
KNEE ARTHROPLASTY

Initial stability of a new cementless fixation method of a tibial
component with polyaxial locking screws: a biomechanical in vitro
examination

Christian Benzing1 • Adrian Skwara1,2 • Jens Figiel3 • Jürgen Paletta1

Received: 23 November 2015 / Published online: 29 July 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract

Introduction Cementless fixation of the tibial component

is critical as reduced initial stability leads to implant fail-

ure. In this experimental in vitro study, a new fixation

method of the tibial component using polyaxial locking

screws is evaluated using Roentgen stereophotogrammetric

analysis (RSA).

Materials and Methods A special prototype of a tibial

component with four polyaxial locking screws was tested

on 10 fresh-frozen human tibia specimens. The compo-

nents were tested with an axial load of 2000 N for 10,000

cycles. Radiographs in two views were performed before

loading, after 1000 and after 10,000 cycles, respectively.

Besides rotation and translation along the x-, y-, and z-axes,

endpoints for RSA were maximum subsidence (MaxSub),

maximum lift off (MaxLiftOff) and maximum total point

motion (MTPM).

Results MaxSub increased from -0.5 mm (SD = 0.2) after

1000 cycles to -0.9 mm (SD = 1.1). MaxLiftOff was 0.1

mm after 1000 cycles and did not increase after 10,000

cycles. The MTPM was 0.7 mm (SD = 0.3) after 1000

cycles and 1.1 mm (SD = 1.1) after 10,000 cycles. Two out

of nine implants showed an MTPM C 1.0 mm after 10,000

cycles.

Conclusions Polyaxial locking screws can potentially

improve the initial stability of tibial components. The

results of this study indicate that the use of such screws in

total knee arthroplasty may be of interest in the future.

Further experimental and clinical investigation is needed.

Keywords Cementless TKR � Polyaxial locking screws �
Aseptic loosening � Initial stability

Introduction

Cementing of total knee arthroplasties (TKA) as the fixa-

tion method provides excellent short- and long-term ability

[8, 29, 31, 41, 51]. Nevertheless, aseptic loosening, espe-

cially of the tibial component remains an unsolved problem

of cemented TKA [16, 21, 45].

Some Roentgen stereophotogrammetric analysis (RSA)

studies have shown that the initial stability of cemented

tibial components is excellent, whereas migration pro-

cesses of the prostheses increase over the years [35, 39].

This migration can potentially lead to implant failure.

This is problematic since the requirements concerning

the longevity and durability of total knee replacements

have risen over recent years because more and more

younger patients need TKA [22, 25, 31]. Therefore, there

has been renewed interest in cementless fixation methods.

Although hydroxyapatite (HA) coated TKA have led to

improved initial stability [17, 34, 36, 37], cementless fix-

ation methods remain controversial mainly due to inferior

initial stability. RSA studies comparing cementless and

cemented TKA have shown a higher amount of migration

of cementless TKA during the first postoperative years
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[7, 39]. These movements are of importance: It could be

demonstrated that sizable early migration is a predictor for

later loosening of the prosthesis [32, 48]. Therefore, screw

augmentation has been used to improve the initial stability

of cementless TKA [14, 62]. However, there are some

reports about problems with conventional bone screws

[5, 15, 28].

Cementless designs with screws typically use conven-

tional non-locking polyaxial screws. The use of polyaxial

and locking screws for fixation of tibial components in

TKA has, to the authors’ best knowledge, not yet been

described in the literature. In traumatology, uniaxial

locking plate systems improve the durability of

osteosynthesis, especially in complex and unstable frac-

tures [6, 24, 58]. Some experimental and clinical trials

compared uni- and polyaxial locking plates and showed

very good biomechanical features for both groups

[3, 9, 38, 40, 60]. The authors consider the higher amount

of flexibility while inserting the screws as one of the main

advantages of polyaxial systems compared to uniaxial

systems.

This experimental, radiostereogrammetric in vitro study

seeks to evaluate the influence of a new cementless fixation

method using polyaxial locking screws on the migration

and initial stability of tibial components.

Methods

The prototype

To conduct the examination of a cementless fixation

method with polyaxial locking screws, a prototype of a

tibial tray was constructed in the biomechanical craft centre

of the Department of Orthopaedics and Rheumatology at

the University Hospital, Marburg, Germany.

The tibial tray is made of steel. On the lower surface of

the tibial component, there are four cones with screw holes

for the corresponding polyaxial locking screws (Fig. 1).

These cones are impacted into the tibial bone. The screws

can be inserted at a polyaxial angle of 30�. The locking

mechanism is achieved by screw nuts that can be placed in

the threaded screw holes of the prostheses (Fig. 2). The

polyethylene (PE) inlay is fixed to the prostheses with two

central screws. Figure 3 provides an overview of all parts

of the prototype.

The locking mechanism was constructed according to

the polyaxial locking plate system NCB� (Zimmer, War-

saw, IN, USA). The NCB system is used for the stabili-

sation of complex bone fractures [12, 13, 19, 46, 47].

Implantation process, cyclic loading

and radiological assessment

The prototype was implanted in 10 fresh-frozen human

tibia specimens from the Anatomical Institute of the

University of Düsseldorf, Germany. Since the prototype

was not available in different sizes, the specimen were

chosen according to the diameter of the prototype to

eliminate the bias of size mismatch.

Before the implantation process, all soft tissue was

removed from the tibia. Preparation of the specimens was

performed with original Genesis II TKA system instru-

ments for uncemented implants (Smith & Nephew, Sch-

enefeld, Germany). First, the extramedullary tibial

alignment guide and cutting block were assembled. The

proximal tibia was cut at 8 mm with a posterior slope of 3�.
After resection of the tibial condyles, the prosthesis was

impacted into the tibial bone. Then, four screw channels

were bored into the cancellous bone and the screws were

inserted. After locking of the screws, the PE inlay was

placed.

For RSA analysis, at least eight tantalum markers of

1.0 mm diameter were placed in the apophysial part of the

tibia specimen. All markers were put in randomly using a

special applicator (RSA Biomedical, Umeå, Sweden).

Furthermore, seven markers were added to the PE inlay in

a predefined arrangement.

Before cyclic loading, an initial radiograph using stan-

dardised RSA technique was taken of each tibial specimen.

After removal of the PE inlay, the specimens were put in a

special holder and fixed with cement. This holder was then

mounted in a computer-controlled universal testing

machine (81806-EDC100, Frank, Weinheim, Germany).

Testing of the specimens was done with an axial load of

2.000 N epitomising the approximate peak load during a

physiological walking cycle of a patient weighing 70 kg

[33]. The axial forces of the testing machine could be

applied on the main weight-bearing zone of the tibial

component using a special utility which could be adapted

to the size of the prosthesis. There were no rotational or

angular forces applied to the prostheses. A total of 10,000

loading cycles were performed, representing the axial

forces acting on the operated knee during the first 8 post-

operative weeks.
Fig. 1 Lower side of the tibial component prototype with polyaxial

locking screws
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Radiostereogrammetric analysis

Before and after loading for 1000 and 10,000 cycles,

respectively, a radiograph using standardised RSA tech-

nique was taken (Fig. 4). All radiographs were taken

simultaneously in two views (anteroposterior and medio-

lateral). For this purpose, each specimen was put in a

special Plexiglass-Cage (RSA Biomedical, Umeå, Sweden)

in a neutral position. The cage consists of four walls with

incorporated tantalum markers in a defined position. The

simultaneous acquisition of the radiographs was performed

with two X-ray tubes arranged in an orthogonal position

(Multix Up, resp. Vertix, Siemens AG, Forchheim, Ger-

many). Afterwards, all pictures were digitalised with an

AGFA ADC Compact (Agfa HealthCare, Cologne, Ger-

many) and exported to import them to the RSA software

(UMRSA 4.1, RSA BioMedical, Umeå, Sweden).

The endpoints of the RSA were translational and rota-

tional movements along the x-, y- and z-axes. Furthermore,

maximum subsidence (MaxSub), maximum lift off (Max-

LiftOff) and maximum total point motion (MTPM) were

measured. Prosthesis failure was defined as MTPM[ 1.0

mm. The three-dimensional configuration of the tantalum

markers representing a segment (bone and inlay) is

Fig. 2 Detailed view of a: threaded screw hole in the tibial component; b: screw nut c: screw and screw head

Fig. 3 Overview of the individual parts oft he prototype a: screw nuts; b: screws; c: topside of the prototype d: PE inlay
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considered as a rigid body [56]. Within the testing process,

the RSA software checks for dislocation of the tantalum

markers. In case of extensive tantalum marker dislocation,

the respective marker cannot be used for determination of

the rigid body model. If less than three stable tantalum

markers are available the calculation of a rigid body is not

possible.

According to Adalberth et al., the accuracy of this RSA

method is 0.1� for all rotational movements, and 0.1 mm

for all translations, MaxSub, MaxLiftOff and MTPM,

respectively [1].

Statistical analysis

Statistical analysis was done with SPSS for Windows,

Version 11.0 (SPSS Inc., Chicago, IL, USA). G*Power,

Version 3.1.9.2 (University of Kiel, Germany) was used for

power analysis to determine the sample size. Power anal-

ysis was conducted using Wilcoxon signed-rank test (one

sample case), a significance level of 0.05, and a power of

80 %. Normality was tested using Kolmogorov–Smirnov

Test. Since there was no Gaussian normal distribution, the

migration values were compared using the nonparametric

Mann–Whitney U test. For all statistical tests, a signifi-

cance level of p\ 0.05 was used.

Results

Group descriptives

Altogether 5 left-sided and 5 right-sided specimens were

used. After the implantation process, one right-sided

specimen had to be excluded due to extensive tantalum

marker dislocation.

There were 5 male and 4 female donors with a mean age

of 81.9 years (SD = 10.6)

Rotational and translational migration

There were low overall rotational and translational

migration values of the tibial component. The highest

amount of rotation both after 1000 (0.3�, SD = 0.4) and

10,000 cycles (0.8�, SD = 1.0) was observed around the

x-axis and the highest amount of translation was found

along the y-axis (1000 cycles -0.2 mm, SD = 0.2; 10,000

cycles -0.6 mm, SD = 0.8). The changes after both testing

cycles were statistically insignificant (p[ 0.05, Table 1).

MaxSub, MaxLiftOff and MTPM

After 1000 cycles of loading, the tibial component had

subsided -5 mm (SD = 0.2). During the following loading

cycles, the prosthesis continued subsiding but without

statistical significance (-0.9 mm, SD = 1.1, p [ 0.05).

There was only a minimal amount of lift off after 1000

cycles (0.1 mm, SD = 0.0); during the following 9000

Fig. 4 Postoperative

radiograph of an implanted

prototype. White

points = tantalum markers,

a) anteroposterior view, b)

mediolateral view

Table 1 Rotation and translation after 1,000 and 10,000 cycles

1000 cycles 10,000 cycles p

M SD M SD

Rot_x (�) 0.3 0.4 0.8 1.0 [0.05

Rot_y (�) -0.1 0.6 0.1 0.6 [0.05

Rot_z (�) 0.0 0.2 -0.1 0.4 [0.05

Transl_x (mm) -0.2 0.2 -0.1 0.3 [0.05

Transl_y (mm) -0.2 0.2 -0.6 0.8 [0.05

Transl_z (mm) 0.0 0.3 0.1 0.2 [0.05

Rot_x/y/z rotation around the cardinal axes in (�, Transl_x/yz trans-

lation around the cardinal axes in (mm)
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cycles, further lift off was not observed. The MTPM rose

from 0.7 (SD = 0.3) to 1.1 mm (SD = 1.1). The results are

summarised in Table 2.

The analysis revealed one outlier: in that case, the

MTPM was 3.8 mm after 10,000 cycles. The average

MTPM without the outlier was 0.7 mm after 10,000 cycles.

Based on a limit value of C 1.0 mm for MTPM after

10.000 cycles, 2 out of 9 (22 %) implants exceeded the

critical value. When excluding the outlier, 1 out of 8

(12.5 %) implants failed.

Discussion

The aim of this study was to evaluate the influence of a

polyaxial fixed-angle fixation method on the initial stability

of the tibial component of TKA using the RSA technique.

After 1000 and 10,000 cycles, respectively, the proto-

type with polyaxial locking screws showed low overall

migration values. Among the 9 tested specimen, there was

one with a much higher MTPM score was observed. The

most likely explanation for this outlier is the presence of

micro-fractures that can occur during the implantation- and

loading-process [10].

Compared to previous in vitro RSA examinations from

our group that have been performed under the same testing

circumstances in the same laboratories with comparable

specimen regarding gender and age, the performance of the

prototype used in this study is excellent, especially when

compared to a conventional cementless fixation with tibial

stem and four non-locking screws. Efe et al. found a

median MTPM of 5.9 mm after 10,000 cycles of loading;

MaxSub was -2.5 mm and MaxLiftOff was 1.3 mm [11].

Under the same testing circumstances, there were lower

migration values for the prototype with polyaxial locking.

Skwara et al. compared two types of cementing of tibial

components in another in vitro examination. The setting of

the examination was the same as in this study. After 10,000

cycles, the mean MTPM for the tibial component with

surface cementing was 0.9 mm which is similar to the

MTPM found in our investigation. The tibial component

with deep stem cementing showed much higher migration

values (MTPM = 2.6 mm) [52]. In contrast, Luring et al.

found a higher MaxiLiftOff in cases where only the tibial

baseplate was cemented compared to a fully cemented

tibial tray [30].

In further in vitro studies, various cementless designs

have been evaluated with regards to their initial stability.

One study showed that a fixation with pegs alone and

tibial stem alone do not provide a sufficient initial stability.

A combination of tibial stem and non-locking screws

showed the lowest migration values [23]. Sumner et al.

compared three different designs with regards to bony

ingrowth [55] and migration [54] in an animal model. The

tibial stem with non-locking screws only showed the lowest

migration and the highest amount of osseointegration. The

prosthesis with screws and pegs showed a comparable

migration but worse bony ingrowth. A fixation with pegs

alone led to higher migration values compared to the other

fixation methods. However, pegs and a bladed tibial stem

have shown to improve rotational stability [59]. Similarly,

Volz and colleagues found the lowest amount of migration

for the Anatomic Modular Knee (non-locking screws plus

tibial stem) and the Miller Galante I (non-locking screws

plus pegs) [57]. These results contrast with the migration

values of the cementless Genesis II component with tibial

stem and four non-locking screws found in the study of Efe

et al. [11]. An important factor leading to these controversy

results might be the fact that, the success of a fixation with

non-locking screws appears to be directly dependent on

bone quality and density [27].

The 10,000 cycles of loading used in this examination

represent the forces acting on the knee during the first

8–12 weeks.

Various clinical RSA studies have been performed. Ryd

et al. found migration of more than 1 mm in the first 6–12

postoperative weeks [48]. Carlsson et al. and Albrektsson

et al. described similar results after 3 months (0.9 mm [7]

and 1.2 mm [4]).

Comparing our results with the findings for cementless

tibial components of clinical RSA studies after

8–12 weeks, the prototype with polyaxial locking screws

shows excellent migration behaviour. Without the outlier,

the mean MTPM was 0.7 mm. However, comparison with

clinical studies is difficult since in vivo effects like oste-

olysis or bone ingrowth could not be simulated.

In two studies, there are lower MTPM scores (approx.

0.4 mm) for the Miller Galante II prosthesis [44, 49]. A

comparable MTPM was found for the Tricon Stem [18]

and PFC [7, 39]. In most studies, there is an MTPM

exceeding 1 mm [4, 18, 42, 48, 50]. Compared to HA-

coated tibial components, the prototype with polyaxial

locking screws shows intermediate migration results

[7, 39, 43, 44].

Table 2 Subsidence, Lift Off and Maximum Total Point Motion after

1,000 and 10,000 cycles

1000 cycles 10,000 cycles p

M SD M SD

MaxSub (mm) -0.5 0.2 -0.9 1.1 \0.05

MaxLiftOff (mm) 0.1 0.0 0.1 0.0 [0.05

MTPM (mm) 0.7 0.3 1.1 1.1 [0.05

All values in (mm)

MaxSub maximum subsidence, MaxLiftOff maximum lift off, MTPM

maximum total point motion
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Most RSA studies found MTPM scores between 0.3 and

0.5 mm for cemented tibial components after 12 weeks

[7, 43, 48, 50]. Wilson and colleagues found 0.5 mm

motion after 6 months [61].

Despite higher initial migration values, cementless TKA

appear to stabilise over time, whereas cemented TKA

continues to migrate [7, 35, 39]. Carlsson et al. concluded

that cementless designs could perform equally or even

better than cemented designs if the problem of worse initial

stability could be solved [7]. An important step was the

development of HA coating [2, 36].

To improve the initial stability of cementless designs,

additional screw augmentation has been evaluated over the

past 20 years. Various experimental studies have shown

that additional fixation in combination with pegs or a tibial

stem can improve the initial stability of tibial components

[23, 26, 54, 55, 59, 63]. However, in clinical trials using

these two types of cementless TKA, screw-related osteol-

ysis was observed in 12–55 % of cases, leading to aseptic

loosening in 8–23 % [5, 28, 53]. On the other hand, there

are positive results concerning clinical and radiological

criteria in two clinical trials using the Natural Knee TKA

[14, 20]. This might indicate that not only the use of screws

but also other factors such as manufacturing, design and

porous coating have an influence on the appearance of

radiolucent lines around screws [14]. As a consequence, it

appears to be possible to reduce screw associated osteolysis

by optimising the aforementioned factors. This is of

importance if the presented prototype is used in a clinical

series.

Bone quality seems to be of particular importance for

the success of cementless TKA [26, 27]. The use of screws

and an additional central stem seems to increase initial

stability especially in patients with poor bone quality [26].

In this study, we did not measure bone density prior to the

experiments which is one of the limitations of this study.

However, the sample can be considered representative due

to the relatively high mean age (81.9 years) and balanced

ratio between male and female specimen. Nevertheless, the

impact of bone quality on the migration of our prototype

remains unclear.

A possible explanation for the encouraging results of the

prosthesis fixed with polyaxial locking screws is the

excellent biomechanical attributes of the prototype attrib-

uted to the use of polyaxial locking screws [9, 40]. Besides

firm fixation, the flexibility that is obtained by the possi-

bility of adapting the angle of the screws seems to be of

importance [60]. During the experiments, we tried to

choose an angulation that was oriented on the physiological

load axis of the tibia.

A limitation of this study is the type of loading. Cyclic

loading of the prostheses with only axial forces can only

approximately be considered physiological. Furthermore,

this study is lacking a control group as well as a bone

density measurement prior to the experiments. In addition,

we did not examine the influence of screw position on

migration of the prosthesis.

Despite these limitations, the findings in this study are

well comparable, especially to the previous studies per-

formed by our group; Another strength of the study is the

fact that this is the first study to examine the use of

polyaxial locking screws for the fixation of tibial compo-

nents. Furthermore, we used a well-established and accu-

rate method for measuring migration.

Conclusions

Fixation with polyaxial locking screws offered a strong

initial fixation with a low amount of migration. This new

fixation method could potentially improve the initial sta-

bility of tibial components. To confirm the good results of

this study, further experimental and clinical investigation is

needed. Further studies should include various control

groups such as a group of non-locking screws, screws plus

keel and keel fixation only. Additionally, bone density

should be measured prior to the experiments and the

influence of screw angulation should be examined.
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