
Abstract To determine the origin of the large myelinated
fibers in the anterolateral funiculus (ALF) in the spinal
cord of humans, myelinated fibers in the ALF of the mid-
cervical spinal cord were examined quantitatively. Five
groups of subjects were examined, consisting of control
subjects, patients with cerebral lesions and showing com-
plete degeneration of the unilateral/bilateral pyramis of
the medulla oblongata, those with lesions of the pontine
tegmentum, those with lesions of the lower cervical spinal
cord, and those with thoracic/lumbar lesions. The results
indicate that the large myelinated fibers in the ALF of the
mid-cervical spinal cord of humans originate from the
tegmentum of the brain stem and the lower cervical spinal
cord, and not from the cerebrum, or the thoracic or lumbar
spinal cord. Thus, they are descending fibers from the brain
stem tegmentum and ascending fibers from the lower cer-
vical cord, and not corticospinal tracts or long-ascending
fibers from the thoracic or lumbar spinal cord. The origin
of the large myelinated fibers in the ALF of the spinal cord
in humans, the number of which was severely decreased
in patients with amyotrophic lateral sclerosis, is consid-
ered to be the long-descending neurons in the brain stem
tegmentum and the propriospinal neurons in the spinal cord.
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Introduction

The white matter of the spinal cord contains bundles of
various nerve fiber tracts. It has been reported that the an-
terolateral funiculus (ALF), which is the ventral part of
the lateral funiculus [24], contains, as long-descending
tracts, the ventral pyramidal tract (human [4]), corti-
cospinal tracts (human [23]), reticulospinal tracts (cat,
opossum and human [11, 12, 17, 24, 25, 29]), the vestibu-
lospinal tract (cat and human [29, 32, 33]), and raphe
spinal tracts (opossum [18]). In addition, the ALF con-
tains, as long-ascending tracts, the spinothalamic tract
(human [15, 29, 34, 35]), the spinoreticular tract (human
[29]), the spinocerebellar tract (human [15, 29]), and Hel-
weg’s triangular tract (human [37]). Propriospinal fibers
(cat and human [1, 7, 29]) have also been observed.

In the white matter of most patients with sporadic amy-
otrophic lateral sclerosis (ALS), the ALF degenerates
along with the lateral and anterior corticospinal tracts
[9–11, 16, 28, 36]. We have reported previously that: (1)
the fiber-size distribution of the myelinated fibers in the
ALF and lateral corticospinal tract (LCS) of the control
subjects exhibited a peak at 2µm, (2) there were marked
and significant losses of large myelinated fibers in the
ALF and LCS of ALS patients, (3) the patients who re-
quired respirator support showed more severe degenera-
tion of the ALF than those who required none, and (4) the
degree of myelinated fiber loss in the LCS did not corre-
late with either the duration of their illness or their history
of respirator use [28].

The neurons originating in the reticulospinal tract, the
neurons in the spinal cord [11], and the propriospinal neu-
rons [26, 27] have been proposed as the origins of the de-
generated fibers observed in the ALF of patients with
ALS. In the present study, to determine the origin of the
large myelinated fibers in the ALF of the human spinal
cord, the number of which is severely reduced in patients
with ALS, myelinated fibers in the ALF of the mid-cervi-
cal spinal cord were examined quantitatively in five
groups of subjects, including control subjects. The disease
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groups that were examined included patients with cerebral
lesions showing complete degeneration of the unilateral/
bilateral pyramis of the medulla oblongata, those with le-
sions of the pontine tegmentum, those with lesions of the
lower cervical spinal cord, and those with thoracic/lumbar
lesions.

Materials and methods

The subjects (controls and patients) were divided into five groups
for postmortem examination. Group I: Five control subjects (aged
62–87years; mean ± SD 74.4 ± 9.9years); group II: four patients
with cerebral lesions, such as cerebral hemorrhage and/or cerebral
infarct, showing unilateral/bilateral complete degeneration of the
pyramis (aged 53–77years; mean ± SD 69.3 ± 11.0years); group
III: five patients with lesions of the pontine tegmentum, such as
pontine infarct or pontine glioma (aged 25–75years, mean ± SD
48.8 ± 20.0years); group IV: five patients with lower cervical in-
volvement, such as cervical spondylosis or vertebral metastasis of
cancer (aged 59–72years, mean ± SD 65.8 ± 6.3years); and group
V: four patients with thoracic/lumbar spinal cord lesions, such as
transverse myelopathy or poliomyelitis (aged 17–82years, mean ±

SD 57.3 ± 29.7years). These 18 patients and 5 control subjects
were Japanese, and none of them had had cardiac arrest, hypo-
glycemic episodes, or severe liver dysfunction. The interval be-
tween death and autopsy was 3–5h.

The methods used in the present study were essentially similar
to those reported previously [28]. The fourth or fifth cervical seg-
ments of the spinal cord were fixed in 20% formalin in 0.1M phos-
phate buffer (PB; pH7.3). The duration of fixation was 3–8years.
Each segment was then fixed in 1% osmium tetroxide in 0.1M PB,
followed by dehydration through a graded ethanol series and embed-
ding in Epon 812. Sections (1µm thick) were cut, stained with tolu-
idine blue, and then examined with the aid of a light microscope.

The myelinated fibers in the ALF were quantitatively exam-
ined bilaterally in control subjects and in patients with cerebral le-
sions. Since there was no difference in number between the myeli-
nated fibers in the right and left side, those in the right side of the
ALF were examined in other groups. The ALF was divided into
three equal parts anteriorly from the medial to the lateral margins
of the anterior horn and photographs of the mid-medial, mid-lat-
eral and lateral portions were taken (× 200 magnification). The
large bundles of myelinated fibers with diameters of 10–12µm, at
which was thought to be the intramedullary portion of the anterior
spinal root, crossing the ALF were avoided when taking these pho-
tographs. Enlarged prints (× 2285 magnification) were made and
the mean diameter of the myelinated fibers was obtained, using a
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Fig.1A–E Light micrographs
of the ALF. A Group I: In a
control subject, large myeli-
nated fibers are observed 
admixed with small and me-
dium-sized myelinated fibers.
B Group II: In a patient with
cerebral lesions, large myeli-
nated fibers, and small and me-
dium-sized myelinated fibers
are observed. C Group III: All
patients with lesions of the
pontine tegmentum exhibit a
small number of large myeli-
nated fibers, and a relatively
large number of small myeli-
nated fibers. D Group IV: In 
a patient with lesions of the
lower cervical cord, a small
number of large myelinated
fibers is observed. E Group 
V: In a patient with transverse
myelopathy of the thoracic
spinal cord, many large myeli-
nated fibers are observed 
admixed with small and me-
dium-sized myelinated fibers
(ALF anterolateral funiculus).
A–E Toluidine blue prepara-
tion. Bar 20µm



digitizer, by averaging the longest and shortest diameters (the lat-
ter being perpendicular to the former).

The data for the three areas in the ALF of each patient and con-
trol subject were summed and the frequency distribution of the
myelinated fiber diameters, in 1-µm increments, was determined
and represented on bar charts as πr2 × N (where r is half the mean
diameter of the myelinated fibers and N is the number of myeli-
nated fibers), to show that the large myelinated fibers, although
fewer in number, cover a wider area. The total area of each ALF of
each patient examined was 0.057mm2.

Statistical evaluation was performed using the Mann-Whitney
U test to compare the numbers of myelinated fibers in 1-µm incre-
ments, with diameters of less than 3µm (small), 3–6µm (medium-
sized), and over 6µm (large), between each group.

Results

Group I

Light microscopic examination of the ALF of the control
subjects revealed large myelinated fibers admixed with

small and medium-sized myelinated fibers (Fig.1A). The
fiber-size distribution of the myelinated fibers in the con-
trol subjects showed a prominent peak at 2µm in the ALF
(Figs.2, 3). The distribution pattern was similar to that of
the myelinated fibers in the control subjects from whom
the ALF had been fixed in 3% glutaraldehyde-1%
paraformaldehyde in 0.1M PB, reported previously [28].
There was no significant difference between the numbers
of myelinated fibers in the right and left side (Table1).
The number of myelinated fibers with a diameter of over
3µm was relatively small, whereas the number of myeli-
nated fibers with a diameter of less than 3µm was rela-
tively large, as compared with those fixed in 3% glu-
taraldehyde-1% paraformaldehyde [28] (Table2).

Group II

Light microscopic findings of the ALF from patients with
cerebral lesions showed small, medium-sized and large
myelinated fibers (Fig.1B). The fiber-size distribution of
the myelinated fibers was similar to that of the control
subjects (Figs. 2, 3). There was no significant difference
between the numbers of myelinated fibers in the right and
left side of these subjects (Table1). The numbers of the
large, medium-sized and small myelinated fibers were not
significantly different from those of the controls (Table2).
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Fig.2 Fiber-size distribution of the myelinated fibers in the ALF.
Group I: the fiber-size distribution of the control subjects ex-

hibits a prominent sharp peak at 2µm. Group II: the fiber-size
distribution of the myelinated fibers is similar to that of the control
subjects. Groups III and IV: the basic pattern of the fiber-size
distribution of the myelinated fibers is similar to that observed for
the control subjects, however, the number of myelinated fibers
with a diameter of over 6µm is significantly lower in this group. 

Group V: the fiber-size distribution of the myelinated fibers is
similar to that of the control subjects. The total area of each ALF
of each patient examined is 0.057mm2. Values indicated are
means and SD. Asterisks P < 0.05



Group III

Light microscopic findings of the ALF from patients with
lesions of the pontine tegmentum showed a small number
of the large myelinated fibers and a relatively large num-
ber of small myelinated fibers (Fig.1C). The basic pattern
of the fiber-size distribution of the myelinated fibers was
similar to that in the control subjects; however, the num-
ber of myelinated fibers with a diameter of over 6µm was
significantly lower (Figs. 2, 3, and Table2).

Group IV

Light microscopic findings of the ALF from patients with
lesions of the lower cervical cord showed a small number
of large myelinated fibers (Fig.1D). The basic pattern of
the fiber-size distribution of the myelinated fibers was
similar to that of the control subjects, however, the num-
ber of myelinated fibers with a diameter of over 6µm was
significantly reduced (Figs. 2, 3, and Table2).

Group V

Light microscopic examination of the ALF from patients
with thoracic/lumbar lesions revealed large myelinated
fibers admixed with small and medium-sized myelinated
fibers (Fig.1E). The fiber-size distribution of the myeli-
nated fibers was similar to that of the control subjects
(Figs. 2, 3). The numbers of large, medium-sized and
small myelinated fibers were similar to those noted for the
controls (Table2).

Discussion

In the present study, the number of large and medium-
sized myelinated fibers in the control subjects was rela-
tively small, and the number of small myelinated fibers was
relatively large as compared with those of control cases
fixed with 3% glutaraldehyde-1% paraformaldehyde, pre-
viously reported [28]. This suggests that slight shrinkage
of the myelinated fibers fixed in 20% formalin in 0.1M
PB had occurred compared with those fixed in 3% glu-
taraldehyde-1% paraformaldehyde in 0.1M PB.

The results of the present study have revealed that: (1)
large myelinated fibers in the ALF of the mid-cervical
spinal cord originate from the tegmentum of the brain
stem and from the lower cervical spinal cord, (2) large and
medium-sized myelinated fibers in the ALF of the mid-
cervical spinal cord are not corticospinal tracts, (3) nor are
these fibers long-ascending tracts from the thoracic and
lumbar spinal cord.

A histological and quantitative study has revealed nei-
ther degenerative fibers, loss of myelinated fibers, nor at-
rophy of the ALF in patients with hemispherectomy [40].
The finding concurs with the results of the present study.

The number of large and medium-sized myelinated
fibers in the ALF of the mid-cervical spinal cord in pa-
tients with complete transverse myelopathy at the thoracic
level was not reduced. This indicates that the long-as-
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Table 1 The myelinated fibers in the ALF were quantitatively ex-
amined bilaterally in control subjects (group I) and in patients with
cerebral lesions (group II). Statistical evaluation was performed
using the Mann-Whitney U test to compare the numbers of myeli-
nated fibers in 1-µm increments and with diameters of less than 3µm
(small), 3–6µm (medium-sized), and over 6µm (large), between
each group. There was no significant difference between the num-
bers of myelinated fibers in the right and left side in the control sub-
jects (group I) and in patients with cerebral lesions (group II). The
total area examined was 0.057mm2 (ALF anterolateral funiculus)

Diameter

< 3.0µm 3–6µm > 6µm

I.Control
Right side (n=5) 2645.2 ± 247.6 605.2 ± 62.8 158.4 ± 11.6
Left side (n=5) 2615.8 ± 193.1 633.3 ± 83.2 162.3 ± 30.8

II.Cerebral lesions
Right side (n=4) 2335.5 ± 400.9 627.0 ± 83.6 183.0 ± 91.6
Left side (n=4) 2437.5 ± 413.1 650.0 ± 81.7 167.5 ± 59.1

Fig.3 Fiber-size distribution of the myelinated fibers in the ALF.
The averages in the control subjects and the data of each patient
are represented on bar charts as πr2 × N (where r is half the mean
diameter of the myelinated fibers and N is the number of myeli-
nated fibers), to show that the large myelinated fibers, although
fewer in number, cover a wider area. The total area of each ALF of
each patient examined is 0.057mm2. The averages of the data for
the control subjects (group I) are shown in dark blue, the data for
patients with cerebral lesions (group II) are shown in green, the
data for patients with lesions of the pontine tegmentum (group III)
are shown in red, the data for patients with lesions in the lower cer-
vical spinal cord (group IV) are shown in purple, and the data for
patients with lesions in the thoracic/lumbar spinal cord (group V)
are shown in yellow. In groups III and IV, the number of myeli-
nated fibers with a diameter of over 6µm appear to have de-
creased, although they are preserved in groups II and V



cending tracts, such as the spinothalamic [15, 29, 34, 35],
spinoreticular [29], spinocerebellar [15, 29], and Hel-
weg’s triangular [37] tracts are either not composed of
large or medium-sized myelinated fibers, or else do not
pass through the areas investigated in the present study.

The results presented here show that a proportion of
the large myelinated fibers in the ALF of the mid-cervical
spinal cord originate from the lower cervical cord, and
that the large myelinated fibers in the ALF are not long-
ascending fibers from the thoracic and lumbar spinal cord.
This finding suggests that the large myelinated fibers re-
duced in number in patients with lower cervical involve-
ment are not long-ascending fibers, but propriospinal
fibers connecting neighboring segments. The present
study has also revealed that the large myelinated fibers in
the ALF of the mid-cervical segment originate from the
tegmentum of the brain stem and the lower cervical spinal
cord, and their origins are considered to be reticulo-,
vestibulo- and/or raphe-spinal neurons, and propriospinal
neurons.

In advanced ALS patients who require the long-term
use of a respirator, an extensive reduction in the number
of neurons other than motor neurons has been observed,
in addition to complete loss of the anterior horn cells [8,
20]. It has also been noted that the tegmentum of the brain
stem and the intermediate zone of the spinal cord exhibit
extremely severe atrophy and neuronal loss, and that the
ALF degenerates markedly in these ALS patients [8, 20].
Bunina bodies and ubiquitin-immunopositive inclusions
have been observed in the neurons of the reticular forma-
tion of the medulla oblongata in patients with ALS [5,
22]. This indicates that an ALS-specific disease process
exists in the neurons in the reticular formation.

Spinocerebellar neurons as well as the neurons of
Clarke’s column have been shown to degenerate in the
spinal cord of ALS patients [2, 38, 41], and the number of
neurons in the intermediolateral nucleus and Onuf’s nu-
cleus is reduced [6, 13, 14, 39].  The occurrence of a se-
quential degeneration of the neurons in the intermediate
zone (Rexed’s [31] laminae V–VIII) of the spinal cord are
a result of loss of anterior horn cells (Rexed’s lamina IX)
has been reported in patients with ALS [26, 27]. Long-as-
cending neurons [29], internuncial neurons [29], and pro-

priospinal neurons [1, 21] have been shown to occur in
the intermediate zone of the spinal cord.

It has been shown that propriospinal neurons at the cer-
vical segment are located in laminae V–VII (cat and mon-
key [21]) of Rexed [31], and that these neurons play roles
in movement control and sensorimotor integration of the
extremities [19, 30]. The reticulospinal and propriospinal
tracts terminate in laminae V–VIII in the cervical cord
(cat [3]). Thus, the reticulospinal neurons in the brain
stem and propriospinal neurons in the spinal cord are con-
sidered to be closely linked. Further studies are necessary
to elucidate whether or not such a linkage of degenerating
mechanisms exists between the propriospinal neurons in
the spinal cord and the neurons in the brain stem tegmen-
tum in patients with ALS.
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