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Abstract
Autophagy, the major lysosomal pathway for degrading damaged or obsolete constituents, protects neurons by eliminat-
ing toxic organelles and peptides, restoring nutrient and energy homeostasis, and inhibiting apoptosis. These functions are 
especially vital in neurons, which are postmitotic and must survive for many decades while confronting mounting challenges 
of cell aging. Autophagy failure, especially related to the declining lysosomal (“phagy”) functions, heightens the neuron’s 
vulnerability to genetic and environmental factors underlying Alzheimer’s disease (AD) and other late-age onset neurode-
generative diseases. Components of the global autophagy–lysosomal pathway and the closely integrated endolysosomal 
system are increasingly implicated as primary targets of these disorders. In AD, an imbalance between heightened autophagy 
induction and diminished lysosomal function in highly vulnerable pyramidal neuron populations yields an intracellular 
lysosomal build-up of undegraded substrates, including APP-βCTF, an inhibitor of lysosomal acidification, and membrane-
damaging Aβ peptide. In the most compromised of these neurons, β-amyloid accumulates intraneuronally in plaque-like 
aggregates that become extracellular senile plaques when these neurons die, reflecting an “inside-out” origin of amyloid 
plaques seen in human AD brain and in mouse models of AD pathology. In this review, the author describes the importance 
of lysosomal-dependent neuronal cell death in AD associated with uniquely extreme autophagy pathology (PANTHOS) 
which is described as triggered by lysosomal membrane permeability during the earliest “intraneuronal” stage of AD. 
Effectors of other cell death cascades, notably calcium-activated calpains and protein kinases, contribute to lysosomal injury 
that induces leakage of cathepsins and activation of additional death cascades. Subsequent events in AD, such as microglial 
invasion and neuroinflammation, induce further cytotoxicity. In major neurodegenerative disease models, neuronal death and 
ensuing neuropathologies are substantially remediable by reversing underlying primary lysosomal deficits, thus implicating 
lysosomal failure and autophagy dysfunction as primary triggers of lysosomal-dependent cell death and AD pathogenesis 
and as promising therapeutic targets.
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Abbreviations
AD  Alzheimer’s disease
ALS  Amyotrophic lateral sclerosis

AVs  Autophagic Vacuoles
ER-phagy  Autophagy of ER
BMP  Bis (monoacylglycerol) phosphate
CMA  Chaperone-mediated autophagy
ELA  Endosomal-lysosomal-autophagy
ER   Endoplasmic reticulum
ERAD  Endoplasmic reticulum-associated 

degradation
ESCRT   Endosomal sorting complexes required for 

transport
fAD  Familial AD
Fe2+  Ferrous iron ions
FTD  Frontotemporal dementia
FTLD  Frontotemporal lobar degeneration
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HD  Huntington’s disease
LMP  Lysosomal membrane permeabilization
LSDs  Lysosomal storage disorders
LCD  Lysosome-dependent cell death
MPR  Mannose-6-phosphate receptor
MAMs  Mitochondria-associated ER membrane 

interactions
MMP  Mitochondrial membrane potential
NFTs  Neurofibrillary tangles
PANTHOS   p-anthos or poisonous flower
PD  Parkinson’s disease
Ph  Phagophore
PSEN 1  Presenilin 1
ROS  Reactive oxygen species
TFEB, TFE3  Transcription factors
TPC2  Two-pore channel 2
vATPase  Vacuolar ATPase

Introduction

Autophagy comprises a network of cross-regulated pathways 
that engage and deliver potentially toxic and damaged orga-
nelles for degradation in lysosomes (Fig. 1). The cellular 
systems involved in its regulation offer powerful protection 
against a premature triggering of apoptosis when cells are 
stressed. This is a particularly critical function of autophagy 
for neurons—a cell type that cannot regenerate and must 
survive in some cases for more than a century in a long-
lived individual despite these stresses. This review, part of a 
series on neuronal cell death, addresses the pathobiology in 
Alzheimer’s disease that overwhelms these survival mecha-
nisms. It focuses especially on the converging disease fac-
tors that impede lysosomes from completing the autophagy 
clearance process and turn damaged lysosomes into triggers 
of cell death.

Autophagy regulators of protein quality control and meta-
bolic homeostasis have been established as key determinants 
of species longevity [159], which in turn depends on the 
long-term survival of neurons [87] and their resilience to 
brain disorders. Capture and complete degradation of an 
autophagic substrate, termed “autophagy flux”, must be opti-
mally maintained over the individual’s entire life. Although 
abnormal accumulation of autophagy-related compartments 
(autophagic vacuoles or AVs) is often the most striking fea-
ture of neurodegenerative disease, a primary failure of lys-
osomes is more often the basis rather than heightened sub-
strate sequestration and self-digestion. Being the repository 
of dozens of activated hydrolytic enzymes, lysosomes are 
more than qualified to have been designated potential “sui-
cide bags” by their discoverer, Christian DeDuve, to under-
score a potential to release damaging hydrolases into the 
cytoplasm [66] while triggering other cell death routines [80, 

235]. Either acute lysosome disruption or gradual leakage of 
enzymes from damaged were each recognized by DeDuve’s 
associates in the 1960s as primary effectors of neuronal cell 
death [54, 173]. However, the appreciation of lysosomes or 
autophagy in neuronal cell death adult neurodegenerative 
disorders escaped the attention of most investigators until 
this past decade, despite prior knowledge of > 50 congenital 
lysosomal storage disorders (LSDs), most featuring promi-
nent neurodevelopmental or neurodegenerative phenotypes 
[172]. It is important to note that investigators often incor-
rectly equate “autophagy” with just the substrate sequestra-
tion steps of the pathway even though autophagy derives 
its name from its digestive ‘phagy’ (“eating”) lysosomal 
step. Despite the obvious redundancy, a useful convention 
is to refer to an “autophagy–lysosomal pathway”, or ALP, to 
underscore the crucial importance of the degradative step in 
autophagy and its outsized importance within the pathway 
as a target in neurodegenerative disease [169].

In this review, the author will discuss how ALP failure in 
AD evolves, leads to neuron death, and serves as a concep-
tual framework for explaining the emergence of hallmark 
neuropathological features in the disease. Relevance to other 
neurodegenerative disorders is briefly mentioned here and 
more broadly reviewed recently in Ref. [169]. Adult-onset 
neurodegenerative diseases have been commonly referred 
to as proteinopathies, emphasizing the toxic action(s) of 
a particular aggregation-prone pathogenic protein. Their 
toxicity, however, is often manifest as clinical disease only 
after these substrates accumulate in the failing lysosomes 
of neurons in the aging brain, underscoring the critical 
roles of lysosomes in precipitating disease. This review 
also describes a unique morphological pattern of extreme 
autophagy dysfunction recently identified in select neurons 
within the broader autophagy-compromised populations of 
highly vulnerable pyramidal neurons at early stages of AD. 
This select subpopulation of neurons undergoes a massive 
build-up of autophagic vacuoles laden with undegraded sub-
strates, including Aβ, and form plaque-like β-amyloid fibril-
lar aggregates intraneuronally. Although it is only one of 
multiple possible cell death cascades operating in AD brain 
[224], autophagy-associated lysosomal-dependent neuron 
cell death is directly driven by the genes and risk factors 
responsible for AD. The unique pattern of extreme patho-
logical autophagy offers a rare opportunity to characterize 
cell-autonomous neuronal death evolving during a disease 
stage preceding hallmark AD lesions and inflammation, 
which complicate distinguishing primary from secondary 
neurodegeneration events [130]. Emergence of the pattern 
at a “pre-pathology” stage of AD and its role in β-amyloid 
plaque formation highlights an exceptionally early intraneu-
ronal phase of Alzheimer’s disease that has been largely 
unexplored, especially in relation to cell death (Fig. 2).
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Autophagy in healthy and aging neurons

Brief overview of the autophagy–lysosomal 
network

In macroautophagy, the pathway of this network most crucial 
for neuron survival [118], cytoplasmic constituents includ-
ing damaged or obsolete organelles are captured in double-
membraned autophagosomes either constitutively at a bulk 
level or selectively by engaging members of a family of 

adaptor proteins [64, 166, 194] (Fig. 1). The same processes 
are induced further under stress conditions as a neuropro-
tective response [39, 164]. Substrate-laden autophagosomes 
mature to autolysosomes via direct fusion with lysosomes 
which introduce dozens of hydrolases capable of completely 
digesting most normal substrates completely to their unit 
components (amino acids, lipids, etc.) for reutilization in 
new synthesis or to generate energy (detailed reviews [64, 
194]). A proton  (H+) pump, the vacuolar ATPase (vATPase), 
is also introduced enabling intra-lysosomal acidification 

Fig. 1  Major routes of substrate delivery to lysosomes. Macroau-
tophagy is characterized by the formation of a double-membrane 
enveloping structure, the phagophore (Ph) and the sequestration of 
cytoplasmic constituents, including organelles, targeted for degrada-
tion into double-membrane vesicles called autophagosomes. Fusion 
with lysosomes introduces acid hydrolases and a proton pump (vAT-
Pase) that acidifies the lumen and activates an array of hydrolases 
that can fully digest most substrates to unit metabolites, which are 
recycled for energy or new synthesis. Import of chloride and fluxes 
of other ions balance the electrogenic gradient during proton import 
to facilitate acidification. An intermediate step particularly active in 
axons is autophagosome fusion with a rab7-positive late endosome 
to form an amphisome (AMP), which amplifies its retrograde motil-
ity [31, 133]. In chaperone-mediated autophagy (CMA), proteins 
carrying pentapeptide KFERQ-like sequences are recognized by 
Hsp70, which associates with the integral lysosome membrane pro-
tein LAMP-2A, triggering translocation of the bound protein into 
the lysosome interior. In microautophagy, cytoplasmic substrates are 

internalized into late endosomes/MVB by membrane invagination 
followed by release of the cargo by membrane scission into the lumen 
for degradation in lysosomes. Heterophagy involves the lysosomal 
degradation of plasma membrane components and exogenous sub-
strates after they are internalized by receptor-mediated or bulk endo-
cytosis. Selected proteins are sorted to different cellular destinations 
or recycled to the plasma membrane. Proteins targeted for degrada-
tion are trafficked to late endosomes/ multivesicular bodies (MVB), 
which mature to lysosomes to effect complete degradation [162]. 
Buildup of lipofuscin reflects declining clearance inefficiency as neu-
rons age. Compaction of ineffective autolysosomes containing hydrol-
ysis-resistant substrates reduces but does not eliminate the damaging 
impact on cell function. Lysosomes fully mature and concentrate 
within the soma of neurons and are scarce or absent in axons. Instead, 
anterogradely moving Golgi carrier vesicles deliver lysosomal com-
ponents to the amphisomes and late endosomes moving toward the 
soma to facilitate their maturation
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down to the pH range of 4.5–5.0 needed to optimally acti-
vate the “acid” hydrolases with varying acidic pH optima. 
Cross-dependencies also exist between the autophagy–lyso-
some pathway and the endolysosomal–lysosomal pathway 
[72, 198]. For example, an amphisome is created when an 
autophagosome fuses with an endosome [75]—a process 
especially important in neurons to enhance motility dur-
ing delivery of sequestered cargoes from long neuronal 
processes to the soma where lysosomes are concentrated 
(Fig. 1).

In addition to macroautophagy, proteins containing a 
KFERQ targeting motif are delivered by chaperone-mediated 
autophagy directly to lysosomes after binding to the chaper-
one HSC70 and a LAMP2a complex that delivers the protein 
inside the lysosome [110]. By microautophagy, cytoplasmic 
substrates can also be introduced through invaginations of 
late endosomal membranes and delivered to lysosomes [18]. 
While not an autophagy route per se, the endocytic path-
way delivers certain internalized extracellular materials and 
plasma membrane components to lysosomes if they are not 
sorted to other cellular destinations or recycled to the cell 

surface (Fig. 1). Within this network of systems for captur-
ing substrates, lysosomes deserve special emphasis as the 
only degradative compartment shared by all autophagy and 
endocytosis-related substrate delivery routes.

Autophagy in healthy neurons confers resilience 
to aging and disease

Healthy neurons efficiently eliminate newly formed 
autophagosomes or amphisomes by rapidly fusing with lys-
osomes and degrading the content within autolysosomes. 
Even very high levels of autophagy induction via mTOR 
or AMPkinase and substrate sequestration do not cause 
autophagosomes in most neurons to build up. In fact, the 
ultrastructural detection of more than occasional autophago-
somes with undegraded material in a cortical pyramidal 
cell body is rare [171] and likely a harbinger of a declin-
ing lysosomal efficiency rather than an over-active induc-
tion or autophagosome over-production. By contrast, even 
brief exposure of neurons to inhibitors of cathepsins or lyso-
some acidification prompts the rapid accretion of autophagy 

Fig. 2  Autophagy–lysosomal pathway (ALP) abnormalities progress 
during an exceptionally early “intraneuronal” stage of AD. A hypo-
thetical timeline of pathological changes in Alzheimer’s disease (AD) 
is depicted. Beginning during the preclinical (“intraneuronal”) stage 
and continuing in later stages, primary lysosomal dysfunction initi-
ates a cascade of autophagy failure, lysosomal membrane permeabil-
ity, intraneuronal amyloid plaque formation, and death of select neu-
rons, which instigates and propels extracellular AD neuropathology, 
as discussed further in the review. This intraneuronal disease stage is 
followed by the earliest detection by PET (or other imaging modali-
ties) of sequential emergence of extracellular β-amyloid plaques, tau 
tangles, inflammation and accelerated neurodegeneration associated 
with more rapid cognitive decline. It should be noted, based on neu-

ropathological studies [88], that the first tau lesions precede by age of 
occurrence the first amyloid-β plaques. A caveat to ordering defini-
tively the sequence of appearance of different anomalies is the rela-
tive sensitivity of the detection methods applied. Biomarkers for solu-
ble amyloid-β peptide and modified tau species in cerebrospinal fluid 
(not shown) become abnormal before amyloid-β and tau aggregates 
are detectable by PET or histologically. Elevated levels of these solu-
ble biomarkers in sporadic AD may precede detectable extracellular 
lesions by 1–2 decades or more before symptoms [139] which could 
possibly overlap temporally with changes during the “intraneuronal” 
stage, although this has not been studied.  Adapted from Jack et al., 
2010 [98] and 2013 [97], Leuzy et al., 2019 [134], and McDade and 
Bateman, 2018 [150]
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intermediates [13]. These observations imply that healthy 
neurons can have a relatively high rate of constitutive 
autophagy induction but also normally have a lysosomal 
clearance system with enough reserve capacity to prevent 
temporary surges of induction from causing dangerous sub-
strate build-up [13].

Additional responses in healthy neurons confer resilience 
to an increase of damaged proteins and organelles that can 
threaten survival. Upregulation of transcription factors (e.g., 
TFEB, TFE3) controlling the “CLEAR Network” of genes 
encoding autophagy and especially lysosomal biogenesis 
constitutes a successful strategy to delay effects of cell 
aging or extend longevity in vivo in aging models [179] 
and to slow or prevent neurodegenerative disease progres-
sion in mouse models [149]. In addition, in some neural cell 
types, failing lysosomes can jettison accumulated lysoso-
mal cargoes by exocytosis [93, 178, 243]. Over-burdening 
lysosomes with cargoes from the endocytic pathway can 
also be attenuated by a default release via exosomes that are 
formed via late endosome membrane invaginations that cap-
ture cytoplasmic materials into vesicles [135]. These vesi-
cles are released when an endosome fuses with the plasma 
membrane. In addition, endosome cargoes can enter the 
autophagy pathway by fusing with autophagosomes that can 
expel their contents by exocytosis—a process so far docu-
mented mainly in non-neuronal cells [153]. These various 
“unconventional secretory” pathways may be constitutive 
but are upregulated as default pathways when lysosomal effi-
ciency declines in aging and disease [3]. In a final adaptation 
to cope with poorly degraded substrates in autolysosomes, 
ineffective congested autolysosomes can fuse and undergo 
further compaction via residual hydrolysis and chemical 
modification, which yields the aging-related lipopigment, 
lipofuscin, a relatively but not completely inert family of 
lipo-proteinaceous granules [162].

Neuronal aging: the gateway to lysosomal failure 
and neuron death in AD

Disease emergence in aged adults coincides temporally 
with waning neuronal proteostasis, especially in autophagy 
involving declines in autophagosome biogenesis [183, 230], 
waste trafficking and degradation [230], and translocation of 
CMA substrates into lysosomes [49, 50]. Particularly influ-
ential to the autophagy pathway decline in aging cells of 
lower species [30] and likely also mammals [24] is progres-
sive lysosomal dysfunction tied to failing lumenal acidifica-
tion [230]. This is shown, at least in part, to be due to ROS 
and aldehydes (e.g., 4-hydroxynonenal) from oxidized lipids 
[190] causing oxidative damage to vATPase complex subu-
nits and lysosomal enzymes [189, 192, 253].

Proteostasis protects against pathogenic protein accumula-
tion for decades until aging-related autophagy impairments 

[26, 60, 188, 191] trigger a rise in levels of toxic substrates, 
boosting oxidative stress [199] and mitochondrial damage that 
yield calcium dyshomeostasis and calpain activation, known 
to mediate varied effects of cell aging [197, 228]. The long-
term protection against these challenges until late age explains 
why even individuals with autosomal dominant mutations in 
a pathogenic protein are functionally normal until sufficient 
lysosomal dysfunction emerges. Aging’s role in precipitating 
neurodegenerative disease involving lysosomal mechanisms 
can be appreciated from genes that, in homozygote mutant 
form, cause childhood lysosomal storage diseases but, even 
in heterozygote form, increase risk for a late-age onset neuro-
degenerative disorder, such as Parkinson’s disease (GBA) or 
frontotemporal dementia (CLN11) [233].

Lysosomal membrane permeabilization (LMP) to a variable 
extent (Fig. 3) is the inevitable outcome of these cumulative 
aging-related insults to lysosomes and is often the harbinger of 
neurodegeneration [79]. LMP is defined as the selective desta-
bilization of the lysosomal membrane, which allows certain 
lysosomal contents to be released into the cytoplasm. Instigat-
ing factors include free radicals, membrane incorporation of 
damaged proteins and oxidized lipids, osmotic shifts due to 
ion flux changes [121, 176], and changes in membrane lipid 
composition, such as increased lyso-phosphatidylcholine and 
ceramide [12]. Calpain activities actually increase in aging 
[147, 170] and can potentially act upstream of, or coincident 
with, pH dysregulation [151, 158] to damage organelles and 
cytoskeleton, adding to LMP and necrotic damage in AD [197, 
228]. Aging-related declines in the endogenous inhibitor of 
calpains, calpastatin [170, 197], also lie upstream of cathepsin 
release during lysosomal-associated cell death [234].

These effects of aging are countered by the chaperone 
Hsp70, which binds to the endolysosomal anionic phospho-
lipid BMP [116], a co-factor that enhances acid sphingomy-
elinase activity. Under the vATPase deficient conditions that 
develop during aging [46, 127], heightened lysosomal calcium 
release into the cytosol activates calpains and protein kinases 
that have significant pathogenic consequences discussed 
below. Mitochondrial deterioration, a major contributor to 
cell aging activates neuronal mitophagy [22, 188] represents 
another LMP instigator [107, 231]. A strong surge of cytosolic 
calcium and calpain activation is sufficient to induce necrotic 
cell death [170]. Collectively, aging-related changes precede 
and add to lysosomal insults imposed by causal and risk dis-
ease genes discussed below.
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How cell death evolves in the first neurons 
to die in AD

Faulty lysosomal acidification and autophagy flux 
failure arise exceptionally early

As early as Braak stage II, pyramidal neurons in prefrontal 
cortex of the late-onset AD (LOAD) brain exhibit increased 

numbers of pro-cathepsin D and cathepsin D-positive lys-
osomes, elevated cathepsin D mRNA transcription, and 
mannose-6-phosphate receptor (MPR) trafficking of lyso-
somal enzymes to endosomes [32, 33], all implying upreg-
ulated lysosomal biogenesis. Microarray analysis of laser-
captured CA1 hippocampal neurons in LOAD (Braak III 
and V) further demonstrate upregulated lysosomal gene tran-
scripts [16] and proteomic analysis of the large ROSMAP 

Fig. 3  Lysosomal membrane permeability (LMP) and lysosomal neu-
ronal death cascade in AD. This diagram of the lysosome illustrates a 
crucial inciting decline in vATPase activity and lysosome acidifica-
tion, which is a primary target of AD causative genes/gene products 
(PSEN1 mutations, APP, and genetic and environmental risk fac-
tors (e.g., ROS, neuronal aging, and high cholesterol), as discussed 
further in the text. Counter-productive induction of autophagy when 
lysosomal dysfunction is advanced may also exacerbate waste stor-
age, ROS, and deacidification, thus promoting LMP. Also depicted is 
the cascade of further lysosome disruptions and lysosome- associated 
processes affecting mitochondria and innate immune function. The 
diagram further illustrates how LMP is connected to other pathways 
of cell death that can be upstream contributors (e.g., calpain activa-
tion and Hsp70), coincident exacerbating factors (e.g., ferroptosis), or 
downstream consequences of the release of cathepsins during LMP 
or lysosomal cell death (cathepsins, caspases, calpains, and Cdk5/
p25), which facilitate end stages of cell death. Collective injury to 
the lysosomal limiting membrane from the depicted sources induces 

lysosomal membrane permeability (LMP)—a state of injured mem-
branes that allows relatively small proteins like cathepsins to pass 
through into the cytoplasm from an otherwise intact lysosome. Some 
hydrolases commonly released during LMP, such as cathepsins B and 
D, remain partially active at neutral pH and their potential cytotoxic-
ity is buffered by cystatin C, an endogenous cysteine protease inhibi-
tor in the cytosol and lysosomes [217]. The release of cathepsin B is 
linked to IL-1 activation, NLRP3 inflammasome activation, and neu-
roinflammation and can activate multiple cell death cascades, includ-
ing caspases that trigger apoptosis. Cathepsin D release by LMP pro-
motes necroptosis [143, 257]. Impaired ferritin degradation invokes 
features of the cell death pattern seen in ferroptosis [201]. Calcium 
release via TRPML1 and TPC2 channels activates calpains and cal-
cium-dependent protein kinases promoting hyperphosphorylation 
of pathogenic proteins like tau and activation of RIPK1, which ini-
tiates necrosis-associated neurodegeneration. TRPML1- and TPC2-
mediated calcium release is linked to mitochondrial dysfunction, and 
mTORC1 activation
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[106, 129], and Banner [239] AD cohorts indicate early and 
sustained inhibition of mTOR [129]. These data suggest 
that, surprisingly, elevated autophagy induction persists 
[16, 141] even as rising lysosome levels of LC3 and inac-
tive catD document a decline of lysosomal clearance [129]. 
Dual-immunolabeling with antibodies to catD and LC3 by 
Braak III stage confirm build-up of grossly enlarged catD/
LC3-positive autolysosomes and depletion of CatD-positive 
lysosomes [129]. Collectively, these analyses indicate that 
autolysosome maturation to lysosomes (i.e., substrate diges-
tion) stalls early in AD and worsens with disease progres-
sion. Proteomic analyses revealing declines in levels of most 
vATPase subunits in AD brain [106, 129], which together 
with complementary evidence in mouse AD models dis-
cussed below, strongly suggest that a lysosomal acidifica-
tion deficit underlies impaired autolysosome maturation. 
Sustained autophagy induction compounds autophagic stress 
under these conditions—a seemingly maladaptive neuro-
protective response that over-burdens failing lysosomes by 
delivering even more substrates [16, 129, 225].

An autophagy–lysosomal pattern similar to that in late-
onset AD brain has been extensively detailed in neurons of 
different mouse AD models ranging from late disease onset 
in mice expressing human wt APP or mutant APP, to early 
onset in mice expressing mutant forms of both APP and Pre-
senilin 1 (PSEN 1) [130, 140]. To track autophagy changes 
in neurons in vivo, a probe of autophagy and vesicle pH, the 
mRFP-eGFP-LC3 (“TRGL”) construct, was stably expressed 
selectively in neurons (Fig. 4). As in AD brain, autophagy 
becomes dysregulated broadly in vulnerable populations of 
cortical and hippocampal neurons well before β-amyloid or 
glial reactive responses are detectable. Most of these neurons 
accumulate enlarged poorly acidified autolysosomes filled 
with undegraded substrates. Lysosomes isolated from these 
brains have significantly lowered vATPase activity (Fig. 5). 
The basis for the defect is impaired autolysosome acidifica-
tion stemming from deficient lysosomal vATPase activity 
related to APP-βCTF [95] which accumulates together with 
Aβ selectively in these poorly acidified autolysosomes [95] 
(Figs. 3, 5). More generally, lysosomal pH dysregulation 
originating from causative mutations of one of multiple ion 
channels is an emerging common theme in adult neurode-
generative diseases, which may potentially disrupt pH in 
either direction [169].

In a select small subpopulation neurons that are most 
affected, poorly acidified autolysosomes build-up so mas-
sively that these fluorescent autophagic vacuoles bulge the 
plasma membrane outward, forming rosettes of large petal-
shaped blebs—a flower-like pattern referred to as PAN-
THOS (p-ANTHOS or poisonous flower), which is seen in 
mouse and human AD brain [129] (Fig. 6). Within the soma, 
proliferated autophagosomes are frequently seen fused with 
endoplasmic reticulum (ER) tubules, suggesting that they 

have stalled in completing the normally highly active turno-
ver of ER by autophagy (“ER-phagy”) (Fig. 7b). Proteins, 
including amyloidogenic metabolites of APP, build up in 
the ER [130], as they can in other abnormal states [85, 174], 
and, in a mechanism still not fully understood, form fibril-
lar aggregates of β-amyloid intracellularly within the ER 
membrane tubular network that rings the nucleus [186]. A 
neuron at this stage of PANTHOS, which is still fully intact 
by confocal and 3D ultrastructural analysis, is likely to be 
misclassified as an extracellular amyloid plaque when exam-
ined only using β-amyloid immunocytochemistry or silver 
staining (Figs. 6, 7).

Balancing lysosome membrane permeability (LMP) 
against lysosomal repair, lysophagy, and other 
defenses

In the mouse AD models studies above, LMP detected at 
the initial stage of AD using the classical assay devised by 
Christian DeDuve, the discover of lysosomes, coincides with 
impaired lysosomal acidification, an established cause of 
LMP [21–23]. Other likely routes contributing to LMP [176] 
in AD are damage from free radicals, including especially 
oxidative stress-induced Hsp70.1 carbonylation and calcium- 
and calpain-mediated cleavage [244]. Lysosomal repair is a 
critical physiological/homeostatic defense against worsen-
ing LMP that leads to catastrophic disruption and irrevers-
ible LCD via release of hydrolases and calcium. Repair is 
assisted by Hsp70, which binds to bis(monoacylglycerol)
phosphate (BMP) and increases acid sphingomyelinase 
activity, which helps to rebalance lysosomal membrane lipid 
composition [180] (Fig. 3). Recruitment of the endosomal 
sorting complexes required for transport (ESCRT) machin-
ery plays a key role [195, 211, 256], leading to restoration 
of lysosomal acidity. The upregulation and acetylation of 
Hsp70 also induces an autophagic induction response [184] 
and attenuates the likelihood of caspase-independent and 
caspase-dependent cell death by inhibiting Apaf1 and AIF 
[156]. Autophagy upregulation is anti-apoptotic in several 
additional ways. Beclin1, a key component and regulator of 
autophagy, binds and suppresses the pro-apoptotic molecule 
Bcl2 [11, 57]. Pro- versus anti-apoptotic balance plays out 
differently in a given neuron population. Although Beclin 1 
levels were reported to be lowered in AD brain, subsequent 
analyses have measured normal levels [106, 129]. In PS1/
APP mouse neocortex, rare neurons undergoing classical 
apoptosis are seen within the larger population exhibiting 
various degrees of PANTHOS-pattern autophagy–lysosomal 
dysfunction. Notably, a third population exhibits clusters of 
autophagic vacuoles containing activated caspase 3, sug-
gesting another way by which autophagy can neutralize an 
apoptosis threat [247]. As a second line of defense when 
LMP in a lysosome becomes overwhelming, lysophagy 
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eliminates the lysosome. In this process, galectins enter the 
lysosome, bind to intralumenal β-galactosides resulting in 
their surface exposure and LC3-mediated engulfment into 
autophagosomes for clearance by intact lysosomes [180].

Neurons exhibiting PANTHOS form intracellular 
β‑amyloid plaques and transform into extracellular 
senile plaques when they die

Despite the massive autophagic pathology in intact PAN-
THOS neurons, they are not significantly invaded by micro-
glia for multiple weeks in the mouse models of amyloidosis 
and not until they appear to have lost structural integrity. 

The prolonged “agonal” state of PANTHOS neurons and 
their significantly delayed recognition by microglia as being 
irreversibly compromised confirms their persistent viability 
even in this compromised state. The absence of caspase 3 
activation [130] and the slow removal of PANTHOS neuron 
corpses mediated by invading glial cells [130] further dis-
tinguishes this form of cell death from apoptosis. It further 
suggests that even the clearly maladaptive sustained induc-
tion of autophagy in the face of lysosome failure is a lasting 
albeit futile attempt to maintain viability rather than it being 
a stimulus to enter an autophagic or apoptotic cell death 
program. PANTHOS is ultimately accompanied by wors-
ening LMP and autophagic-lysosomal death followed by 

Fig. 4  A transgenic ratiometric autophagy probe in neurons enables 
interrogation of brain autophagy in vivo. a Schematic representation 
of the dual fluorescence autophagy sensor, mRFPeGFP-LC3 (tfLC3) 
with a Thy1 promoter (“TRGL mice”). Transgene founders were 
identified with a forward primer in Thy1 and a reverse primer in the 
RFP gene. b The schematic illustrates changes in fluorescence signals 
during the progression of autophagy in TRGL mouse neurons. Yel-
low puncta indicate autophagosomes, orange puncta indicate incom-
pletely acidified autolysosomes, which may in the process of matur-
ing or are autolysosomes pathologically deficient in acidification. 
Red (mRFP only) puncta identifies autolysosomes that are normally 
acidified to a pH level that quenches GFP fluorescence after AP-LY 
fusion, indicating fully acidified ALs with detectable ongoing LC3 

digestion. The distinction between a normal maturing autolysosome 
and an abnormal poorly acidified autolysosome, both appearing yel-
low/orange, is achieved by IHC co-labeling with a lysosomal marker 
(CTSD). In the triple fluorescence condition, acidified autolysosomes 
are purple, white puncta are autolysosomes that are poorly acidi-
fied (eGFP not quenched), and lysosomes are blue. Net fluorescence 
“color” is objectively quantified ratiometrically as hue angle yield-
ing a measure of relative pH. c Changes of morphology and pH of 
autophagy pathway organelles are illustrated in the somas of neocor-
tical neurons in TRGL mice. A vehicle control condition is compared 
with conditions where lysosomal pH is abnormally elevated (see Ref. 
[130] for further details). Scale bar: 20 μm
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microglial and astrocytic invasion of the PANTHOS corpse 
which further matures the extracellular senile (“amyloid”) 
plaque into lesions of diverse morphologies [8, 14, 52, 73, 
94, 102, 124, 126, 130, 163].

The PANTHOS morphology of a still intact neuron in 
an FAD mouse model of ß-amyloidosis (Fig. 7a) closely 
matches a corresponding PANTHOS profile in human AD 
brain at Braak III stage (PFC) (Fig. 7b). Aβ immunoreactiv-
ity is present in the Aβ-positive autolysosomes contained 
within plasma membrane blebs, similar to that described 
in mouse models [130]. An advanced stage of PANTHOS 
may also exhibit perinuclear amyloid accumulation or can 
remain more dispersed and assume a coarse-grained plaque 
morphology at the early Braak stages. As AD pathology pro-
gresses in neurons expressing the neuron-specific autophagy 
reporter, there is greater diversity of plaque morphologies 
[15, 61, 229] reflecting the evolution of morphological 
changes that result from the progressive proteolytic clear-
ance and bystander neurodegeneration [169]. The complex-
ity of pathology in later-stage AD, coupled with the fact that 

glia strongly immunolabel with lysosomal markers, impedes 
an unequivocal characterization of plaque origins. The abil-
ity in TRGL-expressing mice to track plaque development 
from a single pyramidal neuron population as it transforms 
into a senile plaque and further mature provides important 
new insight into the possibility that a sizeable proportion of 
the plaque diversity derives from the sequence of neuronal 
death, neighbor recruitment, and slow progressive clearance 
by glia.

The evolution of PANTHOS in some highly vulnerable 
neuron populations supports an “inside-out” origin of neuron 
cell death and plaque development in AD [51, 82], empha-
sizing that significantly deleterious Aβ actions are exacted 
intraneuronally on lysosomal compartments and ultimately 
initiate death of the neuron, yielding a senile plaque [130], 
which then can trigger additional secondary responses that 
accelerate disease. In these later phases of disease, it is pos-
sible that (possibly defective) microglia dying after tak-
ing up amyloid and related plaque debris can also develop 
PANTHOS-like states that transform into a classic plaque 

Fig. 5  Extreme autophagy–lysosomal dysfunction (“PANTHOS”), 
LMP, and loss of highly vulnerable pyramidal neurons in AD: an 
exceptionally early unique pattern of progressive autophagic stress, 
autolysosome pH deficits and plasma membrane blebbing (“PAN-
THOS”) is detected in varied mouse models of AD pathology (only 
Tg2576 model shown here) expressing a dual-fluorescent RFP—
eGFP—LC3 autophagy reporter in neurons. Especially when the 
nucleus is DAPI-stained, the pattern, termed PANTHOS—p-anthos 
or “poisonous flower”, resembles brightly colored flower blossoms 
and was referring to the slow but inevitable death of these neurons 
(see also Fig.  6). Appropriate fluorescent antibody markers have 
recently detected a similar autophagy dysfunction and PANTHOS 
lesions in human late-onset (LOAD) brain [68] (Fig.  7). a Repre-
sentative tfLC3 fluorescence images of 10-month-old Tg2576/TRGL 
mouse brain depicting neurons at three different stages toward PAN-
THOS state: i: early pH change in autolysosomes (CSTD-positive in 
c.); ii: focal plasma membrane bulges as poorly acidified (yellow) 
autolysosomes (pa-ALs) enlarge and proliferate (arrowhead); iii: full 
PANTHOS pattern (arrow). b Lower magnification image of cor-
tex highlights the flower-like pattern of PANTHOS, its frequency at 

a mild/moderate stage of disease, and the preponderance of yellow 
(poorly acidified autolysosomes in the blebs—see also e). c Staining 
of PANTHOS neurons using nuclear marker (DAPI) in 10-month-old 
Tg2576/TRGL mouse brain. Scale bar, 10 μm. Over 90% of amyloid 
lesions are PANTHOS (detectable central DAPI nucleus) at early-
stage disease and > 65% at later stage [130]. d Autolysosome acidi-
fication deficits develop early in AD model mice and progress with 
age. Poorly acidified autolysosome number in 5-month-old Tg2576/
TRGL is elevated and acidified autolysosome number is lowered 
compared to neurons in TRGL littermates. Scale bar, 20 μm. Lysoso-
mal vATPase activity is also decreased at 6-months [130]. e A third 
fluorophore (cathepsin D IHC) reveals that most autophagic vacuoles 
in the blebs are autolysosomes that have fused with lysosomes but fail 
to acidify (appearing as white puncta reflecting presence of all 3 fluo-
rescence labels). f Lysosomal membrane permeability develops early 
in mouse models. Lysosomal enzyme distribution (ratio in cytosol vs 
membrane/vesicle fraction) is normal at 2.7  months of age but sig-
nificantly abnormal by 6-months in 5xFAD versus WT mice. (Panels 
reproduced from Nature Neuroscience [130] with permission)
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via a similar inside-out mechanism [8]. The additional pos-
sibilities of neuritic dystrophy [115] or synaptic degenera-
tion seeding diffuse plaques or the expansion of plaques 

from extracellular amyloid cannot be excluded. However, 
in mouse AD models, amyloid plaques grow mainly by cor-
rupting neighboring neurons to accelerate PANTHOS and 

Fig. 6  Evolution of autophagy–lysosome dysfunction in Alzhei-
mer’s disease leading to neurodegeneration. a A primary effect of 
APP-βCTF elevation in AD brain [2, 74, 91, 101, 104, 187, 193, 
219, 227, 231] is the inhibition of vATPase activity, which dis-
rupts lysosomal acidification [95, 102, 130]. Coupled with multiple 
genetic, environmental, and cell aging factors [19, 37, 113, 122, 125, 
126], APP-βCTF begins to corrupt lysosomal function at the earli-
est stage of the disease and before hallmark neuropathology appears. 
b Increased autophagy induction, an early neuroprotective cellular 
stress response, becomes counter-productive as degradative compart-
ments progressively fail to clear the growing waste burden. Ensuing 
build-up of autophagic vacuoles (AVs), mainly poorly acidified autol-
ysosomes, causes a unique pattern of extreme perikaryal membrane 
blebbing and trafficking deficits of retrograde moving amphisomes 
and late endosomes that produce swellings along axons (dystrophic 
neurites-DN. Within the perikaryon, Aβ accumulation in autolys-
osomes accelerates, and aggregates of fibrillar β-amyloid form within 

endoplasmic reticulum (ER) tubules. Reflecting an apparent stalling 
of ER-phagy—a normally highly active constitutive process of ER 
turnover by autophagy. c This intracellular pathobiology evolving 
within still intact neurons, precedes lysosomal membrane perme-
ability and the lysosomal-associated neuronal cell death and replace-
ment of each dying neuron with a senile (“amyloid”) plaque (SP). 
An inflammatory response to the extracellular β-amyloid involves 
the recruitment of reactive astrocytes (A) and phagocytic microglia 
(M) to the disintegrating neuron and release of damaging cytokines 
and hydrolases that gradually clear the extracellular debris. Bystander 
neurotoxicity in nearby neurons and further glial invasion expands 
some senile plaques (not shown in the diagram). PANTHOS-like 
centrifugal blebs projecting from the central area of a senile plaque 
represent the important contribution of somal AV-filled blebs to the 
neuritic appearance of senile plaques in human AD brain drawn by 
Oskar Fischer [71] interpreted mainly as dystrophic neurites by later 
investigators. Diagrams are adapted from [130, 169]
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forming the larger plaques [130]. The foregoing sequence 
of events is consistent with data showing that neuronal cell 
death is prominent in mouse models of AD pathology that 
exhibit greatest intraneuronal accumulation of Aβ and/or 
APP-βCTF [29, 67, 81, 109, 130, 160], whether or not they 
develop extracellular plaques [240] or whether ß-amyloid 
experimentally is redistributed from extracellular to intra-
cellular locations [160]. Neuron loss is a robust feature in 
a variety of single and multiple transgenic lines: pyramidal 
neuron loss especially appears related to intraneuronal Aβ 
accumulation [41].

The genetic basis of primary lysosomal pH 
dysregulation in AD

That lysosomal acidification impairment is among the ear-
liest pathogenic deficits known in AD brain is consistent 
with evidence that lysosomal APP-βCTF is a major trigger-
ing factor [95], acting together with possible further lyso-
some damage from other accumulating lysosomal oxidized 
substrates, including Aβ. Acidification is mediated mainly 

by the ATP-dependent proton pump, vacuolar H + -ATPase 
(vATPase) [45, 47, 161], a 14 subunit complex regulated 
mainly by the extent of reversible association of a cyto-
plasmic subcomplex (V1) and a membrane associated V0 
subcomplex (Fig.  3, [169]). Crucial to pathogenesis of 
AD and likely additional neurodegenerative diseases [46], 
the a1 subunit of the V0 subcomplex (V0a1) is responsi-
ble for mediating the association between the V1 and V0 
subcomplexes that regulates vATPase activity [48]. APP-
βCTF binds selectively to the V0a1 subunit and inhibits this 
association [94], thus linking its elevation in the lysosomes 
of AD neurons to the early decline in acidification [102, 
130] and extreme autolysosomal and lysosomal pathology 
[94, 102, 124, 126, 130, 163]. The negative impact of APP-
βCTF on lysosomes adds to its other pathogenic actions in 
triggering endosome dysfunction linked to cholinergic neu-
rodegeneration at early stages of AD [100–102, 123, 220] 
and in dysregulating mitochondria-associated ER membrane 
interactions (MAMs) that disturb calcium and lipid homeo-
stasis [5] and elevate reactive oxygen species (ROS) levels 
[5] (Figs. 1, 3).

Fig. 7  Comparable PANTHOS-pattern autophagic pathology and 
intraneuronal β-amyloid in a mouse AD models and b early-stage 
human AD brain. IHF labeling using 4 fluorescence labels (TRGL 
5xFAD mouse model, DAPI nuclear stain, and amyloid immunola-
beling (4G8) demonstrate similar intraneuronal Aβ accumulation sur-
rounding a visible DAPI-positive nucleus within a PANTHOS neuron 
in both human and mouse brains. Scale bar, 10 μm. c Immunohisto-
chemistry image of the ROI (box) used for serial SEM imaging of 
a 2.7-month-old 5xFAD/TRGL mouse brain. Scale bar, 40  μm. d 
z-stacked serial SEM image of the ROI area, serial sections 370–430 
through the PANTHOS depicted in the ROI. Scale bar, 40 μm. Arrow 

indicates the PANTHOS of interest. e 3D reconstruction of 573 serial 
sections through the indicated PANTHOS neuron demonstrating its 
integrity as a neuron and the abundance of AVs in blebs with nar-
row necks (colored pink) projecting from the somal PM. The central 
nucleus is colorized blue. f Confocal image of a PANTHOS state of a 
neuron from a 5xFAD mouse model highlighting the protrusions of 
AV-filled blebs with narrow necks originating from the somal plasma 
membrane and resembling similar plaque lesions in human AD brain 
depicted initially by Oskar Fischer [71] in panel g (panels a, c-f 
adapted from Lee et al. 2022 [130] with permission)
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Evidence tying causative AD genes to lysosomal pH dys-
regulation first arose from studies of Presenilin 1 (PSEN1) 
mutations, the most common cause of early-onset familial AD 
[131]. Most notably as the catalytic subunit of the γ-secretase 
complex [55, 84], an intra-membrane endoproteinase acting on 
many endolysosomal substrates, PSEN1 cleaves APP-βCTF 
to yield amyloid-β (Aβ) peptide. As importantly, PSEN1 by 
itself in its uncleaved holoprotein form has varied functions 
[92, 99, 103, 216] including acting as a chaperone in the ER 
and Golgi to facilitate the folding and glycosylation of the 
crucial V0a1 subunit [131], thereby stabilizing it against pre-
mature ERAD proteolysis before it is delivered to lysosomes 
for assembly of the vATPase complex [7, 95, 127, 131, 209, 
241]. PSEN1 is, therefore, required for adequate lysosomal 
acidification. Its deletion sharply reduces lysosomal vATPase 
activity and clearance of substrates, including APP-βCTF and 
Aβ [95, 130].

Restoration or enhancement of lysosomal function 
attenuates autophagic stress, neuronal cell death, 
and amyloid plaque formation in AD models

An essential criterion for lysosomal cell death is its inhibition 
or significant delay by restoring lysosomal functionality. The 
primary or central role of the autophagy–lysosomal pathway 
and its closely networked endosomal-lysosomal pathway in 
driving diverse pathological and pathophysiological features 
of AD is strongly supported by the broad disease amelioration 
achieved in AD models by enhancing lysosomal function and 
autophagy flux [68, 148, 214, 227, 249]. Rescue of deficits 
ranging from failed waste clearance [17, 45, 127, 236], amy-
loid and tau pathologies and synaptic and cognitive deficits 
[89, 117], has been repeatedly confirmed using widely varying 
approaches sharing the property of enhancing flux through the 
entire autophagy pathway [28, 148, 214, 250]. Notably, simi-
lar levels of rescue are achieved when lysosomal proteolytic 
efficiency is specifically enhanced including elevating cathep-
sin activities [25, 157] by genetic manipulation of lysosomal 
protease inhibitors [217, 250], increasing lysosomal biogen-
esis and transcription of vATPase subunits [56, 148, 213], or 
pharmacologically re-acidifying lysosome, including using 
lysosomal-targeted acidic nanoparticles [17, 45, 127]. Phar-
macological restoration of lysosomal acidity has been shown 
in preliminary studies to substantially block death of neurons 
exhibiting PANTHOS and commensurately lowering senile 
plaque number.

Autophagy and the concept 
of lysosomal‑dependent cell death in AD

“Heterogeneity” of neuron cell death patterns in AD

The modes of death reported for different cell types in the 
AD brain vary widely in different pathological contexts. 
Scattered cortical neurons of the PS1/APP mouse AD 
model undergo unequivocal apoptosis without the substan-
tial antecedent autophagy pathology evident in most other 
neocortical cells [247]. In the prolonged neuronal survival 
battle that is ongoing in neurodegenerative diseases like 
AD, multiple cascades are activated as disease advances. 
When a biomarker selective for a single cell death path-
way detects its activation at one stage of the demise, other 
participating modes of cell death may frequently be over-
looked. The complexity of cell death analysis in AD brain 
is compounded as phagocytic, neuroinflammatory, circuit 
disconnections, and neurotrophic failures superimpose 
triggers of additional death cascades over the primary 
initiator. One may ask, for example, whether the dem-
onstrated activation of an apoptotic program should be 
considered the defining mode of cell death in a disease if 
lysosomal or necrosis-related triggers have already ren-
dered the neuron irreversibly on a path to death? These 
are key considerations in deciding whether events leading 
to death are triggers or executioners or both. PANTHOS 
associated lysosomal-dependent neuron death evolves dur-
ing a disease stage preceding superimposition of many 
complicating disease accelerants (e.g., inflammation and 
glial proteases).

Roles of lysosomes in the execution of neuronal cell 
death in AD

An acute massive disruption of lysosomes is sufficient 
to induce and partially execute death as was classically 
illustrated by the rapid cell death induced by the uptake 
of large particles, such as silica, into lysosomes which can 
be delayed or substantially slowed by cathepsin inhibitors 
[181]. Severe LMP that overwhelms repair mechanisms 
and lysophagy can be driven by converging AD-related 
factors, including inhibition of vATPase [105], APP-βCTF 
and cholesterol, calcium-mediated activation of calpains, 
and ROS-generation from oxidized lipids, proteins, and 
Aβ, which are elevated early in vulnerable neurons in 
AD brain [20]. Even under extreme conditions of lyso-
somal disruption, however, other cell death cascades are 
inevitably activated, resulting in end-stage necrosis and 
varying levels of caspase activation. Such a chain reaction 
of cell death executioners is documented from studies of 
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acute and gradually progressive LMP [79, 23]. Various 
cathepsins such as aspartic cathepsin D and cysteine cath-
epsins B, C, F, H, K, L, O, S, V, W, and X are considered 
effectors in apoptotic cell death [156]. The contribution of 
cathepsins, however, should not be underestimated, given 
that restoring acidification of autolysosomes substantially 
blocks neuron loss and amyloid plaque production.

In addition to promoting LMP and the release of cytotoxic 
hydrolases into the cytosol, declining lysosomal acidification 
broadly inhibits intraluminal hydrolase activity and espe-
cially the most acidic cathepsins like cathepsin D, which is 
optimally active at pH 4.0–4.5. Lowered neuronal cathepsin 
D activity is an outcome of lysosomal pH rise in essentially 
all mouse models of AD pathology as well as in late-onset 
human AD [129, 223, 233, 257]. Cat D deficiency alone, 
causing an autophagy–lysosomal phenotype reminiscent of 
PANTHOS in mice, induces cell death without a dominant 
involvement of apoptosis [208].

The foregoing discussion implies that even at the termi-
nal stages of neuronal compromise, autophagy induction is 
playing a neuroprotective role in prolonging neuron survival 
by suppressing apoptosis and attempting waste clear despite 
extreme lysosomal inefficiency that impedes autophagy 
flux. This pattern is distinct from classical autophagic cell 
death [44], a death process associated with over-exuberant 
autophagy induction and preserved or possibly enhanced 
lysosomal function, enabling the cell to be consumed from 
within, ultimately killing it by eliminating cellular constitu-
ents essential for survival. Autophagy-dependent cell death 
is executed by the autophagy machinery [58] in the absence 
of apoptosis [4, 11] and requires evidence that death can 
be blocked or substantially delayed by selectively inhibiting 
autophagy. Programmed autophagic death of an entire cell 
population is seen in some lower invertebrates to achieve 
organ/tissue reorganization [164]. Over-activated autophagy 
may also contribute to the death of neurons injured by acute 
injuries, such as hypoxia/ischemia and trauma [164] and 
involves enzymes from lysosomes [58]. Beyond these situa-
tions, however, lysosome failure is a far more common cause 
of neuron death than is a defect in upstream autophagy. In 
AD models, enhancing induction of autophagy experi-
mentally (e.g., rapamycin, TFEB activation) is somewhat 
effective in attenuating pathology because it can upregu-
late lysosomal efficiency and autophagy flux by stimulating 
lysosomal biogenesis and the synthesis of subunits of the 
vATPase proton pump [114, 185].

Autophagy‑associated lysosomal‑dependent 
neuron death in AD in the context of other 
late‑onset neurodegenerative diseases

The lysosome or its related degradative compartments, 
the autolysosome and endolysosome, are the primary or 

secondary targets of an expanding list of genes causing 
late-age onset neurodegenerative diseases besides AD [169]. 
The point of mechanistic convergence in many cases is dys-
regulation of ion balance and pH, resulting in signaling and 
hydrolytic failure. Lysosome dysfunction, and particularly 
acidification, are being increasingly appreciated as targets 
of pathogenic proteins causing other neurodegenerative dis-
eases [46]. Channels on the lysosomal membrane regulating 
the import of chloride (ClC7, CLC5), potassium/H+ balance 
(TMEM175), calcium efflux/influx/proton leak (TRPML1 
and TPC2) among other ions, greatly influence physiologi-
cal proton content and pH but can also mitigate pathological 
changes in pH (detailed review: [169]). These ion fluxes 
influence baseline proton content and pH and can rebalance 
lysosomal pH under certain pathological conditions. The 
modulators of lysosomal ion balance and signaling have 
themselves been implicated as causative for diseases, such as 
Parkinson’s disease, e.g., SCNA and LRRK2), frontotempo-
ral lobar dementia, and several less common diseases [169]. 
In particular, lysosomal calcium exchanges with the ER and 
mitochondria maintain the large lysosomal calcium store that 
influences pH balance [42, 43, 83, 127] as well as the local 
calcium signaling that regulates varied steps in autophagy 
endolysosome trafficking and fusion events. Regulated cal-
cium efflux from lysosomes mediated by phosphoinositides 
and other cell signals modulates lysosome motility, fusion 
with other organelles, exocytosis, and local signaling con-
trolling autophagy flux [70, 144, 221], including transcrip-
tion of genes encoding autophagy and lysosomal biogenesis 
[152]. By contrast, uncontrolled calcium efflux caused by a 
sustained rise of lysosomal pH in AD models dangerously 
elevates cytosolic calcium levels, which activates calpains 
and varied pathogenic kinases that collectively are capable 
of triggering vesicular trafficking deficits, tauopathy, and cell 
death. One consequence discussed below is AD-like neu-
ritic dystrophy in aged PSEN1 FAD knock-in mice. Reduced 
lysosomal calcium levels, likely from excessive efflux, are 
also seen in LRRK2-related PD [112] and are attributable 
to enhanced activity or responsivity of Two Pore Channel 
2 (TPC2), a suspected target of LRRK2 phosphorylation.

Although primary lysosomal dysfunction is shared among 
multiple major neurodegenerative diseases, the PANTHOS 
pattern of autophagy pathology seen in AD is not present 
to this magnitude in other adult neurodegenerative diseases 
so far reported or studied in vivo with the TRGL autophagy 
probe (e.g., ALS-SOD1 mutation; HD-HTT mutation [10, 
215]. Critical differences between AD and these other dis-
eases are the importance of APP, specifically the direct 
inhibitory action of APP-βCTF on lysosomal acidification, 
contributory roles of other genes corrupting lysosomes, such 
as presenilin mutations and APOE4, and, importantly, the 
persistence of a high level of autophagy induction through-
out the course of AD. APP over-expression per se is not 
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an explanation for PANTHOS given that late-onset human 
AD [129] exhibit PANTHOS and accumulate higher levels 
of APP-βCTF. Potentially instructive in this regard is the 
childhood lysosomal disorder Niemann–Pick type C, which 
exhibits APP miss-metabolism, AD-like endosome enlarge-
ment, modest β-amyloid deposits, and striking autophagic 
vacuole build-up. Like AD, autophagy induction is sus-
tained and exacerbates the autophagy phenotype because 
when autophagy induction is experimentally suppressed, the 
build-up of storage material is attenuated [69, 146, 248]. 
Moreover, in contrast to AD and NPC, autophagy induction 
is not increased and may, in fact, diminish during the course 
of PD and FTLD [108, 182], which is expected to reduce the 
burden on lysosomes.

Further consequences of lysosomal 
dysfunction for AD pathological 
development

Tauopathy

Hallmark neurofibrillary tangles of AD, composed mainly of 
tau protein, are abundant in AD brain and in a few uncom-
mon aging-related degenerative diseases caused by rare tau 
mutations, including one form of frontotemporal dementia. 
An underlying mechanism involving the lysosome is sug-
gested by observations that NFTs are also present in the 
lysosomal disorders, NPC1 and mucopolysaccharidosis type 
IIB [175, 203, 204]. Despite its notoriety as a neuropatho-
logical AD hallmark, however, NFT accumulation in AD 
has been proposed to be a marker of resilience [53] com-
pared to the neurons that accumulate abeta [29] and other 
observations that neurons may live for decades with neu-
rofibrillary tangles [90, 155]. Other work has suggested that 
accumulation of pTau may not impair neuronal function, at 
least initially [120] and may instead facilitate neurons escape 
from apoptosis [136, 242]. Collectively, these studies raise 
the possibility that NFT formation may not be a primary 
driver of neuronal death in AD but rather may be a marker 
of resilience [29].

Abnormal hyperphosphorylation [63, 132], truncation of 
tau [38, 177], and cathepsin D suppression [223] are each 
considered to promote tauopathy-related neuronal dysfunc-
tions in AD, whether or not they are associated with tangle 
formation [63, 77]. Each is also an outcome of lysosomal 
deacidification and associated with TRPML1 activation 
[127]. These findings, together with evidence that tau is an 
autophagy substrate [9], suggest mechanistic links between 
tauopathy and lysosomal dysfunction, including calcium 
release from TRPML1 channels which may be regulated in 
a combined manner by pH,  Ca2+, phosphoinositides, and 
LAMTOR1 subunit of the Ragulator complex [127, 140, 

207, 218, 222]. The cytosolic calcium rise in PSEN1 AD cell 
models via lysosomal TRPML1 activates calpains [127, 140] 
which generates truncated tau prone to aggregation [38] and 
the p25 cleavage product of cdk5 that hyper-phosphorylates 
tau [132] in AD and in FTD models [196] while promoting 
cell death [132, 165]. Notably, inhibition of calpains specifi-
cally by over-expressing its endogenous inhibitor calpastatin 
markedly reduces tauopathy and neuron loss in tau P301L 
and P301S tauopathy mouse models [142, 196].

Tau is metabolized by both the ubiquitin proteasome sys-
tem and autophagy and contains a motif that targets it for 
chaperone-mediated autophagy [27]. Incomplete chaperone-
mediated autophagy of tau generates fragments that aggre-
gate and are cleared by macroautophagy [237]. Moreover, 
autophagy preferentially degrades a caspase-cleaved frag-
ment of tau implicated in tau neurotoxicity [62]. Consist-
ent with these findings, autophagy induction reduces tau 
pathology in the triple transgenic AD mouse model [28]. 
Conversely, autophagic-lysosomal dysfunction amplifies 
pathology and neurotoxicity of tau in other AD models [86, 
111]. In addition, asparagine endopeptidase, a lysosomal 
cysteine proteinase upregulated during aging and activated 
in AD [254], is released in neurons injured by brain ischemia 
and hypoxia [254]. This enzyme and I2PP2A translocate 
from neuronal lysosomes and the nucleus, respectively, to 
the cytoplasm where they interact and lead to tau hyper-
phosphorylation [9] rescued by asparagine endopeptidase 
inhibition [254].

Neuritic dystrophy of AD: a selective 
autophagy‑related trafficking deficit

Another hallmark AD lesion linked to autophagy–lysosomal 
impairment is neuritic dystrophy, referring to focal axonal 
swellings filled nearly exclusively with autophagic vacuoles 
and commonly present within senile plaques (or “neuritic 
plaques”) but more widely distributed. As in PANTHOS, 
amyloid-β, BACE1 and βCTF are enriched in AVs providing 
for potential release from affected dystrophic regions and 
formation of diffuse β-amyloid in the local vicinity. How-
ever, AD-like dystrophic neurites also form in the absence 
of β-amyloid as shown in aged PSEN1 knock-in FAD model 
mice [140] and GGA3-deleted mice that express high levels 
of BACE1 [115, 145]. In the former model, local calcium 
release from late endosome/amphisome compartments via 
TRPML1 activates JNK phosphorylation of dynein inter-
mediate chains, impedes retrograde motility of autophagic/
amphisomal vesicles [140] and induces their selective accu-
mulation within focal axon swellings [140] recapitulating 
AD neuritic dystrophy. Restoring proper lysosome acidity 
blocks these events [140]. Earlier studies showed that phar-
macologically inhibiting vATPase in primary neurons selec-
tively slows the retrograde motility of vesicles tagged with 
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LC3 or LAMP1 (i.e., autophagic vacuoles) and also induces 
their selective accumulation within focal axon swellings 
[133]. Involvement of calcium release from compromised 
lysosomes [138] is suggested by the PSEN1 FAD knock-in 
mouse model study [140] in vivo and in vitro, where the 
lysosomal calcium release activates c-jun N-terminal kinase 
and phosphorylates dynein thereby interfering with retro-
grade axonal transport of endolysosome compartments.

APP-βCTF is also linked to the lysosomal pH dysregu-
lation associated with impaired AV retrograde transport 
and accelerated neuritic dystrophy in individuals carrying 
a polymorphism of the AD risk gene, phospholipase D3 
(PLD3) encoding a lysosomal protein abundant in neurons 
[232, 251]. As discussed above under “Tauopathy”, the local 
release of calcium from poorly acidified endolysosomes 
likely disrupts dynein-mediated retrograde axonal motility 
[140].

Ferroptosis

In the face of heightened oxidative stress, genes involved 
in iron homeostasis are essential for neuron survival along 
with the genes for superoxide dismutases, endolysosomal 
function, autophagy, and cholesterol handling [226], all of 
which are widely implicated in neurodegenerative diseases. 
Rising oxidative stress in aging brain and neurodegenera-
tive disease especially from oxidized lipid accumulations in 
lysosomes elevate Fe2+ entry into cells [96, 252] through 
the endolysosomal system [6, 210], which helps to further 
drive oxidative stress via the Fenton reaction [206, 212] 
and promotes lysosomal deacidification [245]. Iron release 
from endolysosomes to cytoplasm requires low acidic pH 
and is key to maintaining appropriate cytoplasmic iron lev-
els. When lysosomal acidification is defective, Fe3+ derived 
from ferritinophagy, mitophagy or transferrin endocytosis 
cannot be reduced to Fe2+ thereby mpeding iron export and 
causing a deficiency of iron in the cytoplasm and in mito-
chondria [122]. Iron deficiency activates a pseudo-hypoxia 
response, loss of mitochondrial function, and non-apoptotic 
cell death [245]. Moreover, iron deficiency is sufficient 
to trigger inflammatory cell-autonomous inflammatory 
gene expression in cultured neurons and in vivo, trigger-
ing non-apoptotic cell death known to accompany sterile 
inflammatory responses [200, 238]. Importantly, inhibition 
of lysosomal vATPase is sufficient to initiate this cascade 
in vivo, which can be ablated by repleting iron through the 
diet [245]. Furthering the link between ferroptosis, LMP, 
and lysosomal cell death is evidence that ferroptosis requires 
cathepsin B expression, which can be mediated by STAT3, a 
positive regulator of ferroptosis in some cell lines and also 
a promoter of lysosomal-mediated cell death in mice dur-
ing mammary gland involution [119, 205]. Inhibiting lys-
osome-dependent cell death by pharmacological blockade 

of cathepsin activity or vATPase limits erastin-induced fer-
roptosis [76].

Consistent with the discussion that lysosome dysfunction 
catalyzes varied cell death cascades, a significant contribu-
tion by ferroptosis in AD has been increasingly suggested 
to be a secondary consequence of lysosomal dysfunction 
although the mechanism remains unclear and the relevance 
to human AD is, therefore, circumstantial [78, 130]. Altera-
tions in the three primary factors in this process—iron 
export [65], thiols (reverse transporter system  xc− and glu-
tathione (GSH)/glutathione peroxidase 4) and lipids, are 
considered contributors to AD pathogenesis. Collectively, 
these alterations lead to iron dyshomeostasis [59, 154] and 
iron-dependent lipid peroxide elevations, which are also seen 
in the brain in AD [1, 246] and are associated ultimately 
with cell death [255]. In conditions of high iron, such as AD, 
APP translation is increased [137], which can contribute to 
elevations of APP-βCTF and Aβ [40, 122, 202], thus accel-
erating lysosomal dysfunction.

Selected methods for autophagy–lysosomal 
evaluation in human brain

Striking neuronal autophagy–lysosomal abnormalities were 
initially appreciated in early AD brain using cathepsin D 
immunocytochemistry [34–36, 167, 168]. It was proposed 
at the time that the presence of active neuronal lysosomal 
cathepsins in extracellular plaques reflected a primary origin 
of plaques from dying neurons [35], although the integrity 
of these grossly distorted neurons and their relationship to 
amyloid plaques was difficult to establish using a single 
marker with or without markers of amyloid. The neuron-
specific LC3 autophagy probe selectively expressed in neu-
rons of mouse AD models, however, enabled a visualization 
of the true extent of autophagy pathology culminating in the 
unique PANTHOS morphological pattern to be appreciated 
together with intraneuronal amyloid lesions and their trans-
formation into extracellular plaques. With the PANTHOS 
evolution having been characterized, detection of this unique 
autophagy pattern and antecedent autophagic abnormalities 
in human AD brain can now also be achieved using appro-
priate pairs of antibodies and nuclear histochemistry [129]. 
The additional use of axonal markers and confocal imaging 
in the z-plane dimension facilitates distinguishing PAN-
THOS ongoing in neurons from the cells that have already 
transformed into plaques. It is important to note, however, 
that studies of neurons using TRGL mice do not exclude the 
possibility that microglial cells engorging amyloid-contain-
ing debris at later stages of AD may also exhibit a variant 
of inside-out plaque formation when they die. Conducting 
analyses in cortical regions of brain at early Braak stages 
(II–III) before the later-stage inflammatory response greatly 
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simplifies the recognition of individual neurons undergoing 
lysosomal cell death.

Conclusions

Compromise of vulnerable neurons culminating in their 
death in AD is frequently an indolent process reflecting con-
tinuous mobilization of repair and other mechanisms of neu-
roprotection, including autophagy, to counter aging-related 
and disease-promoting obstacles. Evidence suggests that cell 
death modes may differ for individual types of neurons and 
other cells in brain. Moreover, depending on the pathologi-
cal context, neurons even within the same population may 
activate different death mechanisms at varying stages. The 
characterization of neuronal cell death in AD is fraught with 
challenges reflecting the possible multiplicity of participat-
ing death subroutines, superimposed secondary toxicities 
from the brain’s responses to an initial insult, and technical 
difficulties of monitoring changes in the multiple cell death 
pathways that may be involved as neurons progress toward 
death.

The opportunity to characterize the entire course of 
an exceptionally early cell death of vulnerable neocorti-
cal pyramidal neurons in AD brain and mouse models of 
AD pathology by probing neuronal autophagy dysfunction 
prior to conventional neuropathological lesions is fortuitous. 
While ELA dysfunction emerges early in most layer III and 
V neocortical neurons, a select subset of these neurons 
develops unique states of worsening autophagic stress, LMP, 
abeta aggregation, and lysosomal-dependent death begin-
ning during this poorly understood “intraneuronal” stage of 
AD and leaving extracellular amyloid plaques in their wake.

The early emergence of LMP beginning as the brain ages 
evolves to more fulminant AD-related lysosomal dysfunc-
tion driven by genetic and environmental factors many of 
which converge on a mechanism of disrupted vATPase activ-
ity causing intralumenal pH to rise. These events leading to 
cell death are triggered and partly executed by dysregulated 
lysosomes given that genetic and pharmacological remedia-
tion of lysosomal deficits attenuate neuron cell death and 
ensuing extracellular amyloid deposition and rescue synap-
tic and cognitive impairments. These observations do not 
exclude participation by other cell death subroutines at end 
stages when the fate of the neuron may possibly have already 
been determined. The foregoing weight of evidence, how-
ever, establishes autophagy-associated lysosome-dependent 
cell death as one cascade in AD having numerous implica-
tions for the further progression of the disease. The findings 
to date encourage investigation of LMP/LCD modulation 
and therapeutic strategies targeting lysosome dysfunction 
to defeat AD at its earliest stage.
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