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Abstract
Introduction  Robotic systems have been introduced to improve the precision of total knee arthroplasty. However, different 
robotic systems are available, each with unique features used to plan and execute the surgery. As such, due to this diversity, 
the clinical evaluation of each robotic platform should be separated.
Methods  An extensive literature search of PubMed, Medline, Embase and Web of Science was conducted with subse-
quent meta-analysis. Randomised controlled trials, comparative studies, and cohort studies were included regarding robot-
assisted total knee arthroplasty. Evaluated outcomes included clinical results, surgical precision, ligament balance, surgical 
time, learning curve, complications and revision rates. These were split up based on the robot-specific brand: ROBODOC 
(T-SOLUTION ONE), OMNIBOT, MAKO, NAVIO (CORI) and ROSA.
Results  With a follow-up of more than 10 years, no improved clinical outcomes have been noted with the ROBODOC system 
compared to the conventional technique. If available, other platforms only present short-term clinical outcomes. Radiological 
outcomes are published for most robotic setups, demonstrating improved surgical precision compared to the conventional 
technique. Gap balance assessment is performed differently between all systems, leading to heterogeneous outcomes regard-
ing its relationship on clinical outcomes. There is a similar learning curve based on operative time for all robotic platforms. 
In most studies, robot assistance requires longer operative time compared to the conventional technique. Complications and 
revision rates are published for ROBODOC and MAKO, without clear differences to conventional total knee arthroplasty.
Conclusion  The main finding of this systematic review is that the current evidence regarding each robotic system is diverse 
in quantity and quality. Each system has its own specificities and must be assessed for its own value. Regarding scientific 
literature, the generic term of robotic should be banned from the general conclusion.
Level of evidence  Systematic review level IV.

Keywords  Patient outcomes · Radiological assessment · Robotic surgical procedure · Total knee replacement

Introduction

The field of total knee arthroplasty (TKA) has been con-
tinuously evolving throughout the last decades. While the 
main idea of resurfacing has remained, multiple technical 
concepts and innovations have been the target of change [2, 
12, 35, 47]. For instance, surgical navigation and patient-
specific instruments were introduced to improve surgical 
precision compared to conventional instruments. However, 
due to lack of long-term clinical benefit, neither surgical 
navigation nor patient-specific instruments are systemati-
cally used today [2]. Recently, robots have been added to the 
surgeons’ arsenal to improve surgical precision even further. 
They provide the surgeon a real-time evaluation of the knee 
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joint, while (semi-) actively aiding to perform the required 
bony cuts during TKA [51, 56, 61]. Although the first robot-
assisted (RA) TKA has been performed in 1988 using the 
ACROBOT system, the current robotic platforms are not 
identical to what they were during initial development [17]. 
The introduction of the currently available robotic systems 
has led to an increase in RATKA. However, similarly to sur-
gical navigation and patient-specific instruments, the ques-
tion remains whether robotics will be used systematically 
in all cases in the long run. Of note is the increasing atten-
tion to data collection, which could be a thriving factor for 
using robotics, at least for scientific purposes [16]. The large 
amount of data collected during surgical workflow allows 
precise correlation with clinical outcomes.

In the last couple of years, major orthopaedic firms have 
jumped on the bandwagon and released their own version 
of a robotic platform to aid the orthopaedic surgeon during 
total knee surgery [3, 19, 30, 64, 66]. However, each system 
has a unique set of design characteristics, which cannot be 
overlooked. First, the reference frame and working volume 
are either based on an image-less or image-based philoso-
phy. Next, all systems have a different type of motor control 
to restrict the surgeon in performing bony resections. Third, 
ligament tension assessment could be performed manually, 
sensor assisted or standardised during full range of motion. 
Finally, most robotic systems are dedicated to brand-spe-
cific implants, partially limiting the opportunity to compare 
between the different available robotic platforms.

As a result, the clinical evidence regarding RATKA can-
not be grouped indiscriminately. Therefore, these systems 
should be assessed separately by peer review. This system-
atic review serves the goal of evaluating present literature for 
each individual robotic system currently available, related 
to patient-reported outcome measures, surgical precision, 
ligament balance, learning curve, complications and revi-
sion rates.

Materials and methods

In December 2021, a search was performed in the electroni-
cal databases PubMed, Medline, Embase and Web of Sci-
ence without date restriction. The reviewing process was 
completed independently by two authors (H.V. and C.B.). In 
case of disagreement, a third reviewer (S.L.) intervened to 
achieve consensus. The search strategy consisted the follow-
ing terms: total knee replacement, total knee arthroplasty, 
robotics, robotic surgical procedure and robot-assisted. The 
reviewing process started with removal of all duplicates, 
after which all articles were evaluated for eligibility by title 
and abstract. Full-text articles were obtained for review to 
allow further assessment of inclusion and exclusion criteria. 
The reference lists of all relevant articles were reviewed to 

identify additional studies. This work was performed accord-
ing to the PRISMA guidelines [29].

The inclusion criteria were defined as all English lan-
guage studies evaluating clinical outcomes (patient-reported 
outcome measures and functional outcomes), surgical preci-
sion, gap balancing, learning curve, surgical time, compli-
cations and revision rates after RATKA. Randomised con-
trolled trials, cohort studies and case–control studies were 
incorporated into the review process. The exclusion criteria 
were editorials, systematic reviews or meta-analyses, case 
reports, conference abstracts and the unavailability of full 
texts.

For both RATKA and conventional TKA, surgical preci-
sion was assessed as the difference between the intended 
implant position and the final position of the implant. The 
following variables were assessed regarding surgical preci-
sion: hip–knee–ankle axis (HKA), coronal femoral implant 
position, coronal tibial implant position, sagittal femoral 
implant position and sagittal tibial implant position. The 
methodology (radiography, computed tomography, intra-
operative navigation) used to evaluate implant position was 
noted.

Data was collected using a predefined datasheet to behold 
the following study outcomes: clinical outcomes (patient-
reported outcome measures and functional outcomes), surgi-
cal precision, learning curve, surgical time, complications 
and revision rates. The evidence was split up based on the 
robot used in the study: ROBODOC (T-SOLUTION ONE), 
OMNIBOT, MAKO, NAVIO (CORI) and ROSA (Table 1).

Quality assessment

The quality of the included studies and their relative risk 
of bias were evaluated with the ROBINS-I tool (Risk Of 
Bias In Non-Randomised Studies of Interventions) [58] 
(Table 2). The invested bias domains include bias due to 
confounding, selection of participants, classification of inter-
ventions, deviations from intended interventions, missing 
data, measurement of outcomes and selection of reported 
result. These domains were categorised based on the risk 
on bias being “low”, “moderate”, “serious” and “critical”. 
The worst judgement bias assigned within any one domain 
gives the judgement score of the complete study. All studies 
were screened for research funding or any conflict of interest 
to the orthopaedic company distributing the robotic system.

A meta-analysis was conducted using Review Manager 
5.4 (Cochrane Collaboration, Oxford, UK) based on all stud-
ies comparing RATKA with conventional TKA. Heteroge-
neity among the studies was assessed using the χ2 test and 
I2. A fixed effect model was applied when I2 < 50%, and a 
random effects model when I2 > 50%. A p value < 0.05 was 
considered statistically significant.
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Results

The PRISMA flow diagram can be seen in Fig. 1. After 
removal of duplicates, a total of 960 relevant references were 
found, and after screening, 92 full-text articles were assessed 
for eligibility. Further exclusion of 46 references and the 
addition of 2 articles by relevant references resulted in a 
total of 48 full-length articles [1, 3–9, 11, 13, 15, 18–20, 
22, 24–27, 31–33, 36–44, 48, 49, 51, 52, 54–56, 58–67]. 
According to the ROBINS-I tool, 3, 41 and 4 studies were 
presented with low, moderate and serious risk of bias, 
respectively. In Appendix 1, an overview is given of all 
evidence for each system. In Appendix 2–6, each separate 
outcome is presented in detail.

ROBODOC/TSolution One

The ROBODOC system is the only system with long-term 
clinical follow-up. However, there was no short- or long-
term (> 10 years) evidence illustrating better outcomes after 
total knee arthroplasty with ROBODOC compared to the 
conventional procedure. Of note, these studies were per-
formed based on a principle of mechanical alignment. With 
respect to the radiological outcomes, there was no to some 
minor, although significant, improvement of surgical preci-
sion to achieve coronal and sagittal component alignment 
and hip–knee–ankle axis in case a robotic system was used 
[8, 18, 26, 33, 44, 55, 56, 67]. Based on the conducted meta-
analysis, surgical precision was higher for ROBODOC com-
pared to the conventional technique regarding HKA and tib-
ial coronal and sagittal alignment (p = 0.02, 0.04 and 0.003 
respectively, Fig. 2). Several studies have reported a lower 
proportion of outliers (> 3° coronal or sagittal malalignment 
compared to neutral mechanical alignment) in RATKA com-
pared to the conventional procedure, but it was not corre-
lated to improved clinical outcomes [8, 26, 33, 55, 56, 67]. 
Concerning gap balancing, there was one randomised con-
trolled trial by Song and colleagues demonstrating a lower 

extent of gap imbalance (defined as a difference of > 2 mm 
between the extension and flexion gap) in case of RATKA 
compared to the conventional technique [56]. In this study, 
gap balance was obtained with a commercially available 
tensioner [56].

According to Mahure et al. there was a learning curve of 
10–12 cases based on the exact operative times [37]. The 
transition of a learning phase to proficiency phase could be 
seen after 12–19 cases, based on a CUSUM (cumulative 
summation) analysis. There was no impact of the learning 
curve on patient outcomes and operative complications. 
Overall surgical time, from incision to skin closure, was on 
average 23 min longer with ROBODOC compared to con-
ventional TKA (p = 0.02; Fig. 2, Appendix 6). There was 
no difference in complications, long-term revision rates or 
long-term implant survival compared to the conventional 
technique. In total, 17% (2/12) of the included studies on 
the ROBODOC system demonstrated industry funding with 
a potential conflict of interest.

OMNIBOT

One study by Blum et al. compared the Knee Osteoarthritis 
Outcome Scores (KOOS) of a prospective RATKA cohort 
with the KOOS of the FORCE-TJR cohort, which is an 
accessible database of conventional total knee arthroplasty 
outcomes. No significant differences were seen between the 
two cohorts [5]. Based on the automated gap evaluation with 
the BalanceBot, a target for gap balance was defined as a 
difference of 1.5 mm between either extension/flexion or 
medial/lateral gap. In a prospective trial by Keggi and col-
leagues, comparing the OMNIBOT with and without pre-
dictive plan by the BalanceBot, the utilisation of predictive 
balancing led to a significant increase of 37% (88 vs 51%) 
in the amount of knees classified as balanced. All balanced 
knees demonstrated improved KOOS for subscore Pain at 
3 months postoperatively, subscore Symptoms at all post-
operative time points, subscore Activities of Daily Life at 

Table 1   An overview of the robots analysed in this systematic review with their unique characteristics

MAKO NAVIO/CORI ROSA OMNIBOT TSOLUTION

Release for TKA 2017 2017 2019 2017 2000
Image Image based Imageless Both Imageless Image based
Control Semi-active oscillat-

ing saw
Semi-active burr Guided manual 

sawblade
Guided manual 

sawblade
Active burr

Boundary control Yes Contour-based No No Yes
Dependent gap 

analysis
Manual Manual Manual Standardised and inte-

grated
None

Footprint Standalone–big Handheld Standalone–big Fixed to the patient Standalone–big
Implant TKA/UKA brand 

restricted stryker
TKA/UKA brand 

restricted smith and 
nephew

TKA/UKA Brand 
restricted zimmer-
biomet

TKA brand restricted 
corin

TKA/UKA open access
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Table 2   Risk of bias analysis according to ROBINS-I tool and a conflict of interest summary

Authors Confounding Selection of 
patients

Classifica-
tion of inter-
ventions

Devia-
tions from 
intended 
interventions

Missing data Measure-
ment of 
outcomes

Selection 
of reported 
results

Funding/
conflict of 
interest

ROBODOC Park et al. 
[44]

Moderate Low Low Low Low Low Low No

Song et al. 
[55]

Low Low Low Low Low Low Low No

Song et al. 
[56]

Low Low Low Low Moderate Low Low Yes

Liow et al. 
[31]

NA NA NA NA Low Moderate Moderate No

Liow et al. 
[33]

Low Low Low Low Low Low Low No

Liow et al. 
[32]

Moderate Low Low Low Low Moderate Moderate No

Yang et al. 
[67]

Moderate Moderate Low Low Moderate Low Low No

Cho et al. [8] Moderate Moderate Low Low Moderate Low Low No
Jeon et al. 

[18]
Moderate Moderate Low Low Moderate Moderate Moderate No

Kim et al. 
[26]

Moderate Low Low Low Low Low Low No

Mahure et al. 
[37]

NA NA NA NA Moderate Moderate Moderate No

Stulberg 
et al. [59]

NA NA NA NA Low Low Low Yes

OMNIBOT Blum et al. 
[5]

NA NA NA NA Low Moderate Moderate Yes

Suero et al. 
[60]

Moderate Moderate Moderate Low Low Moderate Low Yes

Clark et al. 
[9]

Moderate Serious Low Low Moderate Low Low No

Nam et al. 
[42]

Moderate Moderate Low Low Low Moderate Low No

Figuero et al. 
[13]

Moderate Moderate NA NA Low Low Low No

Wakelin 
et al. [66]

Moderate Moderate NA NA Low Moderate Moderate Yes

Keggi et al. 
[24]

Moderate Low Low Low Low Low Moderate Yes

ROSA Vanlommel 
et al. [64]

Moderate Moderate Low Low Moderate Moderate Low Yes
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Table 2   (continued)

Authors Confounding Selection of 
patients

Classifica-
tion of inter-
ventions

Devia-
tions from 
intended 
interventions

Missing data Measure-
ment of 
outcomes

Selection 
of reported 
results

Funding/
conflict of 
interest

MAKO Marchand 
et al. [40]

Moderate Moderate Low Low Moderate Moderate Moderate NR

Sodhi et al. 
[54]

Moderate Serious Low Low Serious Serious Moderate No

Kayani et al. 
[20]

Moderate Low Moderate Low Low Moderate Low Yes

Kayani et al. 
[22]

Moderate Moderate Moderate Low Low Low Low Yes

Kayani et al. 
[19]

Moderate Low Low Low Moderate Moderate Low Yes

Khlopas 
et al. [25]

Moderate Moderate Low Low Low Moderate Moderate Yes

Marchand 
et al. [39]

Moderate Moderate Low Low Low Serious Moderate Yes

Smith et al. 
[52]

Moderate Low Low Low Low Moderate Moderate No

Naziri et al. 
[43]

Moderate Moderate Low Low Low Moderate Low No

Sultan et al. 
[61]

Serious Moderate Moderate Moderate Serious Moderate Serious Yes

Bhimani 
et al. [4]

Moderate Moderate Low Low Moderate Moderate Low Yes

Malkani 
et al. [38]

NA NA NA NA Low Low Low No

Sires et al. 
[50]

NA NA NA NA Low Moderate Low No

Sires et al. 
[51]

NA NA NA NA Low Moderate Low No

Mitchell 
et al. [41]

Moderate Moderate Low Low Low Moderate Moderate No

Mahoney 
et al. [36]

Moderate Moderate Low Low Moderate Low Low Yes

Shaw et al. 
[49]

Moderate Moderate Moderate Low Low Low Low No

Vermue et al. 
[65]

NA NA NA NA Moderate Moderate Low No

Deckey et al. 
[11]

NA NA NA NA Low Low Low No

Chang et al. 
[7]

Moderate NA NA NA Low Low Moderate Yes

Bardou-
Jacquet 
et al. [1]

Serious NA NA NA Low Moderate Moderate Yes
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6 months, and subscore Quality of Life at 3 months and 
6 months compared to unbalanced knees (p < 0.05; without 
reaching the minimal clinical important difference) [24]. As 
such, specific targets for ligament balance with the Balan-
ceBot have been published by Wakelin et al. which could 
improve PROMs: an equally balanced or tighter medial 
compartment in extension, medial laxity ± 1 mm compared 
to the final insert thickness in midflexion, and a medio-
lateral imbalance of less than 1.5 mm in flexion [66]. One 
study was able to demonstrate minor significant superior-
ity of the OMNIBOT system regarding surgical precision 
to achieve coronal tibial component position compared to 
patient-specific instruments, with an average difference of 
0.5° between both (p = 0.02) [42]. There is no published data 

on the learning curve, surgical time and complication or 
revision rates. A conflict of interest or industry funding was 
found in 57% (4/7) of the included studies on the OMNIBOT 
system.

MAKO

The MAKO robot system was the most intensively 
researched out of all robotic systems for total knee surgery. 
There were some studies advocating improved clinical out-
comes up to 1 year postoperatively compared to the con-
ventional technique [22, 39–41, 52]. However, long-term 
clinical outcomes are still lacking. The surgical precision 
achieved with the system was higher compared to the con-
ventional technique [19, 61], more specifically for HKA and 
tibial coronal alignment (p < 0.001 and p = 0.008 respec-
tively, Fig. 3). Nevertheless, there was no demonstrated 
correlation between the accuracy of the bone resections and 
the improvement of clinical outcomes with this robotic sys-
tem. There were two studies advocating improved ligament 
balance with sensor technology combined with the MAKO 
platform [7, 28]. To reach the transition from the learning 
phase to the proficiency phase, 7–43 cases should be com-
pleted [19, 54, 65]. Component alignment and gap balance 
were not influenced by a surgeon’s learning curve. Overall 
surgical time, from incision to skin closure, was not sig-
nificantly different between RATKA and the conventional 
technique (p = 0.95, Fig. 3). After completing the learning 
curve setup time of the robot took 9.2 ± 1.5 min in the study 
by Kayani et al. [19]. In the included studies, there was no 
evidence for a difference in complications between robot-
assisted and conventional TKA [22, 38, 41, 43, 52]. There 

Table 2   (continued)

Authors Confounding Selection of 
patients

Classifica-
tion of inter-
ventions

Devia-
tions from 
intended 
interventions

Missing data Measure-
ment of 
outcomes

Selection 
of reported 
results

Funding/
conflict of 
interest

NAVIO Held et al. 
[15]

Moderate Moderate Moderate Low Low Low Moderate Yes

Bollars et al. 
[6]

Moderate Low Low Low Low Low Low No

Laddha et al. 
[27]

NA NA NA NA Low Moderate Moderate No

Vaidya et al. 
[62]

NA NA NA NA Low Moderate Low No

Savov et al. 
[48]

Moderate Low Low Low Low Moderate Low Yes

Vaidya et al. 
[63]

Low Moderate Low Moderate Low Moderate Low Yes

Bell et al. [3] NA NA NA NA Low Moderate Moderate Yes

Fig. 1   An overview of the PRISMA-flowchart used in this study
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Fig. 2   The forest plots of the meta-analysis performed regarding the 
studies comparing conventional with robot-assisted total knee arthro-
plasty with the ROBODOC system. A Surgical time. B Precision of 
hip–knee–ankle axis. C Precision of coronal femoral component posi-

tion. D Precision of coronal tibial component position. E Precision 
of sagittal femoral component position. F Precision of sagittal tibial 
component position
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was no long-term data available on revision rates. In half of 
the included studies (10/20) on the MAKO platform, there 
was a potential conflict of interest.

NAVIO/CORI

Despite the promising results concerning the implant posi-
tioning and limb alignment, with superior precision to 
achieve the intended HKA (p < 0.001, Fig. 4), there was 
only one study, by Held et al., evaluating clinical outcomes 

without clear improvements when comparing conventional 
to RATKA [15]. According to Bell et al. and Savov et al. the 
learning curve encompasses the completion of 7–11 cases 
[3, 48]. Joint balance, when assessed with sensor technol-
ogy, was improved with the application of the robotic system 
compared to the conventional technique [15]. Several stud-
ies have assessed surgical time, possibly demonstrating an 
increase in surgical time with the NAVIO robot compared to 
conventional TKA. There was no data available on the com-
plications and revision rates. There was a potential conflict 

Fig. 3   The Forest plots of the meta-analysis performed regarding the 
studies comparing conventional with robot-assisted total knee arthro-
plasty with the MAKO system. A Surgical time. B Precision of the 
hip–knee–ankle axis. C Precision of the coronal femoral component 

position. D Precision of the coronal tibial component position. E Pre-
cision of the sagittal femoral component position. F Precision of the 
sagittal tibial component position
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of interest or industry funding in 57% (4/7) of the included 
studies on the NAVIO/CORI system.

ROSA

There was no data available on clinical outcomes or possi-
ble complications. Compared to the intraoperative plan, the 
system obtained high surgical precision [64]. The learning 
curve regarding operative time would be completed after 
6–11 performed cases with the system [64]. The operative 
time of the robotic procedure required on average 18 addi-
tional minutes compared to the conventional TKA [64]. 
There was a potential conflict of interest or research fund-
ing for the one study on the ROSA system included in this 
review.

Discussion

The primary aim of this systematic review was to give an 
overview of the capabilities of each robotic system for total 
knee arthroplasty and to identify gaps in currently avail-
able scientific literature. The main finding of this systematic 
review is the current evidence regarding each robotic system 
being diverse in quantity and quality, and consequently the 
generic term of robotic should be banned from general con-
clusion. For most systems, although not all, surgical preci-
sion was seen to be superior with robot assistance compared 
to conventional TKA. Long-term clinical benefit of any 

robot-assisted procedure is yet to be determined. However, 
some short-term clinical benefit has been reported compared 
to conventional TKA. When using a robot for TKA, surgical 
time is increased for most systems, albeit there is potential 
to reach identical surgical times of conventional TKA. There 
was no difference in the amount of complications between 
RATKA and conventional TKA. The most profound benefit 
of these robotic systems is the superior surgical precision 
compared to the conventional technique (Appendix 3) [6, 
8, 11, 13, 18, 19, 26, 27, 31, 33, 36, 42, 44, 48, 50, 51, 55, 
56, 59–62, 64, 67]. Most evidence is found in lower outlier 
rates, although fewer studies identifying direct superiority of 
implant positioning in the RATKA are available. For ROSA 
and VELYS, clinical studies identifying its validated surgical 
precision are still yet to be published. Interestingly, Kayani 
and colleagues identified better soft tissue protection while 
maintaining high precision during surgery, which might 
stress an additional benefit of stereotactic boundary control 
with the robot-assisted systems [20].

The literature on clinical outcomes with currently avail-
able robotic systems is not available for the ROSA and 
VELYS robotic systems and still limited for the other plat-
forms. Up to date, there are no clear long-term clinical 
improvements after total knee surgery when comparing any 
robotic system to its conventional counterpart (Appendix 2). 
Unfortunately, patient-reported outcomes and functional out-
comes were deemed to heterogeneously due to different time 
intervals per individual robot to perform a meaningful meta-
analysis. There are some studies advocating early improved 

Fig. 4   The forest plots of the meta-analysis performed regarding the 
studies comparing conventional with robot-assisted total knee arthro-
plasty with the NAVIO/CORI system. A Precision of the hip–knee–

ankle axis. B Precision of the coronal femoral component position. C 
Precision of the coronal tibial component position
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patient outcomes, although this trend did not continue after 
6 months to 1 year postoperatively [15, 22, 32, 39–41, 52]. 
Of note, especially for ROBODOC, is that the clinical stud-
ies were mainly based on a principle of mechanical align-
ment. The superior precision of the robotic systems opens 
doors for more individualised alignment techniques, theo-
retically avoiding major limitations of surgical error (e.g., 
early failure with aseptic loosening or implant migration) 
with the conventional technique [12, 34, 46]. However, these 
individualised alignment strategies are in need of further 
refinement and proven clinical benefit before becoming the 
golden standard [47].

Besides good surgical precision, an additional added 
value of multiple robotic systems is the capability of assess-
ing ligament tension. Currently, there are three options of 
assessing ligament tension. First, the laxity assessment with 
the robotic assisted system could be performed manually. 
The surgeon exerts a significant varus and valgus force 
on the knee, with or without tensioner. This assessment is 
dependent on the strength and evaluation of the surgeon, on 
the depth of anaesthesia, and the BMI or the physical stature 
of the patient. The ligament balancing is thus not entirely 
objective and dependent upon the surgeon’s experience of 
with the system. Second, with the MAKO platform, sensor-
guided technology can objectify soft tissue balance with 
a wireless and disposable articular loading quantification 
device, which is inserted in the tibial component tray during 
the surgery, after the tibial and femoral cuts are completed 
[14]. Third, standardised distraction of the joint is possible 
with the BalanceBot, due to the option to apply variable or 
fixed, but known, forces during full range of motion [24, 66]. 
The BalanceBot requires a tibial first technique to insert the 
device, which limits the influence of tibial osteophytes on 
ligament balance. Studies on both the sensor and the stand-
ardised distraction device have shown promising results with 
superior clinical outcomes when specific balance targets are 
met [14, 15, 24, 28, 66]. However, due to heterogeneous 
assessment, comparing these systems is not possible. In the 
end, long-term randomised controlled studies are still neces-
sary to confirm these findings.

The learning curve of most systems seems to be similar 
between all available robotic systems, except for the OMNI-
BOT and VELYS systems, which have not been assessed yet 
(Appendix 4) [3, 19, 37, 48, 54, 64, 65]. However, Keggi 
and Plaskos have published the learning curve of the OMNI-
BOT system in a conference abstract, which resulted in a 
learning curve of seven cases based on surgical time [23] At 
first sight though, there was a wider variation of the amount 
of cases necessary to complete the learning curve with 
the MAKO robot (7–43 cases) compared to other systems 
(6–12), possibly due to the fact that more studies have been 
published on the MAKO robot, possibly with the learning 
curve of a more diverse audience. The initial studies on a 

surgical system might involve surgeons involved in the robot 
design. As such, these might be biased towards faster learn-
ing curves. According to this systematic review, there was 
no clear difference in the learning curve between image-
based and imageless devices, based on operative time and 
implant positioning. After completion of the learning curve, 
some studies have advocated the possibility to achieve time 
identical surgical times with RATKA compared to the con-
ventional technique [54, 65]. These studies were performed 
by mostly high-volume and experienced joint replacement 
surgeons, which makes it difficult to apply to a low-volume 
or less experienced surgeon.

Literature on surgical complications is available for 
ROBODOC and MAKO. These studies on the ROBODOC 
and MAKO could not present any difference in complica-
tions between the conventional technique and RATKA 
(Appendix 5) [8, 33, 56, 67]. However, surgeons should 
remain cautious when using tracker pins, since peripros-
thetic fractures through tracking pin sites could occur in up 
to 5% of cases, as has been reported by Smith et al. [53]. 
Long-term revision rates are only available for ROBODOC 
system, which could not demonstrate any superiority of 
RATKA. However, these studies have been performed with 
a principle of mechanical alignment. Revision rates for the 
other systems are still to be published, as the time of com-
mercial release lies within the past couple of years.

Surgical time is important as well in the consideration of 
robot-assisted versus conventional TKA. Although not pre-
sent for the MAKO system in our meta-analysis, in almost 
all individual studies included in this review, the total knee 
arthroplasty required more time to complete when performed 
with robot-assistance (Appendix 6). Any increase of opera-
tive time and additional personnel in the operating room 
should be approached with caution, as it could potentially 
increase infection rates [57]. However, more than operative 
time, which is from skin incision to skin closure, should be 
considered. As an example, the time needed for set-up of 
the robotic systems has an influence on the capability to use 
operating time efficiently as well. Kayani et al. have found an 
average set-up time of 9.2 min was necessary for the MAKO 
platform [19]. While it is a large system yet easily moved, 
the set-up time necessary for other systems is still unknown.

In the included studies, a conflict of interest or research 
funding by the orthopaedic company was present in (more 
than) half of all cases, except for the ROBODOC system 
(17% of all studies). The reader of future studies on RATKA 
should be aware conflicts of interest are not scarce in this 
topic.

The available robotic systems, besides the VELYS 
system, all have demonstrated their technical capabilities 
in some degree. However, cost-effectiveness is a factor 
which cannot be ignored when assessing the introduction 
of robotic systems in current daily practice. As such, up to 
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now, there is only limited evidence on the cost-effective-
ness of the MAKO platform. According to Cool et al. and 
Pierce et al. RATKA was associated with lower health-
related costs compared to the conventional technique due 
to fewer readmissions and economically beneficial dis-
charge destinations [10, 45]. However, these studies did 
not take into account confounding variables which might 
be present based on the patient’s deliberate choice for 
robot-assisted surgery.

The limitations of this review relate to the level of avail-
able evidence and the inherent lack of homogenous high 
quality data, incomplete reporting of surgical experience. 
There is a paucity of trials and level 1 data regarding all 
systems available for RATKA. However, promising stud-
ies are underway [21]. As well, as only English language 
manuscripts were included together with the requirement 
of full text access, some relevant studies could have been 
excluded. Next, in the assessment of all included studies, 
the fact that these were performed by experienced sur-
geons working in high-volume arthroplasty centres should 
be highlighted, potentially introducing bias. It is unlikely 
that the conclusions of these studies can be extrapolated 
to less experienced and lower volume surgeons.

Conclusion

The current systematic review demonstrates there are cer-
tainly gaps in the current literature on robot-assisted total 
knee surgery. The available robotic platforms have high 
surgical precision and are associated with similar learning 
curves, without evidence of clear improved patient out-
comes for most of them. However, as high patient satisfac-
tion and patient function with a durable prosthesis remain 
the ultimate goal, the implementation of these precise sys-
tems and gap balancing opportunities could potentially 
unlock the door to improved patient outcomes. To provide 
solid scientific evidence of such improvement, the main 
recommendation is that each system must be assessed for 
its own value and the generic term of robotic should be 
banned from general conclusion.
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