lengthened hospital stays, 
as reflected by its high level of AUC, calibration parameters, 
and Brier score. ANN also showed clinical utility by produc-
ing net benefits against varying probability thresholds in the 
decision curve analysis. Important predictors of prolonged 
LOS, as indicated by ANN, were preoperative laboratory 
results, preoperative transfusion, operation time, indications 
for the revision surgery, and age.

The application of ML models to predict complications 
after revision arthroplasty is a relatively recent field of 
research [31]. Our findings were similar to those of a previ-
ous study [32] based on a single institution database, which 
reported an AUC of 0.84–0.87, calibration slope of 0.85–
1.12, and calibration intercept of 0.14–0.21 for ML models 
that predicted LOS after revision total knee arthroplasty. 
These results of previous studies and the current study 

Fig. 2  Global feature importance plot of the machine learning models for predicting prolonged length of stay after revision total hip arthroplasty
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and more importantly, inform discharge planning, ensur-
ing that appropriate resources and support are available for 
patients at risk to reduce costs associated with delayed tran-
sitions and patient dissatisfaction. The positive net benefits 
produced by ML models in decision curve analysis also sup-
port their clinical utility in helping with decision-making.

There are several limitations to consider when interpret-
ing the outcomes of this study. First, the study was based 
on retrospective data from the ACS-NSQIP database. The 
accuracy of the model prediction might be affected by selec-
tion bias and data misrepresentation during manual infor-
mation entry. The study cohort only included patients who 
had revision THA between 2013 and 2020, the findings may 
not be applicable in a different timeline. Second, we used a 
dichotomization method to categorize the outcome of the 
hospital stay. This method facilitates discrete class labeling 
in ML modeling but has the limitation of reducing the data 
granularity and discarding the nuanced information of vari-
ability in an LOS spectrum. The cut-off method of using 
the 75th percentile value may not generalize to other clini-
cal settings or patient populations due to possibly different 
data distribution. This threshold is empirical and does not 
necessarily reflect the latest clinically meaningful distinc-
tions. Finally, the ML models were created using a limited 
number of patient characteristics. Other patient factors, such 
as the surgical approach and ambulation protocol, have been 
previously reported to influence LOS but were not included 
in our study as they were not recorded in the ACS-NSQIP 
database. The actual benefits of the ML models in predicting 
patient outcomes warrant further investigation.

In conclusion, this study utilized a national-scale patient 
cohort to develop ML models that accurately predicted 
prolonged LOS following revision THA. ANN yielded the 
best performance in outcome discrimination and calibra-
tion during both training and testing sessions. All models 
showed great clinical utility in the decision curve analyses. 
Important predictors of LOS included preoperative labora-
tory tests, preoperative transfusion, operation time, indica-
tions for the revision surgery, and age. The integration of 
ML models into clinical workflows may assist in optimizing 
patient-specific care coordination, discharge planning, and 
cost containment after revision THA surgery.
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the revision surgery and a higher risk of postoperative com-
plications [37–39], which entails extended monitoring and 
care support during recovery [36]. This finding substanti-
ated the clinical utility of the ML models in decision curve 
analyses as it provided useful information for pre-operation 
patient counseling based on the type of indications for revi-
sion THA. It is worth noting that the small effect sizes of 
between-group differences at baseline should not be used 
equivalently to interpret the clinical significance of the mod-
el’s prediction. The risk of prolonged LOS on the individual 
level is not solely reliant on the value of isolated patient 
features. Our results underscore the ML model’s strength 
in detecting the hidden pattern across various data domains 
and deriving predictions from the collective effects of multi-
ple pertinent factors. This advantage persists when compar-
ing ML models to conventional logistic regression analysis. 
ML models excel at capturing complex interactions among 
variables without assuming linearity between the predictors 
and outcomes, which is the premise for regression analy-
ses but usually does not hold true in high-dimension data. 
Although logistic regression offers better interpretability 
due to its simplified model structure, it is less likely to out-
perform ML models in predicting prolonged LOS given the 
large scale and complexity of the dataset in this study.

As indicated by the ML models in our study, the list of 
important predictors of prolonged LOS included a combi-
nation of both modifiable and unmodifiable patient factors. 
The components of the laboratory tests are modifiable fac-
tors that had a major contribution to the model prediction. 
Various clinical management and supplement strategies are 
available to optimize the number of white blood cell counts 
and hematocrit levels before surgery, thereby mitigating the 
risk of prolonged LOS [40]. For instance, increased leuko-
cyte count can be addressed by identifying the underlying 
infection and treatments through target antibiotic therapies 
[41]. Preoperative screening for infections allows timely 
intervention, which is crucial in preventing postoperative 
complications [42]. Chronic conditions such as diabetes are 
also potential causes of abnormal white blood cell counts 
[43]. Hyperglycemia can impair leukocyte function, increas-
ing the susceptibility to infections and prolonging hospital 
stays. Effective glycemic control through adjustments in 
diabetic medication and lifestyle modifications, including 
dietary changes, can improve immune function and the 
white blood cell level. Unmodifiable predictors, on the other 
hand, underlay the applicability of the ML models by con-
solidating the accuracy and reliability in identifying indi-
viduals at risk of extended hospitalization. Incorporating the 
models into clinical routine has the potential to allows clini-
cians to better stratify patients based on their risk profiles. 
This stratification can facilitate preoperative counseling 
regarding expectations of potential hospital arrangements 
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