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Abstract
Introduction  Complications after total hip arthroplasty (THA) may result in readmission or reoperation and impose a sig-
nificant cost on the healthcare system. Understanding which patients are at-risk for complications can potentially allow for 
targeted interventions to decrease complication rates through pursuing preoperative health optimization. The purpose of 
the current was to develop and internally validate machine learning (ML) algorithms capable of performing patient-specific 
predictions of all-cause complications within two years of primary THA.
Methods  This was a retrospective case–control study of clinical registry data from 616 primary THA patients from one 
large academic and two community hospitals. The primary outcome was all-cause complications at a minimum of 2-years 
after primary THA. Recursive feature elimination was applied to identify preoperative variables with the greatest predictive 
value. Five ML algorithms were developed on the training set using tenfold cross-validation and internally validated on the 
independent testing set of patients. Algorithms were assessed by discrimination, calibration, Brier score, and decision curve 
analysis to quantify performance.
Results  The observed complication rate was 16.6%. The stochastic gradient boosting model achieved the best performance 
with an AUC = 0.88, calibration intercept = 0.1, calibration slope = 1.22, and Brier score = 0.09. The most important factors 
for predicting complications were age, drug allergies, prior hip surgery, smoking, and opioid use. Individual patient-level 
explanations were provided for the algorithm predictions and incorporated into an open access digital application: https://​
sorg-​apps.​shiny​apps.​io/​tha_​compl​icati​on/
Conclusions  The stochastic boosting gradient algorithm demonstrated good discriminatory capacity for identifying patients 
at high-risk of experiencing a postoperative complication and proof-of-concept for creating office-based applications from 
ML that can perform real-time prediction. However, this clinical utility of the current algorithm is unknown and definitions 
of complications broad. Further investigation on larger data sets and rigorous external validation is necessary prior to the 
assessment of clinical utility with respect to risk-stratification of patients undergoing primary THA.
Level of evidence  III, therapeutic study.
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Introduction

The implementation of bundled payment models as an eco-
nomic strategy to limit financially undesirable health care costs 
associated with total joint arthroplasty procedures has become 
commonplace among hospitals throughout the United States 
[1, 2]. A subsequent result of such policy has been increas-
ing focus on the ability to predict and anticipate patient out-
comes, the selective recruitment of patients, and promotion 
of preoperative health optimization based on risk factors. 
Procedure-associated complications after total hip arthro-
plasty (THA) is a significant potential source of increased 
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health-care expenditures secondary to hospital and emergency 
room readmissions in addition to the possible need for revision 
arthroplasty [2]. Therefore, understanding which patients are 
at-risk for complications during the preoperative period would 
potentially allow for targeted intervention during a time when 
health optimization could be performed in order to possibly 
decrease this complication risk.

Much of the current knowledge regarding risk factors asso-
ciated with complications after THA is limited to associations 
identified in studies that are not hypothesis-driven but found 
through testing many random variables [3–8]. Some of these 
risk factors include age [7, 9], number of comorbidities [7, 
9], body mass index, [5, 10], smoking [6, 11], sex [12], and 
diabetes mellitus [11]. Few studies have sought to develop 
risk models incorporating sets of such known preoperative risk 
factors in order to understand and predict which patients are 
at higher risk for complications in the postoperative period 
[13], while other prediction models have been limited by using 
intraoperative data and therefore do not allow for preopera-
tive optimization [14]. As such, there is currently a large pool 
of potential risk factors and a limited number of prediction 
models utilizing solely preoperative and modifiable risk fac-
tors. Developing and cross-validating models with the smallest 
number of the most important factors would be of great clini-
cal utility to hip and knee surgeons. This stratification model 
would benefit patients by providing them with the opportunity 
to optimize their health prior to undergoing THA.

The application of machine learning is a powerful statisti-
cal instrument capable of determining patient-specific factors 
which influence the probability of a patient experiencing a 
complication after primary THA. Furthermore, machine learn-
ing allows for the development of clinical decision-making 
tools, which can be used in office-based settings to help discuss 
risk stratification with patients [15–17]. This may assist ortho-
paedic surgeons to better determine which patients may need 
further optimization prior to undergoing THA. The purposes 
of the current study were to (1) develop and internally validate 
machine learning algorithms capable of predicting all-cause 
complications within two years of primary THA, and (2) to use 
these algorithms to determine which preoperative factors are 
important in predicting all-cause complications after primary 
THA. The authors hypothesized that best performing machine 
learning algorithm would allow for both excellent prediction 
and an interpretable explanation of how factors specific to indi-
vidual patients influenced the model decision making.

Methods

Patient selection

Following institutional board approval, data was obtained 
retrospectively from the electronic medical records of 

patients who underwent primary total hip arthroplasty by 
one fellowship-trained surgeons at one large academic and 
two community hospitals. The timeframe for patient inclu-
sion was between January 2014 and January 2016. Exclusion 
criteria included etiology of degenerative hip osteoarthri-
tis that was inflammatory, infectious, post-traumatic, acute 
femoral neck fracture, or related to osteonecrosis, patients 
undergoing revision THA, and patients with less than two-
year follow-up. Overall, 616 patients met the inclusion cri-
teria and had a median age of 62 (interquartile range [IQR] 
54–70) years. A total of 352 (57.1%) patients were female. 
Additional demographic and clinical outcome information 
is displayed in Table 1. A minimum of 100 patients has been 
demonstrated to be an appropriate sample size for machine 
learning analyses and associated predictive analytics, and 
therefore the current sample of 616 patients was deemed 
valid [18, 19].

Primary outcome

The primary outcome was all-cause complications within 
the two-year follow-up period. Complications were consid-
ered all events classified to be either medical or orthopaedic 
(Table 2). Medical complications included post-operative 
myocardial infarction, pulmonary embolism, deep vein 
thrombosis, atrial fibrillation, and anemia requiring blood 
transfusion. Orthopaedic complications included nerve 
palsy, hematoma formation, heterotopic ossification, hip 
squeaking, wound abscesses or dehiscence, periprosthetic 
infection, intra- and post-operative fractures, dislocations, 
leg-length discrepancy, aseptic loosening, and atraumatic, 
return to the emergency department or readmission for any 
complaint related to the operative hip, and reoperations.

Table 1   Characteristics of study population, n = 616

MHHS modified Harris Hip Score

Variable n (%) | median (IQR)

Age (years) 62 (54–70)
Female sex 352 (57.1)
Body mass index (kg/m2) 29.7 (25.5–36.3)
Preoperative opioid use 169 (27.5)
Prior or current smoking history 174 (28.3)
Diabetes 87 (14.2)
Drug allergies 125 (23.6)
Any comorbidities 549 (89.4)
Prior contralateral or ipsilateral hip procedure 112 (18.2)
 Contralateral 71 (63.4%)
 Ipsilateral 41 (36.6%)

Preoperative Health State 45 (40–70)
Preoperative MHHS 40 (27–52)
Postoperative complications 102 (16.6)
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Candidate variables

Candidate variables were collected prospectively before 
THA and stored in a secure clinical repository. Candidate 
variables are listed in Table 1, with the rates of missing data 
as follows: preoperative opioid use (n = 2, 0.32%), smoking 
history (n = 2, 0.32%), diabetes at time of surgery (n = 2, 
0.32%), drug allergies (n = 86, 14.0%), presence of one 
or more comorbidities (n = 2, 0.32%), preoperative health 
state (n = 26, 4.2%), preoperative modified Harris Hip Score 
(mHHS) (n = 17, 2.8%), preoperative hip flexion (n = 197, 
32.0%). Hip flexion was the only variable with greater than 
30% missing data and was consequently excluded [20, 21]. 
These PROMs included the patient reported health state 
(PRHS) [22] and the modified Harris Hip Score (mHHS) 
[23] Prior to analysis, missingness of data was explored 
and determined to be missing at random and appropriate 
for multiple imputation. The current analysis applied mul-
tiple imputation and predictive mean matching with the 
“mice” package in R (R Foundation for Statistical Comput-
ing, Vienna, Austria) [24]. Following imputation, recursive 
feature elimination (RFE) with random forest algorithms 
were used to determine the combination of variables with 

the highest predictive value that optimized algorithm perfor-
mance through a process of backwards elimination.

Algorithm construction and performance 
assessment

The machine algorithm development methodology and data 
analysis had been previously described in detail [25, 26]. 
Briefly, five novel algorithms were constructed on a training 
set of patients (80% of initial cohort) using three iterations 
of tenfold cross-validation. Standardized metrics of model 
performance including (1) calibration (calibration plot, inter-
cept, slope) [27, 28], (2) decision curve analysis [29, 30], (3) 
Brier score [31], and (4) discrimination (area under receiver 
operating curve), were used to comparatively evaluate model 
performance of both the training and testing sets.

Exploration of patient‑specific model explanations

Local interpretable model-agnostic explanations (LIME) 
depict the decision-making process of machine learning 
algorithms and were used to demonstrate how the best per-
forming algorithm explained prediction on a patient-by-
patient basis [32]. Using LIME, an open access digital web 
application was developed with the capacity to provide both 
predictions and explanations at the individual patient level 
[33]. This application is freely accessible: https://​sorg-​apps.​
shiny​apps.​io/​tha_​compl​icati​on/. Given that external valida-
tion was not performed in the present study, the application 
in its current form merely constitutes an educational tool and 
open-access source to the developed algorithms.

The Anaconda Distribution (Anaconda, Inc., Austin, 
Texas), R (The R Foundation, Vienna, Austria), RStudio 
(RStudio, Boston, MA), and Python (Python Software Foun-
dation, Wilmington, Delaware) were used for data analysis. 
Predictive modeling development and testing was performed 
under guidelines set forth by Transparent Reporting of a 
multivariable prediction model for Individual Prognosis or 
Diagnosis (TRIPOD) guidelines and the Guidelines for 
Developing and Reporting Machine Learning Models in 
Biomedical Research were followed for this analysis [34, 
35].

Results

Final variable selection

The combination of variables identified for algorithm devel-
opment through recursive feature selection that optimized 
predictive performance were comorbidities, preoperative 
opioid use greater than three months, current smoking, prior 
hip surgery, drug allergies, and age (Fig. 1B).

Table 2   Surgical and medical complications

Frequency (%) of complications reported as proportion of complica-
tions occurring in entire cohort of patients, n = 616

Complication Frequency (%)

Surgical
 Wound complication 10 (1.6)
 Periprosthetic joint infection 7 (1.1)
 Reoperations including revision THA 7 (1.1)
 Return to emergency room related to THA 6 (0.97)
 Prosthetic dislocation 5 (0.81)
 Hematoma formation 5 (0.81)
 Nerve palsy 4 (0.65)
 Periprosthetic fracture 3 (0.49)
 Implant fracture or hardware failure 2 (0.32)
 Heterotopic ossification 2 (0.32)
 Aseptic loosening 2 (0.32)
 Audible squeaking of hip joint 2 (0.32)
 Mortality 2 (0.32)
 Implant dissociation 1 (0.16)

Medical
 Anemia requiring blood transfusion 14 (2.3)
 Hyponatremia 12 (1.9)
 Deep vein thrombosis 7 (1.1)
 Atrial fibrillation 5 (0.81)
 Pulmonary embolism 4 (0.65)
 Myocardial infarction 2 (0.32)

Total 102 (16.6)

https://sorg-apps.shinyapps.io/tha_complication/
https://sorg-apps.shinyapps.io/tha_complication/
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Algorithm selection and model performance

Cross-validation of the training set (n = 494) demonstrated 
that the AUC ranged from 0.81 to 0.92, the calibration inter-
cept ranged from − 0.21 to 5.09, the calibration slope ranged 
from 0.8 to 3.49, and the Brier score ranged from 0.08 to 
0.12 (Table 3).

In the testing set, the AUC ranged from 0.77 to 0.93, the 
calibration intercept ranged from − 0.50 to 2.11, the cali-
bration slope ranged from 0.89 to 1.22, and the Brier score 
ranged from 0.08 to 0.16 (Table 4). The algorithm with the 
best performance was the stochastic gradient boosting model 
with AUC 0.88, calibration intercept 0.103, calibration slope 
1.22, and Brier score 0.09. The most important factors for 

prediction of complications were age, documented drug 
allergies, prior ipsilateral hip surgery, smoking, and preop-
erative opioid use (Figs. 1A and 2A). The stochastic gradi-
ent boosting model resulted in greater net benefit compared 
to the default strategies of changes for all patients, for no 
patients, or changes based on age alone as demonstrated by 
the decision curve analysis (Fig. 2B).

Potential application and utility of machine learning 
using patient specific explanations

An individual patient-specific risk explanation demonstrat-
ing the potential utility of using this risk stratification model 

Fig. 1   A Receiver operative 
curve demonstrating discrimi-
nation of stochastic gradient 
boosting algorithm. B Global 
variable importance plot, with 
variables ranked in decreasing 
order of importance

Table 3   Algorithm performance on cross-validation of training set, n = 494, mean (95% confidence interval)

Null model Brier score = 0.16
AUC​ area under the curve

Metric Stochastic gradient boosting Random forest Support vector machine Neural network Elastic-net penalized 
logistic regression

AUC​ 0.86 (0.83, 0.89) 0.92 (0.89, 0.94) 0.83 (0.80, 0.86) 0.85 (0.82, 0.87) 0.81 (0.78, 0.84)
Calibration intercept 0.02 (− 0.23, 0.26) − 0.21 (− 0.42, 0.00) 5.09 (− 3.02, 13.2) 1.05 (0.60, 1.49) 0.06 (− 0.08, 0.21)
Calibration slope 1.03 (0.84, 1.22) 0.80 (0.68, 0.92) 3.49 (− 0.41, 7.40) 1.10 (0.94, 1.28) 1.11 (0.96, 1.27)
Brier score 0.10 (0.09, 0.11) 0.08 (0.07, 0.09) 0.11 (0.10, 0.12) 0.12 (0.11, 0.12) 0.12 (0.11, 0.12)

Table 4   Algorithm performance in independent testing set (95% confidence interval), n = 122

Null model Brier score = 0.16
AUC​ area under the curve

Metric Stochastic gradient boosting Random forest Support vector machine Neural network Elastic-net penalized 
logistic regression

AUC​ 0.88 (0.77, 0.95) 0.91 (0.67, 0.96) 0.77 (0.64, 0.87) 0.89 (0.82, 0.94) 0.93 (0.87, 0.96)
Calibration intercept 0.103 (− 0.45, 0.65) − 0.50 (− 1.27, 0.27) 0.02 (− 0.51, 0.51) 2.11 (1.60, 2.63) 0.19 (− 0.32, 0.69)
Calibration slope 1.22 (0.75, 1.69) 0.89 (0.41, 1.37) 0.92 (0.48, 1.37) 1.59 (0.91, 2.27) 1.65 (1.03, 2.26)
Brier score 0.09 (0.06, 0.13) 0.08 (0.05, 0.13) 0.13 (0.09, 0.18) 0.16 (0.11, 0.22) 0.11 (0.07, 0.14)
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towards preoperative health optimization applications is 
depicted in Fig. 3.

Discussion

The main finding of the current proof-of-concept study was 
that the best performing machine learning algorithm conferred 
good predictive capability with regards to risk of experienc-
ing a complication after primary THA at the senior author’s 
institution. This model incorporated various modifiable and 
patient-specific risk factors that can be the target of optimiza-
tion during the preoperative period that may decrease the risk 
of complications prior to undergoing surgical intervention. 
Furthermore, the development of a clinical decision-making 
tool which depicts and calculates patient-specific risk for com-
plications can theoretically augment patient care by providing 
teachable and real-time data in clinic settings which may be 
used towards health optimization purposes. Such data may 
also be critical for establishing tiers for alternative payment 
models so as not to promote the potential for “cherry-picking” 
behavior and access to care problems.

There are several limitations that should be considered 
within the context of the current study results. Although the 
current machine learning algorithms had good prediction 
capabilities, the incidence of complications was not high 
enough to perform prediction of individual complication cat-
egories such as periprosthetic joint infection or myocardial 
infarction. The definition of complications was also broad as 
to capture a wide variety of potential postoperative events, 
which may have inflated the complication rate. However, we 
believe that the included complications represent primarily 

major events which would be relevant to associated penalties 
in alternative payment models. This study is retrospective in 
design and therefore is subject to biases inherent in such data 
collection methods; however, there was a high completion 
rate of included data and multiple imputation methods were 
employed to mitigate the effect of missing data. Finally, the 
relatively small sample size limited the holdout (testing) data-
set for assessment of model performance to only 123 patients. 
As such, the present study represents a proof-of-concept 
design and the open-access tool presented herein is merely 
for educational purposes until rigorous external validation is 
performed. It is yet to be known if the same predictive value 
in assessing risk will hold in other patient populations. Finally, 
this analysis is limited in that though we investigated the pre-
dictive importance of all variables available in this specific 
institutional repository, other variables important for predict-
ing complications likely exist. Future studies are warranted 
that incorporate other clinically relevant variables into the cur-
rent model to determine whether or not these variables confer 
beneficial changes to the overall performance of the model in 
predicting all-cause complications.

The current study demonstrated that the stochastic gradi-
ent boosting algorithm was the best performing machine 
learning algorithm of the five that were developed and 
internally validated. This particular model had an AUC 
of 0.88, which is considered good discriminatory capabil-
ity, and demonstrated appropriate predictive probabilities 
relative to observed events as the model did not overfit the 
data (Fig. 2A). This is particularly important in reference to 
standard AUC values, as in real-life practice complications 
are better described at the patient-level as probabilities of 
experiencing an event as opposed to a binary all-or-nothing 

Fig. 2   A Calibration plot for stochastic gradient boosting algorithm. 
B Decision curve analysis of stochastic gradient boosting algorithm. 
In the decision curve analysis, the net benefit of the model (blue 
line) relative to default strategies of changing management for all 
patients (“all” or for no patients (“none”). The (“all”) line represents 
the net benefit from changing management for all patients. The line 

slopes down because at a threshold of zero, false positives are given 
no weight relative to true positives; as the threshold increases, false 
positives gain increased weight relative to true positives and chang-
ing management for all patients results in decreasing net benefit. The 
horizontal line (“none”) represents the default strategy of changing 
management for no patients (net benefit is zero at all thresholds)
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event. Although the random forest (Supplement 1) and 
elastic-net penalized logistic regression (Supplement 2) also 
performed well, they had inferior calibration compared to 
the stochastic boosting gradient. Furthermore, the decision-
curve analysis in the current study (Fig. 2B) demonstrated 
that using the stochastic gradient boosting model for risk 
stratification of postoperative complications was superior 
to considering all patients as high risk, none of the patients 
as high risk, and when considering age alone as a risk fac-
tor. Put simply, for patients undergoing primary THA, the 
stochastic gradient boosting model conferred greater utility 
in terms of preoperative risk stratification in comparison to 
alternate strategies of determining complication risk. This 
model provides concise assessment of complication risk in 

patients undergoing primary THA based on synthesized pre-
operative patient data. In addition, the model was incorpo-
rated into a proof-of-concept application that is user friendly 
and patient-specific while requiring fewer variables than 
prior prediction risk models [13, 14].

The current study found that the most important patient-
specific factors contributing to complications in the insti-
tutional data set under consideration were age, medication 
allergies, opioid use, smoking, comorbidities, and prior hip 
surgery. It is of note, however, that the primary outcome 
in this study was all-cause complications. Using this all-
encompassing definition of complications was necessary as 
the incidence of individual complications, such as myocar-
dial infarction, was too infrequent to develop a meaningful 

Fig. 3   Example of individual patient-level explanation for predic-
tion of postoperative complications by stochastic gradient boosting 
algorithm. A Scenario 1 depicts a patient who is 80-years-old patient 
and presents to a total joint arthroplasty clinic with no prior history 
of hip surgery, more than one medical comorbidity, has used opioids 
for greater than three months to manage their current hip pain, and 
is a current smoker. For this particular patient, their risk of experi-
encing a complication after primary THA is 6.0%. B In scenario two, 

following a period of preoperative health optimization in which they 
quit smoking, stopped using opioid medications, and worked with a 
primary physician to improve their medical comorbidities, this patient 
reduced their risk of a postoperative complication to 1.0%. Features 
in red contradict (decrease the risk) of experiencing a complication, 
while features in green support (increase the risk) of experiencing a 
complication
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model to predict each specific complication. In this con-
text, some of the model interpretability is lost. For exam-
ple, though a greater patient age may be predictive of all-
cause complications, it is possible that increased age was 
protective of some specific complications simultaneously, 
such as dislocation. Few studies have also used this all-
encompassing definition of complications in attempting to 
determine associations between preoperative variables and 
complications after THA. Harris et al. [36] used the Ameri-
can College of Surgeons-National Surgical Quality Improve-
ment Program (ACS-NSQIP) database and least absolute 
shrinkage and selection operator (LASSO) methods to pre-
dict 30-day complications and mortality after total hip and 
knee arthroplasty procedures. The authors also found that 
age and various comorbidities were important contributors 
to experiencing complications after total knee or total hip 
arthroplasty. However, limitations to their study include: (1) 
combining total hip and knee arthroplasty patients, which 
are representative of potentially different patients with dis-
tinct risk profiles; (2) using LASSO methodology with less 
than excellent discriminatory capabilities (all models with 
AUCs less than 0.8, and for all complications, equal to 0.68); 
and (3) utilization of a national database with inherent limi-
tations such as overrepresentation of specific populations 
and the limitation of 30-days complication data. Although 
the current study was not able to externally validate the best 
performing algorithm as Harris et al. did on the Veterans 
Affairs Surgical Quality Improvement Program (VASQIP) 
database, the model in the current study has the benefits of 
(1) using institutional data from a single-surgeon; (2) captur-
ing complications within two-years of primary THA; and (3) 
having rigorously tested five independent classification-type 
machine learning models. Nonetheless, there remain limita-
tions to both the current study and that performed by Harris 
et al. [36] which will need to be improved upon prior to cre-
ating a meaningful tool amenable to confidently predicting 
complications in diverse populations.

The model in the current study provides a rapid method 
for combining various pertinent clinical data points to accu-
rately quantify patient risk at the individual level. Although 
risk stratification has been previously investigated in elective 
THA, research has primarily focused on global assessment 
of risk. The novelty of the methodology developed in the 
present study is the ability to efficiently determine risk at 
the individual patient-level and receive real-time feedback 
on the patient factors influencing the risk calculation. As the 
dataset in the current study is small and requires external 
validation, the presented patient scenario (Fig. 3) represents 
a proof-of-concept for machine learning capabilities and 
how machine learning can potentially impact clinical work-
flow and patient outcomes in the future. Though the clinical 
utility of this algorithm remains questionable, it is impor-
tant to demonstrate how the machine learning algorithm and 

online application function. Future studies are warranted to 
externally validate the model in the current study and deter-
mine if additional variables could be of clinical utility, as 
well as to determine if patients undergoing total knee arthro-
plasty require a separate risk model. This open-source tool 
is for educational purposes only and should not be used in 
clinical settings at this time due to its generalizability being 
unknown outside of the authors’ institution.

Conclusion

The stochastic boosting gradient algorithm demonstrated good 
discriminatory capacity for identifying patients at high-risk 
of experiencing a postoperative complication and proof-of-
concept for creating office-based applications from machine 
learning that can perform real-time prediction. However, this 
clinical utility of the current algorithm is unknown and defini-
tions of complications broad. Further investigation on larger 
data sets and rigorous external validation is necessary prior 
to the assessment of clinical utility with respect to risk-strati-
fication of patients undergoing primary THA.
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