REGULAR PAPER

I. Higuchi · K. Hashimoto · E. Matsuoka · R. Rosales M. Nakagawa · K. Arimura · S. Izumo · M. Osame

The main HTLV-I-harboring cells in the muscles of viral carriers with polymyositis are not macrophages but CD4⁺ lymphocytes

Received: 12 February 1996 / Revised, accepted: 11 April 1996

Abstract We have analyzed muscle biopsy specimens from polymyositis patients who are also positive for human T cell lymphotropic virus type I (HTLV-I) using both immunohistochemistry for surface antigens of lymphocytes and macrophages and in situ polymerase chain reaction for HTLV-I proviral DNA on the same sections. We found HTLV-I in CD4⁺ cells but not in macrophages. This finding suggests that most of the HTLV-I-containing CD4⁺ cells are not macrophages but lymphocytes.

Key words In situ polymerase chain reaction \cdot Immunohistochemistry \cdot Human T cell lymphotropic virus type I \cdot Proviral DNA \cdot Polymyositis

Introduction

Patients with polymyositis (PM) in Jamaica and Kagoshima, Japan exhibit a seropositivity to human T cell lymphotropic virus type I (HTLV-I) that is higher than in the general population [3, 14]. A direct HTLV-I infection of muscle fibers was detected by in situ hybridization (ISH) in a patient dually infected with HIV and HTLV-I [18]. Using ISH alone, we were not able to detect HTLV-I in patients with PM who were infected with HTLV-I [3]. However, employing an in situ polymerase chain reaction (PCR), we found HTLV-I provirus in some of the CD4+ infiltrating cells in HTLV-I-positive PM patients but not within the muscle fibers [4]. We therefore performed both

M. Nakagawa · K. Arimura · M. Osame

Third Department of Internal Medicine, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka,

Kagoshima 890, Japan

immunohistochemistry for CD4 or macrophage and in situ PCR for HTLV-I provirus on the same sections from muscle biopsy samples from HTLV-I-positive PM patients to determine which cell types contained HTLV-I.

Materials and methods

We obtained muscle biopsy specimens from two HTLV-I-positive PM patients (patients 1 and 2 in [4]) and two HTLV-I-negative PM patients (patients 5 and 6 in [4]), a muscle autopsy specimen from a patient suffering from HTLV-I-associated myelopathy (HAM) (patient 4 in [4]), and a lymph node from a patient (patient 8 in [4]) with adult T cell leukemia (ATL) as a positive control. One part of each muscle specimen and the lymph node were frozen and sectioned. The frozen sections were picked up on aminosilane-coated slides. To distinguish the types of cell that harbored HTLV-I, we analyzed sections from HTLV-I-positive cases using both immunohistochemistry and in situ PCR. Initially, we performed immunogold silver staining (IGSS) using anti-CD4 monoclonal antibodies (Dako) or anti-macrophage monoclonal antibodies (Dako, KP-1; or Becton Dickinson, Ber-Mac) and AuroProbe LM secondary antibodies (Amersham) on the frozen sections. Subsequently, we performed the following in situ PCR on the same frozen sections. . This procedure, which increased the specificity of the reaction, was a modification of a previously reported in situ PCR [1, 12, 16]. Frozen sections (8 µm thick) were cut, picked up on 2% aminosilane-coated slides, and fixed with 4% paraformaldehyde in phosphate-buffered saline (PBS) for 30 min. After washing in PBS and dehydration in an ethanol series, the sections were digested with trypsin (Sigma) at 0.5 mg/ml in 100 mM TRIS-HCl (pH 7.4) for 20 min at 37°C. After digestion, the slides were washed twice in TRIS-HCl (pH 7.4) for 5 min, dehydrated in a graded ethanol series, and then air dried. For amplification in situ, tissue sections were preheated to 82°C for 5 min, and then a solution comprising PCR buffer [50 mM KCl, 10 mM TRIS-HCl (pH 8.3), 1.5 mM MgCl₂, 0.01% gelatin, 200 mM dNTPs, 10 mM digoxigenin-dUTP], 1 mM primers and 0.02 U/ml Taq polymerase was applied. Two primer sets spanning nucleotides 7302-7504 of the HTLV-I pX region, and nucleotides 5021-5340 of the HTLV-I pol and env region were used separately. The primers comprised bases 7302–7326 and 7504–7481 of the pX region, and bases 5021– 5040 and 5340-5321 of the pol and env region. The sections were then each overlaid with a coverslip, and the slides were put on the heating block of an Atto thermal-cycler with preheated mineral oil to prevent evaporation during thermal cycling. After initial denaturation at 93°C for 3 min, and 20 cycles of denaturation at 93°C for 1.5 min, annealing at 45°C for 2 min, and polymerization at 72°C for 2 min, the slides were removed from the cycler and

I. Higuchi (\boxtimes) · K. Hashimoto · E. Matsuoka · R. Rosales

Tel.: 81-99-275-5332; Fax: 81-99-265-7164;

e-mail: ihiguchi@med6.kufm.kagoshima-u.ac.jp

S. Izumo

Molecular Pathology and Genetic Epidemiology, Center for Chronic Viral Diseases, Faculty of Medicine, Kagoshima University, Kagoshima, Japan

Fig. 1 A Combination of immunohistochemistry for CD4 and in situ polymerase chain reaction (PCR) for human T cell lymphotropic virus type I (HTLV-I) *pX* on the same section from a muscle biopsy of a patient with HTLV-I-positive polymyositis (PM). One HTLV-I-positive cell (*red signal*, colored with alkaline phosphate substrate) can be seen in endomysium, which is CD4+ (*black signal*). **B** Double staining on the same section of the muscle from a patient with HTLV-I-associated myelopathy. One HTLV-I-positive cell (*blue signal* colored with nitro blue tetrazolium, *arrow*) can be seen near the vessel, which is CD4+ (*black signal*). **A** × 1000, **B** × 300

Fig. 2 Combination of immunohistochemistry for macrophage and in situ PCR for HTLV-I pX on the same section from the muscle from a patient with HTLV-I-positive PM. One HTLV-I-positive cell (*red signal*) can be seen in perimysium, which is not a macrophage (*black signal*). \times 1000

Fig. 3 A Combination of immunohistochemistry for CD4 and in situ PCR for HTLV-I *pX* on the same section of the lymph node from the patient with adult T cell leukemia (ATL). Many HTLV-I-positive cells (*blue signal*) can be seen, which are CD4⁺ (*black signal*). **B** No positive signal for HTLV-I can be seen on the CD4⁺ cells (*black signal*) in the lymph node from the same ATL patient using in situ PCR with irrelevant primers. **A**, **B** × 300

washed twice for 2 min each in xylene to remove residual oil. After removing the coverslips, the sections were washed twice in absolute ethanol and then rehydrated in a graded ethanol series. Postin situ PCR washing was performed by mild agitation in $0.1 \times SSC$ twice for 15 min at 45°C. Immunological detection of the digoxigenin-labeled amplified DNA was accomplished with a polyclonal

anti-digoxigenin antibody conjugated to alkaline phosphatase (AP; Boehringer Mannheim) at room temperature for 30 min. The color reaction was performed with AP substrate tablets of the Multicolor detection set or with nitro blue tetrazolium and 5-bromo-4-chloro-3-indolylphosphate (Boehringer Mannheim). Controls for in situ amplification included known negative (frozen muscle of an HTLV-I-negative PM patient) and positive (frozen lymph node of ATL patient) test samples, the omission of Taq DNA polymerase or primers, and the use of irrelevant primers (for HIV).

Results

Using both IGSS and in situ PCR we found that some of the CD4⁺ cells in the skeletal muscles from two HTLV-Ipositive PM patients and a HAM patient contained HTLV-I provirus (Fig. 1). We did not find HTLV-I in macrophages (Fig. 2), which were identified using two different antibodies (KP-1 and Ber-Mac). None of the sections from HTLV-I-negative PM patients contained HTLV-I provirus. In addition, no HTLV-I was detected within the muscle fibers or endothelial cells. We found that most CD4⁺ cells in the lymph node from an ATL patient (positive control) contained the HTLV-I provirus (Fig. 3A); no positive signal for HTLV-I on the CD4⁺ cells in the lymph node from the same ATL patient was found using in situ PCR with irrelevant primers (negative control, Fig. 3B).

Discussion

Leon-Monzon et al. [11] studied skeletal muscles from six HTLV-I-positive patients by immunohistochemistry, solution-phase PCR, and co-cultures of the patients' lymphocytes with their homologous muscles. They concluded that amplified HTLV-I sequences are related to scattered HTLV-I-positive endomysial macrophages. However, we were unable to find HTLV-I in macrophages using a combination of immunohistochemistry for macrophages and in situ PCR for HTLV-I provirus on the same sections. This finding suggests that most of the HTLV-I-containing CD4⁺ cells are not macrophages but lymphocytes. Several previous studies have reported that CD4⁺ lymphocytes are the major reservoir for HTLV-I. In addition, the amount of HTLV-I proviral DNA has been shown to correlate with that in the infiltrating CD4⁺ lymphocytes in the spinal cord from patients with HAM [10]. Although Leon-Monzon et al. [11] concluded using immunohistochemistry with antibodies against HTLV-I p19 and p24 that endomysial macrophages contain HTLV-I, the antibody against HTLV-I core protein is reported to cross-react to normal human tissue [7, 15, 17]. Hence, it is necessary to confirm the results either by immunohistochemistry using antibody against HTLV-I tax, which is more specific to HTLV-I, or by methods such as ISH. For a definite identification double immunostaining using antibodies to HTLV-I and to CD4⁺ lymphocytes is necessary.

As HTLV-I has been shown to infect a wide variety of cell types in vitro [2, 5, 6, 8, 14, 19, 20] and in vivo [9], we cannot at present rule out the possibility that rare macrophages or other cells in the muscle may contain HTLV-I. Therefore, we conclude that the main HTLV-I-harboring cells in the muscle from most patients with HTLV-I-positive PM are CD4⁺ lymphocytes.

References

- Embretson J, Zupancic M, Ribas JL, Burke A, Racz P, Tenner-Racz K, Haase AT (1993) Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362: 359–362
- Hasunuma T, Nakajima T, Aono H, Sato K, Matsubara T, Yamamoto K, Nishioka K (1994) Establishment and characterization of synovial cell clones with integrated human T cell leukemia virus type-I. Clin Immunol Immunopathol 72: 90–97
- 3. Higuchi I, Nerenberg M, Yoshimine K, Yoshida M, Fukunaga H, Tajima K, Osame M (1992) Failure to detect HTLV-I by in situ hybridization in the biopsied muscles of viral carriers with polymyositis. Muscle Nerve 15: 43–47
- 4. Higuchi I, Hashimoto K, Kashio N, Izumo S, Inose M, Izumi K, Ohkubo R, Nakagawa M, Arimura K, Osame M (1995) Detection of HTLV-I provirus by in situ polymerase chain reaction in mononuclear inflammatory cells in skeletal muscle of viral carriers with polymyositis. Muscle Nerve 18: 854–858
- Ho DD, Rota TR, Hirsch MS (1984) Infection of human endothelial cells by human T-lymphotropic virus type I. Proc Natl Acad Sci USA 81: 7588–7590
- 6. Hoffman PM, Dhib-Jalbut S, Mikovits JA, Robbins DS, Wolf AL, Bergey GK, Lohrey NC, Weislow OS, Ruscetti FW (1992) Human T cell leukemia virus type I infection of monocytes and microglial cells in primary human cultures. Proc Natl Acad Sci USA 89: 11784–11788
- Kawanishi T, Akiguchi I, Fujita M, Kameyama M, Hatanaka M (1989) Low-titer antibodies reactive with HTLV-I gag p19 in patients with chronic myelopathy. Ann Neurol 26: 515–522
- Koralnik IJ, Lemp JF Jr, Gallo RC, Franchini G (1992) In vitro infection of human macrophages by human T cell leukemia/ lymphotropic virus type I (HTLV-I). AIDS Res Hum Retroviruses 8: 1845–1849
- Koyanagi Y, Itoyama Y, Nakamura M, Takamatsu K, Kira J, Iwamasa T, Goto I, Yamamoto N (1993) In vitro infection of human T cell leukemia virus type I in non-T cells. Virology 196: 25–33
- 10. Kubota R, Umehara F, Izumo S, Ijichi S, Matsumuro K, Yashiki S, Fujiyoshi T, Sonoda S, Osame M (1994) HTLV-I proviral DNA amount correlates with infiltrating CD4⁺ lymphocytes in the spinal cord from patients with HTLV-I-associated myelopathy. J Neuroimmunol 53: 23–299
- 11. Leon-Monzon M, Illa I, Dalakas MC (1994) Polymyositis in patients infected with human T cell leukemia virus type I: the role of the virus in the cause of the disease. Ann Neurol 36: 643–649
- 12. Long AA, Komminoth P, Lee E, Wolfe HJ (1993) Comparison of indirect and direct in-situ polymerase chain reaction in cell preparations and tissue sections. Detection of viral DNA, gene rearrangements and chromosomal translocations. Histochemistry 99: 151–162
- 13. Longo DL, Genmann EP, Cossman J, Young RA, Gallo RC, O' Brien SJ, Matis LA (1984) Isolation of HTLV-I transformed B-lymphocyte clone from a patient with HTLV-I associated adult T cell leukemia. Nature 310: 505–506
- 14. Morgan OS, Rodgers-Johnson P, Mora C, Char G (1989) HTLV-I and polymyositis in Jamaica. Lancet II: 1184–1187
- 15. Nelson PN, Lever AM, Bruckner FE, Isenberg DA, Kessaris N, Hay FC (1994) Polymerase chain reaction fails to incriminate exogenous retroviruses HTLV-I and HIV-1 in rheumatological diseases although a minority of sera cross react with retroviral antigens. Ann Rheum Dis 53: 749–754
- 16. Nuovo GJ, Gallery F, MacConnell P, Delvenne P (1991) An improved technique for the in situ detection of DNA after polymerase chain reaction amplification. Am J Pathol 139: 1239– 1244

- 17. Palker TJ, Scearce RM, Ho W, Copeland TD, Oroszlan S, Popovic M, Haynes BF (1985) Monoclonal antibodies reactive with human T cell lymphotropic virus (HTLV) p19 internal core protein: cross reactivity with normal tissues and differential reactivity with HTLV type I and II. J Immunol 135: 247–254
- Wiley CA, Nerenberg M, Cros D, Soto-Aguilar M (1989) HTLV-I polymyositis in a patient also infected with the human immunodeficiency virus. N Engl J Med 320: 992–995
- Yamamoto N, Matsumoto T, Koyanagi Y, Tanaka Y, Hinuma Y (1982) Unique cell lines harboring both Epstein-Barr virus and adult T cell leukaemia virus, established from leukaemia patients. Nature 299: 367–369
 Yoshikura H, Nishida J, Yoshida M, Kitamura Y, Takaku F,
- 20. Yoshikura H, Nishida J, Yoshida M, Kitamura Y, Takaku F, Ikeda S (1984) Isolation of HTLV derived from Japanese adult T cell leukemia patients in human diploid fibroblast strain IMR90 and biological characters of the infected cells. Int J Cancer 33: 745–749