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Abstract
Background  Prolonged surgical operative time is associated with postoperative adverse outcomes following total knee arthro-
plasty (TKA). Increasing operating room efficiency necessitates the accurate prediction of surgical operative time for each 
patient. One potential way to increase the accuracy of predictions is to use advanced predictive analytics, such as machine 
learning. The aim of this study is to use machine learning to develop an accurate predictive model for surgical operative time 
for patients undergoing primary total knee arthroplasty.
Methods  A retrospective chart review of electronic medical records was conducted to identify patients who underwent 
primary total knee arthroplasty at a tertiary referral center. Three machine learning algorithms were developed to predict 
surgical operative time and were assessed by discrimination, calibration and decision curve analysis. Specifically, we used: 
(1) Artificial Neural Networks (ANNs), (2) Random Forest (RF), and (3) K-Nearest Neighbor (KNN).
Results  We analyzed the surgical operative time for 10,021 consecutive patients who underwent primary total knee arthro-
plasty. The neural network model achieved the best performance across discrimination (AUC = 0.82), calibration and decision 
curve analysis for predicting surgical operative time. Based on this algorithm, younger age (< 45 years), tranexamic acid 
non-usage, and a high BMI (> 40 kg/m2) were the strongest predictors associated with surgical operative time.
Conclusions  This study shows excellent performance of machine learning models for predicting surgical operative time in 
primary total knee arthroplasty. The accurate estimation of surgical duration is important in enhancing OR efficiency and 
identifying patients at risk for prolonged surgical operative time.
Level of evidence  Level III, case control retrospective analysis.
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Introduction

With the continued growth in utilization of total knee arthro-
plasty (TKA), healthcare workers and administrations have 
begun to scrutinize operating room (OR) efficiency in total 
knee arthroplasty [1–3]. Allocation of OR time and appro-
priate scheduling of case length are parameters closely asso-
ciated with OR efficiency [4], which is vital for delivering 
efficient and cost-effective care to arthroplasty patients. The 
accurate prediction of surgical operative time in primary 

TKA, which tends to be a more predictable and reproduc-
ible surgical procedure, may be an ideal starting point when 
analyzing and attempting to improve OR efficiency.

Historically, the preoperative estimation of individual 
surgical operative time has been done based on surgeon’s 
estimates, or by an electronic medical record (EMR) based 
system which averaged previous case durations. However, 
prior studies demonstrated that the accuracy of surgeon’s 
estimates as well as EMR scheduling system lack accurate 
predictions of surgical operative time due to variations in 
preoperative data [5, 6]. Determinants for surgical operative 
time are based upon multiple perioperative factors, which 
may be beyond the abilities of previous estimation mod-
els. These limitations may be circumvented by estimating 
surgical operative time using machine learning (ML) algo-
rithms. Recently, a number of studies have demonstrated the 
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feasibility of using ML models to improve OR planning and 
efficiency through the accurate prediction of case duration 
in non-arthroplasty patients [7]. Therefore, this study aimed 
to develop and validate machine learning models to predict 
surgical operative time for patients undergoing primary total 
knee arthroplasty.

Materials and methods

Patient cohort

With Institutional Review Board (IRB) approval, we identi-
fied 10,089 consecutive primary TKA procedures that were 
performed at a single tertiary institution. Patients with miss-
ing perioperative data were excluded as were patients with 
simultaneous bilateral TKA surgery and less than 2 years 
of follow-up. A total of 10,021 primary TKA patients 
remained for the development and validation of machine 
learning algorithms. Surgical operative time was defined as 

the time from first incision to completion of wound closure. 
This duration was selected due to its medical and economic 
importance in concordance with prior literature [8]. Surgical 
operative time did not include anesthesia time nor the OR 
room turn over time between cases.

Variables

Electronic medical records were used to manually review 
patient and procedural variables associated with prolonged 
surgical operative time [9, 10]. Collected patient data 
included: (1) age, (2) gender, (3) body mass index (BMI), (4) 
ethnicity, (5) American Society of Anesthesiologist Physical 
Status score (ASA score), (6) medical comorbidities and 
(7) Charlson comorbidity index (CCI; Table 1). Procedural 
variables included for analysis involved: (1) indication for 
primary TKA (post-traumatic vs primary osteoarthritis), (2) 
anesthesia type, (3) tranexamic acid usage, (4) component 
fixation method (cemented vs non-cemented), (5) tourniquet 

Table 1   Baseline characteristics 
of study population

Characteristic Primary TKA patients (N = 10,021)

Demographics
Age (years) 74.2 ± 22.7
Gender 3992 males; 6029 females
BMI (kg/m2) 32.3 ± 6.4
ASA score (%)

ASA 1 – 616 (6.1%)
ASA 2 – 6168 (61.5%)
ASA 3 – 3079 (30.2%)
ASA 4 – 226 (2.2%)

Charlson comorbidity index 1.9 ± 1.5
Insurance status (Medicare; Private) 2408; 7613
Ethnicity (White, African American, Hispanic, Asian) 9686, 163, 112, 60
Follow-up time (years) 2.8 ± 1.1
Comorbidities
Smoking (%) 1077 (10.7%)
Drinking (%) 1413 (14.1%)
Drug abuse (%) 173 (0.1%)
Diabetes mellitus (%) 710 (7.8%)
Depression (%) 594 (6.0%)
Renal failure (%) 438 (4.8%)
Malignant tumor (%) 819 (8.1%)
Hypertension 4648 (46.3%)
Surgical variables
Operation time (min) 78.9 ± 32.6
Spinal anesthesia (%) 82.8
Tranexamic acid usage (%) 77.1
Tourniquet use (%) 94.1
Cemented component fixation (%) 96.2
Indication for primary TKA (osteoarthritis) 92.5
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use as well as (6) tourniquet time and pressure, (7) implant 
type and (8) prior knee surgeries.

Model development

We developed three supervised machine learning algorithms 
in concordance with prior literature [11–13]: (1) artificial 
neural networks (ANN), (2) random forests (RF), and (3) 
k-nearest neighbors (KNN). The TKA dataset as shown in 
Table 1 was randomly divided into 2 datasets using an 80:20 
split ratio [14, 15]: a dataset for the training of machine 
learning models (8,016 TKAs) and a dataset to test machine 
learning model performance (2,005 TKAs). A recursive 
feature elimination technique (popular technique to select 
feature most relevant in predicting the target variable) was 
utilized to determine patient and surgical factors for final 
modeling [16, 17]. A fivefold cross-validation was repeated 
5 times to develop and assess all candidate models in the 
training set. We applied a grid-search algorithm to determine 
each algorithm’s hyperparameters during the training phase 
[18–20]: (1) ANN: number of hidden layer nodes; (2) RF: 
number of trees and boosting parameter; (3) KNN: mixing 
parameter α (Ridge regularization α = 0; Lasso regulariza-
tion α = 0) and number of nearest neighbors.

Model accuracy was defined using the area under the 
receiver operating curve (AUC) [21]. Machine learning 
models no better than chance have an AUC of 0.5, with 
perfect candidate models demonstrating an AUC of 1 [22]. 
Machine learning model calibration was performed using a 
calibration plot. The Brier score was used to assess overall 
model performance [23]. The Brier score, defined as mean 
squared difference between predicted probabilities and 
observed frequencies of events in a given population, is 0 
for perfect candidate models [24].

Statistical analysis

All data analysis was performed using Matlab (MathWorks 
Inc., Natick, MA, USA), Anaconda (Anaconda Inc., Austin, 
TX, USA) and Python (Python Software Foundation, Wilm-
ington, DE, USA)[25].

Results

A total of 10,021 patients underwent primary total knee 
joint arthroplasty. The mean age of the patient cohort 
is 74.2 ± 22.7  years and the mean body mass index 
is 32.3 ± 6.4  kg/m2. The average follow-up time was 
2.8 ± 1.1 years. Patient demographics and surgical varia-
bles for TKA patients are summarized in Table 1. The mean 
surgical operative time was 98.9 ± 32.6 min. The machine 
learning models demonstrated an average 11  min (SD: 
3.4 min) improvement in absolute difference between pre-
dicted surgical operative time and actual surgical operative 
time, when compared to the conventionally used electronic 
medical record system.

Model parameters were optimized using a coarse-grained 
grid-search algorithm with repeated random sub-sampling 
validation. The optimal ANN had two hidden layers with 
18 neurons each. The optimal RF consisted of 110 trees, 
with the number of predictors for each node set to default. 
The optimal KNN learning rate was 0.3 with a sub-sampling 
coefficient of 0.80 and a 24 nearest neighbors.

In the training dataset, all machine learning models 
demonstrated excellent model discrimination. The AUC 
for the candidate models ranged from 0.77 for k-nearest 
neighbor to 0.83 for neural networks (Table 2). The cali-
bration intercept ranged from  – 0.19 to 0.22, with the best 
intercept for neural networks (intercept of 0.05; Table 2). 
The calibration slope varied between 0.92 and 1.18 across 
the three candidate models (Table 2). The lowest Brier 
score error was achieved by neural networks (Brier score 
of 0.053). In the testing set of TKA patients, the AUC 

Table 2   Discrimination and 
calibration of machine learning 
algorithms on training set for 
TKA patients

Data expressed as mean (95% confidence interval). Null model Brier score = 0.057

Metric Neural network Random forest K-nearest neighbor

AUC​ 0.83 (0.78–0.88) 0.80 (0.78–0.82) 0.77 (0.76–0.78)
Intercept 0.05 ( – 0.03 to 0.13)  – 0.19 ( – 0.25 to  – 0.13) 0.22 (0.07–0.37)
Slope 1.07 (0.91–1.23) 0.92 (0.85–0.99) 1.18 (1.01–1.35)
Brier 0.053 (0.052–0.054) 0.056 (0.055–0.057) 0.055 (0.054–0.057)

Table 3   Discrimination and calibration of machine learning algo-
rithms on testing set for TKA patients

Data expressed as mean (95% confidence interval). Null model Brier 
score = 0.061

Metric Neural network Random forest K-nearest 
neighbor

AUC​ 0.82 0.80 0.78
Intercept 0.07  – 0.22 0.19
Slope 1.08 0.89 1.22
Brier 0.053 0.054 0.055
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for the three candidate models ranged from 0.78 to 0.82 
(Table 3). The highest AUC was achieved by neural net-
works (AUC = 0.82; Table 3). The Brier score errors in 
the testing set varied between 0.053 and 0.055, with the 
lowest Brier score error for neural networks (Brier score 
of 0.053, Table 3).

Decision curve analysis demonstrated that the three 
machine learning models all achieved higher net benefits 
for TKA patients, when compared to the default strategies 
of changing management for all patients or no patient. 
The variables significantly associated with surgical opera-
tive time were younger age (< 45 years), female gender, 
ASA score, Charlson Comorbidity Index (CCI), high 
BMI (> 40 kg/m2), indication for TKA (post-traumatic), 
tranexamic acid non-usage, and operating surgeon (Fig. 1). 
The strongest predictors for surgical operative time were 
younger age (< 45 years), tranexamic acid non-usage, and 
high BMI (> 40 kg/m2; Fig. 2).

An example of a local, individual patient-level explana-
tion for the model predictions by neural networks is shown 
in Fig. 3. For a 43 year old non-obese (BMI = 28 kg/m2) 
male TKA patient with ASA score 3 and Charlson comor-
bidity index of 3.36, who was operated using tranexamic 
acid, the predicted probability of an operative time greater 
than 85 min is 17.6%. Younger age (< 45 years), higher 
Charlson comorbidity index, ASA score of 3 and post-
traumatic TKA indication increased the probability of a 
longer operative time, whereas tranexamic acid usage, low 
BMI (< 40 m/kg2) and male gender decreased the prob-
ability of a longer operative time.

Discussion

The efficient use of operating room (OR) time is signifi-
cantly associated with health care spending [26]. With a high 
cost of use estimated at $36 per minute, under- and overes-
timation due to inaccurate prediction of surgical operative 
time can cause inefficiency in OR utilization and staffing. 
Thus, the accurate estimation of surgical duration is criti-
cal to enhancing OR efficiency and identifying patients at 
risk for prolonged surgical operative time. Regarding the 
estimation of surgical operative time, there have been accu-
racy improvement efforts [27]. Traditionally, one common 
approach was based on surgeon’s personal experience. How-
ever, according to a previous study by Laskin et al., surgeons 
overestimate surgical operative time up to 32% of the time, 
and underestimate it 42%_of the time [28]. Alternatively, 
electronic medical record (EMR)-based approaches have 
been used to calculate surgical operative time based on pre-
vious data for the same procedure and/or surgeon. Despite 
modestly higher accuracies (12%) compared to surgeon’s 
estimates [29], prior studies have demonstrated the limita-
tions of this approach in terms of the inability to consider 
multiple significant influential factors [30, 31]. Additionally, 
these prior works demonstrated poor performance for EMR-
based predictions of surgical operative time for patients with 
non-standard medical history, where the EMR system may 
struggle to provide comparative data [30, 31]. Furthermore, 
a lack of complete and reliable information in EMR systems 
provides a significant risk for a poor estimation of surgical 
operative time [32].

Fig. 1   Artificial intelligence algorithm for the prediction of surgical operative time following primary total knee arthroplasty
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Due to the diverse multifactorial nature of OR time 
predictions, including patient characteristics and surgi-
cal environments [33], recent studies have investigated the 

possibility of utilizing machine learning (ML) techniques 
to improve the accuracy of these estimations. Previously, 
a pilot study including 990 operative cases over a variety 

Fig. 2   Global variable importance plot for the prediction of surgical operative time following primary TKA

Fig. 3   Example of individual patient-specific explanation generated by the neural network model for a TKA patient
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of non-orthopedic specialties by Tuwatananurak et al. pre-
sented that ML models showed a 7 min improvement in 
absolute difference between predicted case duration and 
actual case duration, when compared to conventional elec-
tronic medical record systems [7]. Similarly, a recent large 
retrospective study by Bartek et al. demonstrated a high 
predictive capability for ML models to predict case-time 
duration across a broad spectrum of non-orthopedic depart-
ments in a tertiary medical center [34]. Despite these prior 
studies utilizing non-orthopedic patient populations, only 
a small sized retrospective study by Wu et al. described an 
improved accuracy for ML-based predictions, when com-
pared to surgeon's own predictions in revision THA [35]. 
In this present study, we report an 11 min improvement in 
absolute difference between predicted surgical operative 
time and actual surgical operative time, when compared to 
the conventionally used electronic medical record system, 
which highlights the strong potential of machine learning 
models for the prediction of surgical operative time. Addi-
tionally, the clinical utility of the machine learning models 
is supported by an opportunity to reduce healthcare costs, 
with an estimated $36 per minute for each minute of surgical 
operative time. As prior modeling studies did not develop 
computational tools which significantly improve the abso-
lute difference between predicted surgical operative time and 
actual surgical operative time [36], the presented machine 
learning models have potential to assist in clinical practice.

All machine learning candidate ML models showed excel-
lent performance on discrimination, calibration and decision 
curve analysis for surgical operative time. ML algorithms 
have the strength to become more accurate and predictive as 
additional data are given because these algorithms have the 
ability to learn and improve from repetitive experiences with 
nonlinear complicated data [37]. Thus, the excellent predic-
tive abilities of these ML models may be a direct reflection 
of the multifactorial etiology of surgical operative time in 
patients. In a recent modeling study including all subspe-
cialties by Bartek et al., the ML-based model performed 
better in predicting case duration than a linear regression 
model. Based on the result of this present study, the ANN 
model provided superior predictions (AUC = 0.82), when 
compared to two other ML algorithms; random forest (RF) 
and k-nearest neighbor (KNN). Regarding the superiority of 
ANN, a series of previous studies has proved the accuracy 
of ANN models for making complex medical decisions [36]. 
Although direct comparison is limited, the predictive value 
of this ANN model was comparable to the values of recent 
ANN-based predictive models applied to various aspects of 
primary TKA including length of stay, charges, and disposi-
tion [38].

Based on the ANN algorithm, the strongest predictors for 
surgical operative time were younger age (< 45 years), high 
BMI (> 40 kg/m2), and tranexamic acid non-usage. Due to 

diverse potential variables [39], independently evaluating 
the effect of individual variables on surgical operative time 
has posed significant challenges. A retrospective database 
study by Sodhi et al. found that younger age and obesity 
were predictors of longer surgical operative times in TKA 
patients (p < 0.001) [40]. A retrospective study by Liabaud 
et al. reported that surgical operative time for TKA patients 
increased by 0.933 min when the BMI increased by 1 kg/
m2 [41]. Additionally, in a large database study, Wang et al. 
presented that TKA patients with higher BMI required sig-
nificantly longer surgical operative time [42]. In terms of 
tranexamic acid, a retrospective cohort study by Mufarrih 
et al. found that for unilateral TKA patients, tranexamic acid 
usage led to a significant reduction in total surgical opera-
tive time (p < 0.001) [43]. Similarly, a study by Stoicea et al. 
reported that tranexamic acid usage was associated with a 
significant reduction in surgical operative time, using a study 
cohort involving 564 primary and revision TKA patients 
[44]. Equally, in a prospective study with 43 primary TKA 
patients, Guerreiro et al. showed the beneficial effect of 
tranexamic acid usage during TKA surgery with regards to 
surgical operative time as well as blood loss [45].

In comparison to prior retrospective studies, the present 
ML study demonstrated an increasingly significant impact 
of high body mass index on surgical operative time follow-
ing primary TKA. Both, Sodhi et al. as well as Liabaud 
et al. demonstrated a moderately strong effect of obesity on 
surgical operative time, with other patient factors being of 
greater significance [41, 42]. This discrepancy may be due 
to the use of ML algorithms in the present study, with ML 
models being shown to provide more accurate data analysis 
compared to conventional statistical approaches [46], in the 
setting of large and complex datasets with noisy or incom-
plete information.

With the current focus on quality improvement initia-
tives, the ability of ML for predicting patients expected 
to require a longer surgical operative time can enhance 
patient care, as well as improve healthcare resource utili-
zation and overall efficiency. The US National Healthcare 
Safety Network (NHSN) index predicts surgical risks for 
infections based on 3 factors, surgical operative time being 
one of them [47]. Periprosthetic joint infection (PJI), one 
of the most devastating complications following TJA, is 
strongly associated with prolonged surgical operative time 
[33]. Increased surgical operative times are also an inde-
pendent risk factor for a multitude of other postoperative 
complications following TJA [33, 48]. Thus, more accu-
rate prediction of case duration based on ML models might 
enable anticipated response in efforts to mitigate compli-
cations and undesirable sequelae for at risk TKA patients. 
In addition, a prior study by Sodhi et al. demonstrated that 
increased surgical operative times had the greatest effect 
on length of stay in primary TKA patients [40]. Therefore, 
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coupled with the higher risk of complications, prolonged 
surgical operative time has a significant effect on the uti-
lization of healthcare resources associated with hospital 
stays. The increased resource utilization posed by lengthy 
surgical operative time is also correlated to inaccurate 
operating room (OR) scheduling. A more accurate pre-
diction of surgical operative time with these ML models 
may aid in optimizing surgical case scheduling for TKA 
patients, as they allow the incorporation and interpretation 
of multiple diverse patient and procedural factors with the 
potential for optimizing perioperative planning between 
patient, surgeon, and hospital.

There are potential limitations in the present study. First, 
our ML models were developed based on data from a single 
tertiary institution. The data may not be generalizable in 
other practice settings. Specifically, patients demonstrated 
an average BMI greater 30 kg/m2 indicating an overweight 
population as per definition of the Center for Disease Con-
trol. Nonetheless, similar BMI ranges were reported in simi-
lar studies on this topic [12, 21, 49]. Second, this study has 
inherent limitations of retrospective design such as bias and 
an inability to control for confounding factors. Third, the 
accuracy values did not exceed 90%, which merits future 
refined ML-based prediction models. However, despite the 
above limitations, in the context of homogeneous sampling 
and characterization of surgical operative time, this current 
single institutional study has clinical feasibility as patients 
undergo the same healthcare protocols.

In conclusion, this study shows excellent performance 
of machine learning models for predicting surgical opera-
tive time in primary total knee arthroplasties. The accurate 
estimation of surgical duration is important in enhancing 
OR efficiency and identifying patients at risk for prolonged 
operative time. These models have the potential to enhance 
utilization and efficiency of OR and may assist in alloca-
tion of healthcare resources associated with TKA.
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