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Abstract
Background Despite advancements in total hip arthroplasty (THA) and the increased utilization of tranexamic acid, acute 
blood loss anemia necessitating allogeneic blood transfusion persists as a post-operative complication. The prevalence of 
allogeneic blood transfusion in primary THA has been reported to be as high as 9%. Therefore, this study aimed to develop 
and validate novel machine learning models for the prediction of transfusion rates following primary total hip arthroplasty.
Methods A total of 7265 consecutive patients who underwent primary total hip arthroplasty were evaluated using a single 
tertiary referral institution database. Patient charts were manually reviewed to identify patient demographics and surgical 
variables that may be associated with transfusion rates. Four state-of-the-art machine learning algorithms were developed 
to predict transfusion rates following primary THA, and these models were assessed by discrimination, calibration, and 
decision curve analysis.
Results The factors most significantly associated with transfusion rates include tranexamic acid usage, bleeding disorders, 
and pre-operative hematocrit (< 33%). The four machine learning models all achieved excellent performance across dis-
crimination (AUC > 0.78), calibration, and decision curve analysis.
Conclusion This study developed machine learning models for the prediction of patient-specific transfusion rates following 
primary total hip arthroplasty. The results represent a novel application of machine learning, and has the potential to improve 
outcomes and pre-operative planning.
Level of evidence III, case–control retrospective analysis.
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Introduction

Despite advancements in total hip arthroplasty (THA) and 
the increased utilization of tranexamic acid (TXA) [1], acute 
blood loss anemia necessitating allogeneic blood transfusion 
persists as a post-operative complication [2]. THA remains a 
major source of blood transfusion burden [3]. Rates of blood 
transfusion vary widely by hospital system largely due to the 
inexact recommendations and lack of consensus regarding 
appropriate transfusion thresholds [4]. However, the rates of 

blood transfusion following primary total hip arthroplasty 
(THA) have been estimated to be as high as 9% [4].

Propelled by the removal of THA from the Center for 
Medicare and Medicaid Service (CMS) inpatient only list, 
an increasing percentage of primary THA will be done at 
outpatient centers including ambulatory surgery centers 
[5]. As opposed to hospitals with large blood banks, outpa-
tient centers are less equipped to deal with significant blood 
loss necessitating transfusions [6, 7]. While transfusion is 
an infrequent event in primary THA, previous studies have 
identified it as a reason why patients fail to be discharged 
on the day of surgery [8]. Additionally, it represents the 
most significant predictor of an extended length of stay [9]. 
Pre-operative identification of those patients at high risk for 
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transfusion would allow surgeons to direct these patients 
to the hospital setting or coordinate with the blood bank at 
the ambulatory surgery centers to have blood available [6]. 
Therefore, prior works have identified numerous risk fac-
tors for needing a blood transfusion following THA [10–12]. 
These studies identified patient and surgical variables that 
increase patient’s odds of requiring blood transfusion follow-
ing THA; nonetheless, these prior works did not to evaluate 
the weight for each of these risk factors with regards to the 
risk of blood transfusion.

Recently, there has been an increase in the use of machine 
learning and artificial neural networks as predictive mod-
els within hip and knee arthroplasty [13]. Machine learning 
models are able to effectively analyze non-linear relation-
ships between risk factors in a large dataset and achieve 
accuracies for risk factor predictions that outperform previ-
ously used statistical methods [14]. The promise of accurate 
and reliable predictive modeling has invaluable potential in 
helping with risk stratification, pre-operative planning, and 
optimization [15]. However, there is a paucity of studies on 
the application of machine learning technology to predict 
transfusion rates in arthroplasty. Therefore, this study aimed 
to develop and validate novel machine learning models for 
the prediction of transfusion rates following primary total 
hip arthroplasty.

Methods

Database

Upon obtaining approval from the Institutional Review 
Board (IRB), we performed a retrospective review of 7411 
primary total hip arthroplasty procedures at a single tertiary 
referral center between 2016 and 2019. THA patients with 
the following criteria were excluded [16]: (1) simultane-
ous bilateral surgery, (2) partial hip joint arthroplasty, (3) 
malignancy, (4) incomplete data, and (5) less than 2 years 
of follow-up. After exclusions, a total of 7265 primary total 
hip arthroplasty patients remained for evaluation.

Measures

Our main aim was to develop an accurate predictive model 
for transfusion rates for patients following primary THA. 
Even so, in selecting predictors, we incorporated consid-
eration of cause-and-effect relationships. Therefore, we 
performed a variable selection for candidate predictors 
in stages—patient factors first, followed by surgical vari-
ables. In concordance with these classic principles of causal 

modeling, we retained and in the final model controlled for 
predictors chosen in the first stage.

Using our institution’s electronic medical record sys-
tem for patient chart review, patient and surgical variables 
associated with transfusion rates in THA were identified 
[2, 17]. Demographic variables included age, gender, body 
mass index (BMI), ethnicity, marital status, insurance sta-
tus, American Society of Anesthesiologist Physical Status 
score (ASA score), medical comorbidities, as well as Charl-
son comorbidity index (CCI). With regards to smoking and 
drinking as medical comorbidities, patients that were clas-
sified as smokers or drinkers were actively consuming ciga-
rettes or alcohol when admitted to hospital prior to primary 
THA. Surgical variables included for analysis were lateral-
ity, anesthesia type, tranexamic acid usage (1 mg intrave-
nously at beginning of surgery and additional 1 mg at the 
time of closing), component fixation method (cemented vs 
non-cemented), surgical approach (anterolateral vs poste-
rior), transfusion rates, and operation time.

Predictive models

For the classification analysis, we employed four state-of-
the-art supervised machine learning methods: (1) artificial 
neural networks (ANN), (2) stochastic gradient boosting 
(SGB), (3) support vector machines (SVM), and (4) elas-
tic-net penalized logistic regression (ENP). These machine 
learning methods were selected based on prior work show-
ing the potency of these methods to accurately predict clini-
cal outcomes of patients following hip and knee arthroplasty 
surgery [18]. To investigate the ability of these machine 
learning methods to understand the aforementioned out-
come, we used an 80:20 test-train split: 80% (5812 THAs) 
of data randomly selected and utilized to train the algorithms 
and 20% (1453 THAs) of data utilized for internal valida-
tion and testing. For training the different machine learning 
models, a fivefold cross-validation repeated was repeated 
five times to assess each algorithm’s ability to generalize 
previously unseen data.

Machine learning candidate model discrimination was 
performed through the use of the area under the receiver-
operating curve (AUC). Excellent candidate models exceed 
an AUC of 0.8. A calibration plot was utilized to ascertain 
machine learning candidate model calibration. The Brier 
score was used to assess the overall model performance in 
concordance with prior literature (perfect candidate models 
have Brier score of 0). Machine learning model interpret-
ability and explanation was provided at the global and local 
levels.
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Statistical analysis

All data analysis was performed using Matlab (MathWorks 
Inc., Natick, MA, USA), Anaconda (Anaconda Inc., Austin, 
TX, USA), Python (Python Software Foundation, Wilming-
ton, DE, USA), and SPSS (SPSS Version 18.0, IBM Corp., 
Armonk, NY, USA).

Results

Overall, a total of 7265 patients underwent primary total 
hip arthroplasty. Blood transfusions were observed in 703 
patients (9%), including 557 patients in the training set and 
146 patients in the testing set. Patient demographics and sur-
gical variables are summarized in Table 1. Variables iden-
tified for machine learning development through recursive 
feature selection were tranexamic acid usage (p < 0.001), 
bleeding disorders (p < 0.001), pre-operative hematocrit 
(< 33%; p < 0.01), pre-operative platelet count (<  109/L; 
p < 0.01), anesthesia type (p < 0.01), diabetes (p = 0.01), 
and gender (p = 0.02; Fig. 1). The strongest predictors for 
transfusion rates in primary total hip arthroplasty include 
tranexamic acid usage, bleeding disorders, and pre-operative 
hematocrit (Fig. 1).

Machine learning model performance in the independ-
ent testing set resulted in AUC values ranging from 0.78 
to 0.82 (Table 2; Table 3). The calibration intercept ranged 
from 0.10 to 0.26 (Table 2; Table 3; Fig. 2). The Brier score 
errors in the testing set varied between 0.052 and 0.056. The 
best model performance was achieved by neural networks 

Table 1  Patient cohort characteristics

Characteristic Primary THA patients
(N = 7265)

Demographics
 Age (years) 69.4 ± 18.4
 Gender 3293 males; 3972 females
 BMI (kg/m2) 29.2 ± 7.1
 Laterality 3471 left; 3794 right
 ASA Score (%) ASA 1—423 (5.5%)

ASA 2—4535 (62.4%)
ASA 3—2206 (30.3%)
ASA 4—132 (1.8%)

 Charlson Comorbidity Index 2.3 ± 1.6
 Insurance status (medicare; private) 3639; 3729
 Ethnicity (White, African American, 

Hispanic, Asian)
6848, 161, 163, 91

 Follow-up time (years) 3.1 ± 1.2
Comorbidities
 Smoking (%) 8.4
 Drinking (%) 7.9
 Drug abuse (%) 2.6
 Diabetes mellitus type I and II (%) 9.4
 Depression (%) 5.5
 Renal failure (%) 2.1

Surgical variables
 Blood loss (ml) 116.3 ± 96.4
 Operation time (min) 83.9 ± 26.0
 General anesthesia (%)
 Cemented implantation (%)

17.3
14.2

 Tranexamic acid usage (%) 73.4
Posterior surgical approach (%) 82.1

Fig. 1  Global variable importance plot for the prediction of transfusion rates following primary total hip arthroplasty
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Table 2  Discrimination and 
calibration of machine learning 
algorithms on training set for 
THA patients

Data expressed as mean (95% confidence interval). Null model Brier score = 0.057

Metric Neural Network Stochastic gradi-
ent boosting

Support vector machine Elastic-net penal-
ized logistic regres-
sion

AUC 0.83
(0.81–0.85)

0.80
(0.79–0.82)

0.81
(0.78–0.83)

0.81
(0.79–0.83)

Intercept 0.06
(− 0.03–0.18)

0.18
(− 0.04–0.44)

0.26
(0.08–0.43)

0.14
(0.03–0.25)

Slope 1.08
(0.98–1.15)

1.13
(1.05–1.21)

0.85
(0.72–0.97)

1.11
(1.01–1.21)

Brier 0.051
(0.049–0.052)

0.054
(0.053–0.055)

0.054
(0.053–0.056)

0.053
(0.052–0.054)

Table 3  Discrimination and 
calibration of machine learning 
algorithms on testing set for 
THA patients

Data expressed as mean (95% confidence interval). Null model Brier score = 0.058

Metric Neural Network Stochastic gradient 
boosting

Support vector 
machine

Elastic-net penalized 
logistic regression

AUC 0.82 0.78 0.80 0.80
Intercept 0.10 0.23 0.26 0.16
Slope 1.12 1.15 0.85 1.17
Brier 0.052 0.055 0.056 0.055

Fig. 2  Calibration plot for the 
neural network model for the 
prediction of transfusion rates 
following primary total hip 
arthroplasty
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with an AUC of 0.82, calibration slope of 0.10, calibration 
intercept of 1.12, and Brier score error of 0.052 (Table 2; 
Table 3). The machine learning models provided a predic-
tion for blood loss that was within 15 ml of the actual blood 
loss observed during primary THA in 97.8% of the cases.

The decision curve analysis demonstrated that the four 
machine learning candidate models all achieved higher 
net benefits for the prediction of intraoperative blood 
loss and transfusion rates, when compared to the default 
strategies of changing management for all patients or no 
patients. Using the artificial neural network algorithm, 
local explanations of predictions for transfusion rates in 
primary THA patients were performed to assess the fidel-
ity of the artificial neural network model (Fig. 3). For a 
female patient with a prior history of diabetes, elevated 
pre-operative hematocrit (36%), who underwent primary 
THA without tranexamic acid usage, the predicted prob-
ability for the need of blood transfusion is 21.1%.

Discussion

The ability to accurately predict those patients at highest risk 
for perioperative blood product transfusion has potential to 
improve clinical outcomes and efficiency, and reduce cost. 
In this study, machine learning models were developed and 
validated to accurately predict the need for blood transfu-
sion following primary total hip arthroplasty. Among the 
variables included in the model, tranexamic acid, and a his-
tory of a bleeding disorder provided the strongest predictive 

value within the model. Charges for type and screen and type 
and cross have been reported to be between $37 and $139.86 
with additional charges for cross-matching additional units 
of blood [17]. In one large academic US-based hospital 
system, orthopedics was reported to be associated with the 
highest ratio of type and screen and type and cross tests 
ordered relative to the number of transfusions administered, 
thus representing a cost inefficiency [9]. Recent publications 
have reported that routine blood typing is unnecessary for 
primary total hip and knee arthroplasty [16]. Recommenda-
tions on blood preparation for revision total hip and knee 
arthroplasty is more limited with only one study provid-
ing such recommendations [17]. Previous efforts to refine 
ordering for blood products have demonstrated efficacy in 
reducing costs [2]. The current machine learning models 
represent an accurate method for predicting patient-specific 
blood transfusion and thus improving blood typing and man-
agement which represents a potential cost saving initiative. 
The clinical utility of the machine learning methods is based 
on its high accuracy (predictions of blood loss are within 
15 ml of actual blood loss during primary THA in 97.8% 
of patients) as well as the ability to provide predictions for 
blood transfusion in primary THA within seconds [19, 20], 
which distinguishes machine learning models from prior 
retrospective studies utilizing the conventional statistical 
methods including multivariate regression analysis [9, 21]. 
Additionally, when compared to prior retrospective stud-
ies utilizing the conventional statistical methods to identify 
risk factors for blood transfusion in primary THA, machine 
learning models possess the unique ability to quantify the 

Fig. 3  Example of individual 
patient-specific explanation 
generated by the neural network 
model for a primary THA 
patient. Green bars demonstrate 
an increase in the probability 
of blood transfusions, whereas 
orange bars represent a decrease 
in the probability of blood 
transfusions
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weight that each risk factor has on the probability for blood 
transfusions in primary THA [19, 20]. Therefore, machine 
learning models represent a computational tool that is capa-
ble of predicting the need for blood transfusions in primary 
THA on a patient-by-patient basis, an aspect that cannot 
be achieved from the research findings presented by prior 
retrospective studies.

The presented machine learning models incorporated 
many variables that have previously been identified as risk 
factors for blood transfusions. Age [22–24], pre-operative 
hematocrit [22, 24], and gender [17, 23, 24] have previously 
been identified as risk factors for post-operative transfusion 
following primary total joint arthroplasty. Low pre-operative 
hematocrit has often been cited as the most readily modifi-
able risk factor to prevent transfusion [22, 24]. Enrolling 
patients in dedicated blood management programs to opti-
mize anemia prior to arthroplasty has resulted in reductions 
in transfusions and post-operative complications [25]. The 
machine learning models identified tranexamic acid and a 
past history of bleeding disorder to be the strongest predic-
tors of post-operative blood transfusion. The widespread use 
of tranexamic acid has changed blood management strat-
egies and is largely responsible for the sharp decrease in 
transfusion rates following total hip and knee arthroplasty 
over the past 20 years [26–29]. Reductions in blood loss, 
post-operative anemia, and transfusion rates have also been 
demonstrated in revision total hip and knee arthroplasty [30, 
31]. Many authors have investigated the impact of different 
dosing regimen and routes of administration only to find that 
they are nearly equal in their blood-sparing properties and 
consistently outperform placebo controls [32–35].

Despite the agreement for risk factors for blood transfu-
sions in primary THA between the present machine learning 
study and prior retrospective work [21, 36, 37], there are dif-
ferences in research findings with regards to the threshold for 
pre-operative hematocrit. The threshold for low pre-opera-
tive hematocrit (< 36%) as identified in this present machine 
learning study is higher than that of previous retrospective 
studies (< 30%). This may be due to the increased accuracy 
of machine learning methods in the analysis of large and 
complex datasets, with machine learning models possessing 
great strength in the identification of complex and non-linear 
relationships between numerous clinical parameters [19].

The findings of the current investigation should be inter-
preted within the context of its limitations and strengths. 
While the algorithm was developed based on data collected 
from a sizeable cohort of patients, their predictive capabili-
ties may not be entirely generalizable. External validation 
of the algorithm using independent populations has the 
potential to increase clinical applicability. Another limita-
tion inherent to machine learning is the “black box” nature 
of the algorithm in which associations between variables 
are not explicitly known. However, a notable strength of the 

current machine learning model is its accuracy, despite the 
relatively limited number of THA patients and thus adminis-
tered blood transfusions following THA. The AUC exceeded 
0.8 for neural networks which is the threshold for excellent 
model performance. Machine learning has demonstrated 
excellent performance in predicting blood transfusions in 
the general surgical population and in those undergoing 
total knee arthroplasty [4, 17]. Third, although there were no 
institutional changes in the protocol for blood transfusions 
over the study period, due to the retrospective nature of this 
study, it remains unclear how much weight and emphasize 
each operating surgeon placed on each patient and surgical 
factor for selecting blood transfusions during primary THA 
surgery. However, this represents a common limitation in 
retrospective studies on this topic [2, 17]. Fourth, this is 
a retrospective study and thus is subjected to all inherent 
limitations of retrospective study designs including reporting 
and recall bias. Finally, most of the risk factors were binary, 
and thus, this study did not evaluate the effect of disease 
severity. However, this represents a common limitation of 
machine learning studies [38, 39].

In summary, the current study developed and validated 
machine learning models to accurately predict patient-spe-
cific blood transfusion following primary THA. The results 
represent a novel application of machine learning and has 
the potential to improve outcomes and pre-operative plan-
ning while also reducing costs. Further investigations are 
needed to validate this model to expand its generalizability.
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