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Abstract
Alzheimer´s disease (AD) stands out as the most common chronic neurodegenerative disorder. AD is characterized by 
progressive cognitive decline and memory loss, with neurodegeneration as its primary pathological feature. The role of 
neuroinflammation in the disease course has become a focus of intense research. While microglia, the brain’s resident mac-
rophages, have been pivotal to study central immune inflammation, recent evidence underscores the contributions of other 
cellular entities to the neuroinflammatory process. In this article, we review the inflammatory role of microglia and astrocytes, 
focusing on their interactions with AD’s core pathologies, amyloid beta deposition, and tau tangle formation. Additionally, 
we also discuss how different modes of regulated cell death in AD may impact the chronic neuroinflammatory environment. 
This review aims to highlight the evolving landscape of neuroinflammatory research in AD and underscores the importance 
of considering multiple cellular contributors when developing new therapeutic strategies.
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Alzheimer’s disease and neurodegeneration

Aging is a global phenomenon, with projections indicating 
that by 2050, 16% of the world's population will be aged 
65 or older, compared to 9% in 2019 [235]. This demo-
graphic shift poses a significant challenge, as aging is a 
major risk factor for dementia, imposing an estimated eco-
nomic cost exceeding 2.8 trillion dollars. Alzheimer's dis-
ease (AD) is the most prevalent form of dementia affecting 
50 million people at present. AD cases are expected to 
double every 20 years [26, 163]

AD patients experience progressive cognitive decline, 
notably in episodic memory and executive functions, 
leading to interference with their daily activities. This 
cognitive impairment manifests as short-term memory 
deterioration, visuospatial processing issues, executive 
problems, and expressive speech difficulties. Together, this 
results in a growing burden on patients, caregivers, and 
families, impacting patients and relatives independence 
[118]. Despite extensive efforts, current treatments for AD 
are mainly symptomatic with limited efficacy, stressing 
the urgent development of therapies capable of halting 
the pathogenic process [110, 146]. Alois Alzheimer first 
reported AD in 1906 based on the examination of a single 
patient's brain, identifying key neuropathological features 
including deposition of so-called senile plaques composed 
of extracellular amyloid-β (Aβ) peptide aggregates and the 
formation of intraneuronal neurofibrillary tangles (NFTs) 
consisting mainly of hyperphosphorylated tau protein [5, 
6]. He also depicted and described a massive glial reac-
tion; however, it took several decades until the role of 
immune processes, such as microglial and astroglial reac-
tivity, have become a major focus of research [92].

The predominant hypothesis for AD pathogenesis is the 
amyloid cascade hypothesis, proposed by Hardy and Hig-
gins (1992) and supported by Selkoe and Hardy (2002) and 
others subsequently. Mutations in the amyloid precursor pro-
tein (APP), Presenilin-1 (PSEN1), and Presenilin-2 (PSEN2) 
genes, associated with early onset familial AD (EOAD), 
cause AD in individuals as young as their 30s and 40s [88, 
89]. EOAD mutations in APP and PS1/2 alter Aβ biogenesis, 
resulting in an altered formation of amyloidogenic Aβ pep-
tides [43, 52, 91, 152, 172, 240, 249]. In EOAD, symptoms 
follow the development of Aβ pathology by up to a decade, 
marked by the aggregation and deposition of Aβ peptides 
[13, 89, 104, 105]. This hypothesis suggests that accumu-
lating Aβ peptides initiate a cascade of pathological events 
involving neuroinflammation, synaptic loss, tau pathology, 
and neuronal loss, leading to progressive symptoms, cerebral 
atrophy, and ultimately death.

Neurodegenerative diseases (NDDs), including AD, 
can be distinctively identified by characteristics such as 
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brain region susceptibility or protein aggregate composi-
tion [70]. Interestingly, they also share important com-
monalities like pathological protein aggregation, synaptic 
and neuronal network dysfunction, aberrant proteostasis, 
cytoskeletal abnormalities, altered energy metabolism, 
DNA and RNA defects, inflammation, and neuronal cell 
death [257]. These commonalities do not arise from a sin-
gle dominant molecular pathway. Instead, the neurodegen-
erative process seems to result from the synergistic action 
of various interrelated mechanisms including abnormal 
protein dynamics, increased production of reactive oxygen 
species (ROS), defective autophagy, mitochondrial dys-
functions, impairment of axonal transport, and, notably, 
neuroinflammation [106].

Characterized by the activation of microglia and astro-
cytes, neuroinflammation has garnered attention in recent 
years due to the early presence in the disease course, even 
before histopathological and pathological features of degen-
eration can be detected, representing an attractive therapeutic 
approach [92, 93, 257]. This immune activation was detected 
in close proximity to areas of neuronal damage and degen-
eration, leading to the obvious yet simplistic conclusion that 
it was a consequence of neuronal death. Now, a growing 
body of evidence challenge this assumption, demonstrating 
that neuroinflammation may also play an active role in the 
disease. (1) In many NDDs, signs of neuroinflammation are 
often detected prior to the appearance of neurodegenerative 
biomarkers and clinical symptoms [63], suggesting a driving 
role for disease pathogenesis rather than a pure bystander 
reaction [124]. (2) This view is further supported by the 
correlation between inflammatory markers, such as soluble 
TREM2 (sTREM2), YKL-40 or glial fibrillary acidic protein 
(GFAP), and disease severity [46, 47, 97]. (3) Genome-wide 
association studies (GWAS) and next-generation sequencing 
approaches have identified over 80 independent genetic loci 
modulating the risk of AD. Notably, many of these risk loci 
are located in genes that encode for proteins which form 
integral parts of microglia key signaling pathways including 
immunoreceptors (TREM2, SPI1, CD33) [250], agonistic 
ligands (IL34 and APOE) or effector mechanisms (ABI3 and 
EPHA1), suggesting a connection of inflammation to disease 
pathogenesis [16, 120, 168]. (4) Furthermore, preclinical 
in vivo models of extracellular Aβ accumulation or intraneu-
ronal formation of NFTs show widespread innate immune 
activation that correlates with neuropathology. In keeping 
with this, inflammation-targeting genetic modifications 
greatly impact disease outcome in rodent models of neurode-
generative disease in general [21, 261] and AD in particular 
[94, 258]. (5) Persistent activation of CNS glial cells, such as 
microglia and astrocytes, results in elevated levels of inflam-
matory cytokines (IL-1β, TNFα, and IL-6) for prolonged 
periods of time. This, in turn, prompts the upregulation of 
matrix metalloprotease 9 (MMP9) in brain endothelial cells 

(BECs). MMP9 targets components of the endothelial basal 
layer and tight junctions (TJs), thereby possibly affecting 
blood–brain barrier (BBB) integrity [18, 262]. (6) Neurons 
exposed to microglia-derived pro-inflammatory cytokines, 
such as IL-1β, IL-2, IL-6, or TNFα, show enhanced spine 
loss and reduced hippocampal long-term potentiation (LTP) 
[48, 161]. (7) Epidemiological data suggest that individuals 
with chronic inflammatory conditions are at a higher risk 
of developing neurodegenerative diseases [72, 199, 227]. 
Taken together, current evidence strongly supports the idea 
that neuroinflammation represents an influential player able 
to contribute to the progression of pathological processes.

The intricate interplay between neuroinflammation and 
neurodegeneration emerges as a future target for thera-
peutics. Interrupting the mutual interaction between both 
components may be exceedingly complex; but offer the 
opportunity to develop effective therapies. This undertaking, 
however, requires a deep understanding of all the implicated 
players in the brain and the periphery. In this review, we 
aim to highlight the inflammatory contribution to AD neu-
rodegenerative process throughout the lens of the different 
major cells types involved, including microglia, astrocytes, 
and neurons, but also others, such as T cells, oligodendro-
cytes, pericytes, and border-associated macrophages.

The neuroinflammatory disease component

Inflammation is an evolutionarily conserved process involv-
ing the activation of both immune and non-immune cells. 
This response protects the host from bacteria, viruses, tox-
ins, and infections by eliminating pathogens and facilitating 
tissue repair and recovery [30]. Neuroinflammation refers to 
the inflammatory process in the CNS in response to injury, 
infection, mental illness, ROS and RNS, redox iron, and dif-
ferent oligomers of τ- and β-amyloid [75]. Despite the nega-
tive connotations, inflammation per se is neither harmful 
nor maladaptive, but a survival response aimed to reinstate 
the cellular homeostasis upon an inflammatory challenge. 
This response usually includes four different components: 
inflammatory triggers, sensors, inflammatory mediators, 
and the affected tissues [153]. In classical NDDs, such as 
AD, Parkinson’s disease (PD), or amyotrophic lateral scle-
rosis (ALS), the neuroinflammatory process translates into 
increased reactivity of glia cells, like astrocytes and micro-
glia, together with the elevated production and release of 
pro-inflammatory molecules.

Besides Aβ plaques and intracellular NFTs, neuroin-
flammation has been identified as the third core feature in 
AD pathogenesis [92, 129] that may serve a link between 
the pathologies [78, 225, 268]. The old prevailing belief 
of “immune privilege” excluded the capacity of brain 
cells to initiate an immune response [36, 207]. Evidence 
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demonstrated that the brain indeed is not privileged, but 
rather specialized [28, 138]. By now, multiple lines of 
research have established the presence of reactive micro-
glia in AD brains as well as its unequivocal interaction with 
amyloid plaques and NFTs, both AD pathological hallmarks. 
Likewise, biomarker studies have widely demonstrated that 
this reactive phenotype results in increased levels of immune 
mediators, such as cytokines, chemokines, inflammasomes, 
and ROS [27, 37]. Latter publications have not only vali-
dated the profound immune alterations under AD conditions 
but have also confirmed the implication of other cellular 
entities, such as astrocytes, oligodendrocytes, and even neu-
rons, in the inflammatory equation [84, 179]. While in the 
early phase of the pathogenic process, tissue repair and con-
trol of the inflammatory response is attempted through the 
release of anti-inflammatory interleukins like IL-10, IL-4, 
IL-13, and transforming growth factor β, later stages are 
characterized by chronic inflammation in which microglia 
switches to an activated phenotype, releasing ROS, NO, and 
producing pro-inflammatory cytokines, including IL-1β, 
IL-6, IL-12, IL-23, and TNF-α [40].

Naturally, evolution has provided “protein quality control 
systems” to maintain the proteostasis. Mechanisms, such as 
proteasome degradation, autophagy or the unfolded protein 
response, and specialized proteins such as chaperones or heat 
shock proteins (HSPs), work together serving that purpose. 
In AD, Aβ dyshomeostasis may arise from an imbalance 
between Aβ neuronal production and extracellular clearance 
of Aβ [89, 202]. As this imbalance persists over time, it leads 
to the accumulation of Aβ deposits, marking a critical transi-
tion from a state of balanced proteostasis to one of patholog-
ical aggregation. These toxic Aβ aggregates are detected as 
danger or pathogen associated molecular patterns (DAMPs/
PAMPs) by a group of receptors collectively known as pat-
tern recognition receptors (PRRs) [23]. PRRs comprise a 
number of different surface receptors which can sense bac-
terial or viral products, neurodegenerative proteins, DNA, 
and neuronal debris [276]. Aβ activates microglia through 
multiple receptors including the receptor for advanced glyca-
tion end products (RAGE), nucleotide-binding oligomeriza-
tion domain-like receptors (NLRs), or Toll-like receptors 
(TLRs) [125]. Microglial Aβ phagocytosis can take place via 
CD36, involving the formation of a TLR2–TLR6 heterodi-
mer and subsequent NFKB activation [221]. Additionally, 
it can occur through CD14, which acts as a coreceptor for 
TLR4, TLR6, TLR9, α6β1 integrin, and SCARAq [66, 136, 
247]. PRRs ligation triggers different inflammatory signal-
ing cascades leading to the production and release of inflam-
matory mediators, such as complement factors, cytokines 
IL-1β, IL-6, IL-18, and TNF-α, chemokines such as C–C 
and C-X-C motif chemokine ligand 1 (CCL1, CXCL1), 
CCL5, small-molecule messengers, prostaglandins, nitric 
oxide (NO), and ROS [57, 92, 95].

NFTs, AD’s other core pathology, are made of hyper-
phosphorylated tau protein [4, 101]. Under normal physi-
ological conditions, tau plays important roles in a wide range 
of biological processes spanning from control of microtu-
bule dynamics and stability, to glucose metabolism, and 
extending to phenomena such as hibernation [8, 58, 145]. 
Tau protein undergoes multiple posttranslational modifica-
tions (PTMs), among them phosphorylation, glycation, ubiq-
uitination, or truncation [265], which critically contribute 
to tau proteostasis, dysfunction, and aggregation. In AD, 
multiple protein kinases (PKs) are known to phosphorylate 
tau at nearly 40 AD-relevant epitopes. Glycogen synthase 
kinase (GSK-3β) and cyclin-dependent kinase (CDK5) are 
the two most studied kinases involved in tau hyperphospho-
rylation, while PP2A is the main phosphatase related with 
tau dephosphorylation [12]. When hyperphosphorylated, tau 
reduces its affinity for microtubules, detaches, and aggre-
gates in the neuronal cytoplasm and extracellular spaces, 
later propagating through the brain in a prion-like manner 
[160]. Accumulation of toxic tau forms is considered to lead 
to impairment of intraneuronal processes, specifically pro-
tein degradation, energy metabolism, membrane integrity, 
intracellular transport, and signal transmission [165]. Patho-
logical tau not only disrupts microtubule stability but also 
instigates an immune response. Interestingly, NLRP3 inflam-
masome, one of the most important immune pathways in 
microglia, can also be activated by tau, and indeed, elevated 
levels can be found in brain tissue and CSF of tauopathy 
cases [107]. In line, NLRP3 loss of function leads to reduced 
tau hyperphosphorylation and aggregation by regulating tau 
kinases and phosphatases [102].

Reactive microglia is observed in the vicinity of NFTs 
[56] and tau internalization by microglia has been demon-
strated in vitro and in vivo [22], but the underlying mecha-
nisms are still elusive [273]. Likewise, microglia implication 
in tau pathology and propagation has been extensively dem-
onstrated in multiple tau-transgenic mouse lines. Virginia 
Lee’s group observed that treatment of P301S Tg mice with 
FK506 immunosuppressant inhibited microglial activation 
and attenuated tau pathology [266]. Also, in another study, 
microglia depletion through two independent approaches 
(PLX3397&CSF1R) in two independent tauopathy models 
significantly suppressed the propagation of tau measured by 
AT8 + [9]. The activation of microglia and the subsequent 
propagation of tau pathology could potentially be driven 
by the joint action of several agents like pro-inflammatory 
cytokines (IL-1β) [117], transcription factors (NF-κB) 
[248], and signaling pathways (CX3CL1/CX3CR1) [19]. 
Taken together, these studies demonstrate that tau can serve 
as DAMP, activating microglia, and triggering and immune 
response.

Here, we offer a comprehensive review of the inflam-
matory processes that contribute to the neurodegenerative 



Acta Neuropathologica (2024) 148:31 Page 5 of 21 31

progression in AD from a cellular perspective. Our focus 
centers on the principal cellular contributors, notably micro-
glia, astrocytes, and neurons, while also examining the intri-
cate interactions among them. Specifically, we delve into the 
inflammatory response of microglia and astrocytes within 
the context of AD's core pathologies, amyloid, and tau 
pathology. Additionally, we explore the inflammatory con-
tribution of neurons, considering the various modes of pro-
grammed cell death, as well as other cells types, including 
T cells, oligodendrocytes, pericytes, and border-associated 
macrophages. This cellular-centric approach aims to provide 
deeper insights into the complex interplay between neuroin-
flammation and the neurodegenerative process in AD.

Microglia

Microglia are the resident macrophages and represent the 
major component of the innate immune system of the CNS. 
They are unique in their origin, deriving from embryonic yolk 
sac precursors, similar to perivascular, meningeal, and retinal 
macrophages [79, 180]. Before the formation of the BBB, 
myeloid progenitor cells migrate to the neuroepithelium, pro-
liferate, and spread throughout the CNS, where they differen-
tiate into microglia [254]. They account for 0.5–16.6% [156] 
of the total number of cells in the human brain and slowly 
renew at a yearly median rate of 28% [184]. Microglia are 
highly dynamic cells whose states depend on their location 
and neighboring entities, translating into epigenomic, tran-
scriptomic, proteomic, metabolomic, and functional changes. 
The combination of single-cell multiomics technologies and 
protein expression analysis has allowed the identification of 
multiple of these states such as disease-associated microglia 
(DAMs), interferon response microglia (IRM), antigen-
presenting response (HLA), or ribosomal microglia (RM), 
among others [142, 179, 245]. Importantly, evidence suggest 
that these states are fluid and highly context dependent [223]. 
Microglia play an essential role maintaining brain homeo-
stasis. They provide neurotrophic factors, scale, and prune 
synapses, thereby contributing to neuronal plasticity. Further, 
they engulf and degrade excess metabolic byproducts and 
damaged tissues, promote development and myelination of 
oligodendrocytes, and perform fundamental housekeeping 
functions [32]. These functions are tightly regulated by genes 
encoding chemokine and chemoattractant receptors, phago-
cytosis, and synaptic pruning and remodeling.

In basal physiological conditions, homeostatic microglia 
are highly motile by nature, with multiple ramifications that 
constantly extend and retract, enabling active surveillance of 
their immediate microenvironment [166]. In AD, Aβ accu-
mulation induces a sustained microglia activation, leading 
to a continuous release of inflammatory elements that impair 
their phagocytic and degrative capacities. This aggravates 

Aβ accumulation, promoting tau propagation, and lead-
ing to neuronal death in vivo and in vitro [173, 220], ulti-
mately advancing the progression of the disease [98, 154]. 
This central role of microglia in AD pathogenesis has been 
extensively demonstrated from different angles. Genome-
wide association studies (GWAS) have shown that muta-
tions in key microglia genes, such as TREM2, dramatically 
increase AD risk [222]. Furthermore, Aβ clearance seems 
to be impaired not only in late but early onset forms of AD 
[149, 178], and its regulation and effectiveness may depend 
on factors such as age or stage of the disease [122]. In line, 
mouse models of Aβ deposition have repeatedly shown 
impaired microglia phagocytic capacity [98, 201, 255]. 
Finally, in vitro experiments have robustly demonstrated that 
exposure of microglia cultures to Aβ leads to the production 
of neurotoxic ROS and RNS, NLRP3 (NOD-, LRR-, and 
pyrin domain-containing protein 3) inflammasome activa-
tion [69], and production of pro-inflammatory cytokines, 
such as pro-IL-1β, IL-6, or TNF-α [134, 140, 246].

Ineffective microglia clearance of Aβ leads to the sustained 
release of the pro-inflammatory mediators mentioned above. 
Over time, this inflammatory activation turns into a chronic, 
deleterious process. This unbridled microglia activity not 
only creates a pro-neurodegenerative environment but also 
promotes the initial Aβ pathology. Different Aβ species can 
trigger microglia activation through a wide variety of cell 
receptors, such as CD40, CD36/TLR4/6, CD33, TREM2, 
and RAGE [61, 221]. CD40 and CD36/TLR4/6 activate the 
nuclear factor-κB (NFκB) transcription factor, resulting in the 
expression of auto-inhibited NLRP3, as well as the release of 
ROS/NOS [17, 204]. Internalized Aβ damages mitochondria 
and lysosomes, causing the release of ROS and Cathepsin B 
(CatB). CatB in turn serves as the triggering signal for NLRP3 
inflammasome formation [41]. After NLRP3 activation, the 
adaptor protein known as apoptosis-associated speck-like pro-
tein containing a CARD (ASC) is mobilized to assemble ASC 
helical fibrils specks. ASC recruits procaspase-1, followed 
by cleavage and activation of caspase-1 through induced 
proximity autocatalysis [139]. Active caspase-1 cleaves Gas-
dermin D (GSDMD) which releases its N-terminal domain 
(NT-GSDMD) to form membrane pores. Lytic cell death, or 
pyroptosis, occurs when the extent of pore formation exceeds 
the cell's capacity to repair its membrane [137]. Upon cell 
membrane rupture, intracellular content gets released includ-
ing recently formed ASC specks as well as inflammatory 
cytokines such as IL-1β and IL-18 [183]. Released extracellu-
lar ASC specks not only propagate inflammation to surround-
ing cells [68] but bind Aβ acting like “seeds”, accelerating the 
ongoing amyloidogenic process [69, 239] (Fig. 1). In line, 
microglia depletion in experimental models of AD has shown 
numerous benefits including reduction of both intraneuronal 
amyloid as well as neuritic plaque deposition [215], neuronal 
loss, and mitigation of neuritic dystrophy [143, 216].
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Interestingly, tau pathology is also amplified by these 
same Aβ-induced cytokines, with tau kinases like CDK5, 
GSK-3β, and p38-Mitogen-activated protein kinase 
(MAPK), increasing their activity, and, consequently, tau 
hyperphosphorylation [59]. Increased hyperphosphorylation 
is associated with microtubule disruption and tau polymeri-
zation into filaments and NFTs [4]. Moreover, tau mono-
mers and oligomers also operate as DAMPs, resulting in 
NRLP3-ASC activation [102]. In parallel to this inflam-
matory cascade of events, microglia serve as a mobile car-
rier for the propagation of protein aggregates with several 
mechanisms proposed, including heparan sulfate proteo-
glycans (HSPGs)-mediated endocytosis, exosome fusion, 
receptor-mediated endocytosis, phagocytosis, and, more 
recently, tunneling nanotubes (TNTs) [38, 237]. Astrocytes 
are also indirectly affected by activated microglia. Through 
the release of IL-1α, TNF and complement component 1 

(C1), subcomponent q (C1q) by microglia, astrocytes transi-
tion into the A1 astrocytic state where basic functions such 
promotion of neuronal survival, outgrowth, synaptogenesis, 
and phagocytosis get compromised, further contributing to 
the ongoing neurodegenerative process [132]. In a similar 
manner, the TNF-Signal Transducer and Activator of Tran-
scription 3 (STAT3)-α1-antichymotrypsin (α1ACT) sign-
aling axis can also induce Guanylate Binding Protein  2+ 
 (GBP2+) astrocytic activation, leading to BBB dysfunction 
through increased levels of Serpina3n/α1ACT [112] (Fig. 1).

Age is the primary risk factor for most NDDs [100]. 
Microglia have been identified as remarkably long-lived cells 
[71]. Aging microglia can enter a senescent state display-
ing modified surveillance phenotype, reduced branching and 
motility, and persistent inflammatory response upon damage 
[49]. Senescence markers include an irreversible cell-cycle 
arrest induced by the activation of p53/p21 and  p16INK4a/

Fig. 1  Microglia-mediated inflammation in AD. In the earliest stages 
of AD, the abnormal cleavage of APP by β- and γ-secretases leads 
to the formation of Aβ. Aβ monomers are inherently disordered 
and tend to aggregate into plaques, a process further promoted by 
genetic mutations in APP or PSEN1/PSEN2 genes. These Aβ aggre-
gates activate microglia, which initially attempt to clear Aβ through 
phagocytosis and proteolysis. Upon failure, microglia become per-
sistently activated, leading to Inflammasome activation and the 
release of pro-inflammatory components. This process culminates 
with the membrane rupture and release of the intracellular contents 
through pyroptosis. The release of ASC specks will further promote 
Aβ aggregation, closing the first inflammatory loop. Activated micro-

glia in a chronic state release inflammatory cytokines along with 
detrimental substances like reactive ROS and NO, heightening the 
immune response and contributing to neuronal damage. Moreover, 
the release of DMAPs from dying neurons, including ATP, HMGB1, 
S100B, and DNA, exacerbates inflammation, creating a reinforcing 
loop. This inflammatory environment leads to the excessive phospho-
rylation of tau protein, its detachment from microtubules, and subse-
quent formation of tau tangles within neurons. Hence, inflammation 
acts as a pivotal intermediary linking Aβ aggregation to the accumu-
lation of tau tangles in AD pathology. (Figure created using BioRen-
der.com)
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Retinoblastoma (Rb) pathways, and the formation of Senes-
cence-associated heterochromatin foci (SAHF) [82]. Senes-
cent-associated microglia (SAM) might substantially contrib-
ute to the AD neurodegenerative process through different 
mechanisms. First, an important characteristic of SAM is the 
Senescence-associated secretory phenotype (SASP) which 
involves the activation of cGAS–cGAMP–STING path-
way and the successive release of type I interferons (IFN), 
MMPs, High mobility group box 1 (HMGB1) protein, and 
other pro-inflammatory mediators, including IL1β, IL-6, and 
IL-8 [126, 209]. Through a process called paracrine senes-
cence, SASP can propagate to neighboring cells via NF-κB 
and IL-1 signaling, contributing to the inflammatory process 
[3]. Second, cell-cycle arrest impose substantial constrains on 
cell functionality like clearance of cellular debris. APP/PS1 
mice have a twofold-to-fivefold decrease in expression of the 
Aβ-binding scavenger receptors scavenger receptor A (SRA), 
CD36, and RAGE, and the Aβ-degrading enzymes insulysin, 
neprilysin, and MMP9, compared with their littermate con-
trols [98]. Moreover, characterization post-mortem AD brain 
tissue revealed senescent microglia associated with inflam-
matory activation and downregulated phagocytic capacity 
[65]. Finally, senolytic therapy consistently decreases neu-
roinflammation in AD, tau and aging mouse models [81, 169, 
269]. Taken together, these data demonstrate the interplay of 
cellular senescence between inflammation and AD.

Astrocytes

Astrocytes are integral for neuronal survival and function of 
CNS and are involved in multiple fundamental processes, such 
as synaptic pruning and remodeling, blood flow regulation, 
neural metabolism, clearance of synaptic and neuronal debris, 
or circadian rhythms [238]. Interestingly, changes in the tran-
scriptomic and functional characteristics of astrocytes occur 
in both the aging brain [171] and NDDs [85, 241]. In the 
past years, the role of astrocytes as key regulators of innate 
and adaptative immune responses has been demonstrated in 
multiple in vivo and in vitro studies [31, 44, 90, 253]. Reactive 
astrogliosis is a common feature in neurodegenerative disor-
ders which encompasses morphological, transcriptional, bio-
chemical, metabolic, and physiological changes as a result of 
a pathological insult. Typically, these alterations manifest as 
elevated levels of Glial Fibrillary Acidic Protein (GFAP) and 
vimentin, along with heightened production of pro-inflam-
matory cytokines, such as INF-γ, IL-1β, IL-6, and TNFα [24, 
214]. Additionally, there is an upregulation in the expression 
of innate immune-related genes like Lipocalin 2 (Lcn2) and 
the protease inhibitor 1-antichymotrypsin (Serpina3n) [274].

Astroglial pathological changes can be broadly grouped 
into three categories: (i) astrodegeneration, involving 
astroglial atrophy and functional loss; (ii) the pathological 

remodeling of astrocytes; and (iii) reactive astrogliosis. The 
first two categories, representing non-reactive pathological 
transformations of astrocytes, can be collectively referred 
to as astrocytopathies, distinguishing them from reactive 
astrogliosis [242]. Other documented altered functions in 
reactive astrocytes include impaired phagocytosis, decreased 
glutamate uptake, loss of astrocyte foot processes accom-
panied by the loss of polarized localization of AQP4, and 
release of neurotoxic compounds [132]. From a phenotypic 
perspective, recent single-cell and single-nucleus RNAseq 
analysis in human brains and mouse models of chronic 
neurodegenerative pathologies have shown multiple stage 
dependent transcriptomes [195, 212]. Similar to microglia, 
astrocytes can adopt multiple intermediate states, undergo-
ing morphological, molecular, and functional changes, thus 
moving beyond outdated classical polarization views [181]. 
In AD, astrocytes display an upregulation of monoaminoxi-
dase-B, translating into increased levels of GABA and  H2O2 
[42]. The classical neurocentric view of AD attributed these 
changes to a nonspecific secondary response to the disease 
process [164]. An increasing body of evidence indicates that 
astrocytes, not solely due to the impairment of their inherent 
homeostatic functions, but also through active processes, 
might play a role in the advancement of AD pathology.

Several astrocytic functional processes like glutamate 
removal, extracellular potassium regulation, calcium sign-
aling [133], and energetic metabolism are known to be 
impaired in AD [2]. Moreover, genetic studies also suggest 
a pivotal role of astroglia in AD, with several risk factor 
genes, such as Apolipoprotein E (APOE), Sortilin-related 
receptor 1 (SORL1), clusterin (ApoJ), and Fermitin family 
homolog 2 (FERMT2), primarily expressed by astrocytes. 
Post-mortem tissue studies in humans with mild cognitive 
impairment or preclinical AD have confirmed the presence 
of reactive astrocytes even before the formation of amyloid 
plaques [60, 189, 243], aspect that has been extensively 
demonstrated in animal models [7, 96, 229]. Reactive astro-
gliosis can be also visualized in later stages of the disease 
(assessed by the expression of GFAP and neurotrophic fac-
tor S100β) where astrocytes can be found in the plaques 
vicinity, with a marked upregulation of intermediate filament 
proteins, such as synemin, vimentin, nestin [64, 224], and 
adopting different pathological phenotypes [113]. In addition 
to exhibiting astroglial reactivity, AD also features atrophic 
astrocytes characterized by reduced volume and thinner 
processes. These atrophic astrocytes have been confirmed 
in post-mortem brains of AD patients [188], mouse mod-
els of AD [217], and induced pluripotent stem (iPS) cells 
derived from patients with both familial and sporadic forms 
of the disease [108]. Noteworthily, both phenomena seem 
to be spatial dependent, with cells surrounding the plaques 
undergoing gliosis but those distant from them becoming 
atrophied [187]. Furthermore, different signaling pathways 
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have been implicated in AD astrogliosis among them the 
cyclic Adenosine monophosphate (cAMP) pathway [177], 
the Janus Kinase (JAK) /STAT3 pathway [86], the NF-κB 
pathway, the calcineurin/nuclear factor of activated T cells 
(CN/NFAT) pathway [1], and the MAPK pathways [196].

While robust data support the interaction of astrocytes 
with Aβ, there is no substantial evidence yet to confirm a 
significant role in Aβ production by astrocytes under physi-
ological conditions [127, 272]. Reactive astrocytes seem to 
cluster around neuritic plaques forming a barrier and iso-
lating them from the surrounding neuropil [103]. Whether 
the final outcome of this mechanism is detrimental or neu-
roprotective is still under debate. The creation of physical 
limits around the aggregate could limit its growth, reducing 
its neurotoxicity for neighboring cells [176]. Conversely, it 
is well documented that astrocytes can phagocytose Aβ [80, 
228] and synapses [128]. Under normal physiological con-
ditions, astrocytes uptake and transport Aβ from the brain 
into the perivascular space through the BBB. Aβ degrada-
tion occurs via neprylisin (NEP), insulin-degrading enzyme 
(IDE) and MMP-9 [10]. However, during AD, accumulation 
of Aβ forms resistant to degradation, such as N-terminally 
truncated forms [51], alongside heightened synaptic prun-
ing activity [232], could potentially exacerbate the neurode-
generative process. Ablation of astrocytes in AD transgenic 
mice models aggravates amyloid pathology and leads to 
an increase in the expression of pro-inflammatory mark-
ers such as IL-6 and Il-1β [50, 111]. These data suggest a 
dual role of reactive astrocytes in AD. At first, they might 
play a significant role in Aβ uptake and degradation [11], as 
well as containing inflammation through glia-scar forma-
tion [213, 244]. As inflammation perpetuates, the sustained 
release of inflammatory mediators might hamper this capac-
ity, leading to the formation of secondary deposits through 
the death of Aβ-loaded astrocytes [162]. Astrocytes can 
sense Aβ in the TLR/RAGE-dependent manner leading to 
morphological changes and increased levels of GFAP and 
S100β [162]. Aβ-reactive astrocytes provide neuroprotection 
through the release of neurotrophic factors, but they also 
participate in the inflammatory process via the afore stated 
signaling pathways with the release of ROS, NO, cytokines 
(e.g., IL-1β, IL-6, TNF-α, IFN-α, granulocyte–macrophage 
colony-stimulating factor), and chemokines (e.g., MCP-1, 
MIP1-α, CCL4, IL-8, IFN-γ-inducible protein-10) [135]. 
The synthesis of pro-inflammatory mediators contributes 
to Aβ pathology by disturbing APP processing equilibrium 
and boosting β- and γ-secretases activity by astrocytes [10]. 
In a similar manner, activated microglia can also activate 
astrocytes through the release of cytokines, such as IL-1α, 
IL-1β, IL-6, TNF-α, and C1q, stimulating again astrocytic 
β-amyloid production [132, 271] (Fig. 2).

The levels of tau in healthy astrocytes have been reported 
very low [175]; however, hyperphosphorylated tau has been 

observed in astrocytes in AD [185]. Astrocytes can inter-
nalize different forms of tau including monomers, tau pre-
formed fibrils (PFFs), and aggregates [62, 147, 158]. Astro-
cytes may play as well a dual role during the disease course; 
while the uptake of tau from the extracellular environment 
might help mitigate the direct neurotoxic impacts of tau on 
neurons, the internalization and release of pathological tau 
species by astrocytes could potentially exert adverse effects 
on astrocytic function and propagate tau pathology [67]. Tau 
accumulation within astrocytes could also elicit an inflam-
matory response, further contributing to the neurodegen-
erative process. The available data regarding tau-mediated 
inflammation by astrocytes are limited. In one of the few 
reports available, Wang and Ye triggered an astrocytic 
inflammatory reaction using αV/β1 integrin by exposing 
them to tau monomers and PFFs. The administration of PFFs 
resulted in a robust elevation of numerous pro-inflammatory 
cytokines (IL1α, IL1β, IL6, and TNFα) and chemokines 
(CCL2, CCL3, CCL4, and CXCL10). Conversely, expo-
sure to monomeric tau elicited a decreased inflammatory 
response [251]. In another paper, Ungerleider and colleagues 
exposed human astrocytes to tau monomers, PFFs, or a com-
bination of both. All 3 treatments increased expression of 
IL-1β and IL-8 mRNA at 24 h. Also, a delayed increased in 
TNFα levels and Nitric oxide synthase 2 (NOS2), indicating 
an increase in oxidative stress following the initial inflam-
matory response [234]. Uptake of pathological tau by cells 
could potentially modify the secretion of cytokines by astro-
cytes, indicating a feedback loop where tau and inflamma-
tion mutually exacerbate the neurodegenerative process. The 
inflammatory state will also lead to a sustained astrogliosis, 
with trophic and metabolic support functions potentially 
comprised (Fig. 2). Tau-mediated astrocytic dysfunction has 
been demonstrated both in vivo and in vitro, resulting in a 
reduced neurosupportive capacity and increased neuronal 
loss [208]. Interestingly, this phenomenon seems to be an 
early event in the pathogenic process of AD that may serve 
as a bridge between Aβ pathology and early tau phospho-
rylation [15].

Microglia–astrocyte crosstalk has recently become a central 
focus in glial research. New evidence shows that signals origi-
nating from microglia and astrocytes are crucial in determining 
the functions and fates of each other [141, 192, 256]. In the 
AD context, neurons release self-antigens or aberrant protein 
forms that activate homeostatic microglia. Upon migration to 
the damaged site, microglia exhibit beneficial phagocytic activ-
ity by clearing toxic Aβ forms [210]; however, their involve-
ment becomes deleterious when chronic activation occurs, 
leading to unresolved inflammation and acceleration of the 
neurodegenerative process. In this state, secretion of TNF-α, 
TNF-related apoptosis-inducing ligand (TRAIL), IL1α, and 
C1q by microglia is sufficient to induce A1 astrocytes with 
impaired support of synaptogenesis, reduced phagocytosis, 
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and decreased expression of neurotrophic factors [29, 132]. 
Crosstalk between microglia and astrocytes is reciprocal, and 
therefore, microglia functions are also influenced by different 
cytokines and chemokines, such as IL-1β, IL-10, IL-15, TNF-
α, nitric oxide, and CCL2 that are secreted by astrocytes [20] 
(Fig. 2). Data from animal models suggest that these functional 
alterations might significantly influence AD progression. Using 
an APP transgenic mouse model, Lian et al. showed that Aβ 
acts as an upstream activator of astroglial NF-κB, leading to the 
release of C3. The interaction of C3 with microglial C3a recep-
tor leads to impaired Aβ phagocytosis [131]. In another report, 
McAlpine et al. utilized a 3D microfluidic triculture system 
comprising microglia derived from human iPS cells and the 
5xFAD transgenic mouse model. Their study demonstrated that 
astrocyte-produced IL-3 plays a central role in directing micro-
glial activity, leading to increased mobility and enhanced capa-
bility to cluster around and eliminate Aβ and tau aggregates 
[151]. Another important route of cross talk is the gut–brain 
axis. Through the metabolites of dietary tryptophan, commen-
sal and pathogenic enteric bacteria may impact the production 

of Vascular Endothelial Growth Factor-β (VEGF-β) and trans-
forming growth factor alpha (TGFα) by microglia, thereby 
regulating astrocyte pathogenic processes during inflammation 
and neurodegeneration [193]. Recently, several other routes of 
activation have been identified including complement protein 
C3 [259] and C8γ [114], human antimicrobial peptide LL-37 
[39], extracellular vesicles [190], or TNTs [191].

Neurons

Neurodegeneration defines as an irreversible detrimental 
process for neurons that presents in NDDs, and to a lesser 
extent, during aging. Neurons themselves do not possess 
a pro-inflammatory machinery, and therefore, the classical 
unidirectional relation is that neuroinflammation acts upon 
neurons. However, neurons can also contribute to the inflam-
matory process through the different modes of programmed 
cell death [144]. Apoptosis is a form of regulated cell death 
(RCD) that can be initiated by various perturbations in both 

Fig. 2  Astrocytes-mediated inflammation in AD. Upon sensing Aβ 
plaques in a TLR/RAGE manner, astrocytes become activated and 
undergo significant changes in gene expression and signaling path-
ways. Activated astrocytes exhibit elevated levels of GFAP, S100β, 
and intermediate filament proteins, such as synemin, vimentin, and 
nestin, indicating their reactive state. Furthermore, there is an upregu-
lation of pro-inflammatory cytokines, such as INF-γ, IL-1β, and IL-6, 
along with increased expression of Lcn2 and Serpina3n. Multiple 
signaling pathways have been implicated including cyclic Adeno-
sine monophosphate (cAMP) pathway, the Janus Kinase (JAK)/
STAT3 pathway, the NF-κB pathway, the calcineurin/nuclear factor 
of activated T cells (CN/NFAT) pathway, and the MAPK pathway. 
Additionally, microglia can further activate astrocytes by releasing 

neuroinflammatory contents, such as TNF-α, IL-1α, complement 
component 1q (C1q), IL-1β, and IL-6, leading to increased produc-
tion of Aβ by astrocytes. In parallel, aggregated and hyperphospho-
rylated forms of tau are released by dying neurons. These forms could 
be uptake by another recipient neuron or by glial cells. The activa-
tion of astrocytes leads to the release of pro-inflammatory cytokines 
(IL1α, IL1β, IL6, and TNFα), chemokines (CCL2, CCL3, CCL4, and 
CXCL10), and nitric oxide. This pro-inflammatory milieu increases 
neurotoxicity, but also affects microglia, leading to the release of 
TNF-α, IL-1α, complement component 1q (C1q), IL-1β, further acti-
vating astrocytes. Additionally, the release of aggregated tau forms by 
astrocytes might also enhance the propagation of tau in a prion-like 
manner. (Figure created using BioRender.com)
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the intracellular [DNA damage, endoplasmic reticulum (ER) 
stress, ROS overload, replication stress, microtubular altera-
tions, etc.] and extracellular microenvironments (through 
plasma membrane receptors)[73]. Among all RCD impli-
cated in AD, apoptosis is the least detrimental with the pro-
duction of anti-inflammatory factors, such as lactate, IL-10, 
and TGF-β, and with a cellular clearance without release 
of the intracellular components. However, accumulating 
evidence also suggest that the catalytic activity of caspases 
implicated in the apoptotic process may influence AD neu-
roinflammatory process. Caspase 3, for instance, has the 
capacity to cleave both APP and tau, producing additional 

cytotoxic APP fragments and disrupting synaptic commu-
nication, respectively [170, 174] (Fig. 3). Solid evidence of 
the presence of apoptosis is AD post-mortem tissue remains 
elusive [231], with few reports showing neurons with mor-
phological features of apoptosis [218, 219]. Several reasons 
could explain this absence. First, apoptotic cells are usually 
degraded by microglia; hence, accumulation of them is only 
possible if microglia functions are severely impaired. Also, 
upregulation of anti-apoptotic B-cell lymphoma 2 (Bcl-2) 
family proteins and down-regulation of both the pro-apop-
totic protein Bax and several pro-apoptotic BH3-only pro-
teins, confer mature neurons natural resistant to apoptotic 

Fig. 3  Regulated cell death (RCD) & Inflammation. RCD modes 
(Apoptosis, Pyroptosis, and Necroptosis) and their relationship with 
inflammation in AD are outlined here, focusing on triggers, effectors, 
hallmarks, and inflammatory outcomes. Apoptosis, distinguished by 
its quiet nature and lack of inflammation, coordinates the removal of 
cells without releasing intracellular contents. It can be induced by 
various stimuli, culminating in Caspase-3 cleavage. Apoptotic death 
entails nuclear condensation and membrane blebbing, while also 
exerting an anti-inflammatory effect through the release of TGF-β, 
IL-10, and Lactate. Necroptosis occurs in the absence of Caspase-8 
and after the activation of death receptors, such as TNFR, TRAIL, 
and FAS. This process involves RIPK1 autophosphorylation, RIPK3 
activation, and subsequent MLKL phosphorylation, leading to oli-

gomerization of phosphorylated MLKL at the plasma membrane, 
disrupting cell polarity, and ultimately resulting in lysis. Necroptosis 
incites inflammation by releasing intracellular contents as DAMPs 
together with pro-inflammatory cytokines. Pyroptosis is an inherently 
inflammatory RCD that induces cell lysis via membrane pore for-
mation with two signals required for initiation. The first one primes 
the inflammasome, while the second activates intracellular pattern 
recognition receptors (e.g., NLRP3, NLRP1, and AIM2), forming 
inflammasome complexes. This cascade triggers Caspase-1 activa-
tion, cleaving substrates including pro-IL-1b, pro-1L-18, and GSDM. 
Active GSDM forms pores resulting in membrane integrity loss, cell 
lysis, and release of pro-inflammatory cytokines and intracellular 
DAMPs. (Figure created using BioRender.com)
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cell death [99]. Some lines of evidence indicate the presence 
of apoptotic markers in AD, but to what extend apoptosis 
contributes to neuron death in the disease course remains 
under debate [144].

Necroptosis, on the contrary, represents an inflammatory 
RCD characterized by the loss of membrane integrity and 
the release of intracellular content including pro-inflamma-
tory cytokines, such as IL-1β, IL6, IL-33 or TNF-α, and 
DAMPs. Necroptosis is usually triggered by pro-inflam-
matory cytokines and death signaling ligands released by 
inflammatory cells like astrocytes and microglia. This pro-
cess leads to the autophosphorylation of receptor-interact-
ing protein kinase 1 (RIPK1) and the latter recruitment of 
RIPK3 to form a large molecular complex named necro-
some. Activated RIPK3 then phosphorylates and activates 
the pseudokinase mixed lineage kinase domain-like pro-
tein (MLKL), which oligomerizes and translocates to the 
plasma membrane, disrupting its integrity and causing cell 
death [252] (Fig. 3). Different studies point toward a promi-
nent role for necroptosis in AD. Caccamo and colleagues 
provided direct evidence for the activation of necroptosis 
in human AD brains, as well as in a mouse model of AD. 
Necroptosis levels positively correlated with Braak stages, 
and inversely correlated with brain weight and cognitive 
scores [33]. In another study, Salvadores et al. using post-
mortem human AD brain tissue showed that Aβ oligomers 
correlates with the expression of key markers of necroptosis 
activation. Furthermore, pharmacological or genetic inhibi-
tion of necroptosis resulted in reduced neurodegeneration 
and memory impairment triggered by Aβ oligomers in mice 
[197]. Finally, in human post-mortem AD brains, Koper and 
colleagues demonstrated the presence of all three activated 
necrosome components when granulovacuolar degeneration 
(GVD) neuronal lesions were analyzed, suggesting an AD 
specific form of necroptosis [119]. Necroptosis machinery 
(RIPK1, RIPK3, and MLKL) promotes a robust and sus-
tained pro-inflammatory response [45, 275]. Upon mem-
brane rupture, released DAMPs might get recognized by 
nearby bystander glia (microglia and astrocytes) serving as 
pro-inflammatory triggers. However, in the context of AD, 
the situation might be even more detrimental, due to the 
release of pathological intraneuronal tau forms. These forms 
could not only act as DAMPs, but also have the potential 
to spread tau pathology within the local environment [25].

Pyroptosis represents an alternative type of inflammatory 
RCD characterized by DNA fragmentation, cellular swell-
ing, and membrane disruption that is triggered by inflam-
masomes. Neuronal pyroptosis seems to be highly dependent 
on caspase-1 activation although recent reports have shown 
that other caspases, including caspase-3/4/5/6/8/9/11, may 
also cause pyroptosis [267]. The cleavage of GSDMD by 
caspase-1 results in the formation of membrane pores, 
leading to membrane rupture and subsequent release of 

cellular contents into the extracellular environment. Most 
pyroptosis-related AD research has focused on glial cells, 
but recent evidence suggests activation of the neuronal 
NLRP1 inflammasome may play an important role [264]. 
Increased levels of neuronal pyroptosis caused by NLRP1/
caspase-1 activation were found in cultured cortical neu-
rons exposed to Aβ. In the same study, NLRP1 or caspase-1 
deficiency resulted in significantly lower levels of neuronal 
pyroptosis and reversed cognitive impairments [226]. The 
presence of other pyroptosis-related proteins has been also 
demonstrated in AD. In a recent paper analyzing human AD 
samples, Moonen and colleagues demonstrated the presence 
of cleaved GSDM in neurons. Interestingly, caspase-8 and 
non-canonical inflammasome protein caspase-4 were also 
detected, suggesting novel mechanisms for GSDMD cleav-
age [157]. Another set of experiments showed increased 
levels of GSDMD p30, NLRP3 protein, and cleaved cas-
pase-1 following the incubation of mouse cortical neurons 
with Aβ1-42 [87]. The relation between phosphorylated tau 
(p-tau) and neuronal pyroptosis is barely explored. In one of 
the few reports available, hyperphosphorylated tau induced 
pyroptosis and release of IL-1β and IL-18 in PC12 cells 
treated with forskolin [130]. Additionally, increased con-
centrations of GSDMD, total tau (t-tau), and tau181p have 
been detected in the CSF of AD patients in comparison to 
both, the overall population and individuals with vascular 
dementia [205](Fig. 3).

Other cell types

While the involvement of the aforementioned cellular types 
in the neuroinflammatory phenomena of AD is well docu-
mented, increasing evidence is introducing new players 
into the field. The adaptive immune system is increasingly 
acknowledged for its role in the pathogenesis of AD. Integ-
rity loss of the BBB in AD has been extensively investigated 
[123] and allows peripheral lymphocytes such as B and T 
cells, access to the brain parenchyma. This has been demon-
strated in brains of transgenic AD mice, where the presence 
of mature B cells led to immunoglobulin deposits which 
were often colocalized with Aβ plaques and activated micro-
glia. Moreover, loss of B cells was significantly reduced Aβ 
burden and behavioral impairments [115]. In line, indi-
viduals with mild cognitive impairment and AD exhibited 
elevated levels of inflammatory CD8 + CD45RA + T effec-
tor memory (TEMRA) cells in peripheral blood, along with 
their clonal expansion in the CSF [77]. Recently, these 
results have been confirmed using a novel a 3D human neu-
roimmune axis model [109].

Brain pericytes are key constituent cells of the neurovas-
cular unit playing various functions including angiogenesis, 
vascular remodeling, regulation of microcirculation, and the 
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formation and maintenance of the BBB itself. Pericyte loss 
and/or degeneration has also been reported in AD [155, 206], 
which results in BBB disruption. This allows the extrava-
sation of toxic-blood derived products leading to immune 
response and secondary neuronal degenerative changes [14]. 
Interestingly, pericyte reduction has been shown to correlate 
not only with BBB dysfunction but also amyloid plaque load 
[203]. Brain pericytes can internalize and clear Aβ via an 
LRP1/APOE [35]. In AD, aberrant deposition of Aβ leads to 
progressive capillary constriction [167], decreasing oxygen 
and blood levels, leading to neuronal loss. Indeed, exposure 
to Aβ1–40/42 promoted membrane release of key pericyte 
proteins, including proteoglycan NG2 and platelet-derived 
growth factor receptor β (PDGFRβ) [200]. Perivascular cells 
are also involved in immune regulation [194]. Through the 
release of diverse immunomodulators, such as IL-1β, TNF-
α, IFN-γ, or IL-6, pericytes can induce pro-inflammatory 
states in microglia, astrocytes, and endothelial cells [148]. 
Lipopolysaccharide immune activation have been shown in 
human and mice pericytes cultures, resulting in significant 
release of pro-inflammatory factors, such as L-1α, TNF-α, 
IL-3, IL-9, IL-10, IL-13, iNOS, and nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase 4 [83, 121]. 
Finally, anti-inflammatory roles have also been proven in 
mouse models, with the release of CX3CL1 and IL-33, 
decreasing microglia activation and promoting their anti-
inflammatory phenotype [34, 263].

While AD is often viewed primarily as a gray-matter dis-
ease, white-matter changes are also frequently reported [76, 
150]. Remarkably, these lesions have also been shown in 
preclinical AD [53, 186], indicating a role in the disease eti-
ology. In this regard, the group of Klaus-Armin Nave dem-
onstrated in AD mice models, that myelin defects upstream 
amyloid deposition, recruit away plaque-corralling micro-
glia, leading to a less efficient Aβ clearance. Additionally, 
RNA-seq analysis revealed a more inflammatory profile of 
microglia with upregulation of classical DAM signature 
genes, such as Clec7a, Gpnmb, APOE, Spp1, Axl, and Itgax 
[54]. Downstream amyloid deposition, the exact mechanisms 
leading to myelin loss in AD remain unknown but are likely 
to include cytotoxicity, RNA metabolism disruption, and 
neuroinflammation [74, 116, 260]. Additionally, independ-
ent lines of evidence suggest that oligodendrocytes might 
be active contributors in the disease development. Indeed, 
amyloidogenic-processing machinery is abundant in oligo-
dendrocytes [198], generating detectable Aβ levels in vitro 
[211] and possible contributing to the Aβ burden. Aligned, 
another recent study showed that suppression of oligoden-
drocyte-derived Aβ rescued neuronal dysfunction in vivo 
[182]. Finally, both in AD patients and an AD mouse model, 
oligodendrocytes exhibited NLRP3-dependent GSDMD-
associated inflammatory injury, concomitant with demyeli-
nation and axonal degeneration [270].

Recently, another population of tissue-resident mac-
rophages was identified [159]. Border-associated mac-
rophages (BAMs) are defined and resident macrophages in 
non-parenchymal tissues. They play critical roles in main-
taining CNS homeostasis and differ phenotypically and func-
tionally from microglial cells [55]. Also, several subgroups 
of BAMs have been identified based on their anatomical 
site: subdural/leptomeningeal macrophages (sdΜΦ), dural 
macrophages (dmΜΦ), stromal choroid plexus macrophages 
(cpΜΦ), choroid epiplexus macrophages  (cpepiΜΦ), and 
perivascular macrophages (PVMs) [236]. Owing to their 
recent discovery, BAMs role in AD needs further research. 
In one recent study, Tg2576 mice perivascular and leptome-
ningeal compartments were repopulated through  CD36−/− or 
 CD36+/+ bone marrow transplantation. Deletion of CD36 
in BAMs suppressed ROS production and improved neuro-
vascular function, with complete rescue of cognitive func-
tion [233]. In another paper, immune responses induced by 
amyloid-targeting antibodies and CAA-induced microhem-
orrhages were analyzed using mouse models of AD. Anti-Aβ 
(3D6) immunotherapy lead to increased occurrences of 
microhemorrhages, altered cerebrovascular structure, and 
the formation of an antibody immune complexes with vas-
cular amyloid deposits associated with perivascular mac-
rophage [230].

Conclusion

Neuroinflammation is a conserved immune response aimed 
to protect neurons from a deleterious stimulus and resolve 
the homeostatic disbalance. In AD, chronic neuroinflamma-
tion emerges as a central driver for the neurodegenerative 
process due to the orchestrated interaction among multiple 
cell types including but not only, microglia, astrocytes, and 
neurons. Persistent ligand–receptor interactions in the CNS 
microenvironment overactivate cells for sustained periods 
of time causing chronic NDDs. The concept of microglia as 
the sole instigators of inflammation oversimplifies the com-
plex interplay within the neuroinflammatory landscape. It is 
crucial to acknowledge and explore the contribution of other 
cellular entities such as astrocytes or neurons. Microglia and 
astrocytes, crucial components of the brain’s immune sys-
tem, are activated by pathological forms of proteins such as 
Aβ and tau, initiating a cascade of inflammatory responses 
that self-sustain over the disease course. An over-extended 
inflammatory status then translates into increased cytokine 
and chemokine production, systemic stress, and, eventually, 
neural damage. In AD, neuronal damage sets off a subse-
quent harmful cycle, wherein multiple DAMPs, including 
toxic protein aggregates, and additional pro-inflammatory 
molecules are discharged into the extracellular space through 
the different RCD modes. This closes an iterative loop where 
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neuroinflammation leads to neurodegeneration and neurode-
generation boost neuroinflammation. The complex interplay 
between cellular types makes the breaking point identifica-
tion a formidable challenge. Therapies aimed to stop or halt 
this loop are urgently required.
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