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CORRESPONDENCE
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While somatic driver gene mutations are considered the 
hallmark of cancer, oncogenic mutations have recently been 
found in non-diseased proliferative tissues, such as endome-
trial [13], esophageal [10], or skin epithelium [11] but also 
in low proliferative tissues such as the brain [9]. Those dis-
coveries lead to the hypothesis that the mutational processes 
giving rise to tumors preexist in normal tissue.

Meningioma oncogenesis is dominated by the occur-
rence of well-known driver gene mutations that form co-
exclusive mutational groups, but 20% of meningiomas do 
not harbor any somatic mutation [4–6]. This assertion leads 
to the hypothesis of non-mutational initiating events in some 
cases, and questions us about the early events of meningioma 
formation in the normal meningeal layers. To date, no study 
focused on the presence of oncogenic driver mutations in the 
meninges of healthy individuals. To investigate this point, 
we studied the presence of low variant allele frequency 
(VAF) variants in the main driver genes with previously 
described oncogenic potential in meningiomas and decided 
to select meninges in the elderly, where there is a significant 
increased incidence of meningiomas [2].

Meningeal layers were obtained from individuals from 
the brain donation program of our institution. We analyzed 
a total of 90 post-mortem meningeal samples derived from 5 

individuals with no history of intracranial tumors. For each 
of the 5 participants, we analyzed 15 dura mater samples 
(8 at the anterior skull base, 4 at the falx, and 3 at the con-
vexity), 3 arachnoid samples, and one brain control sample 
(Fig. 1a, Supplementary Methods). Pathological analysis 
using HE sections (Supplementary Fig. 1) and Ki67 labe-
ling (data not shown) confirmed the absence of meningioma 
or meningothelial hyperplasia at microscopic level and the 
absence of Ki67-positive cells. We generated deep-targeted 
sequencing data (average depth of 1760 × per sample across 
targeted regions, Supplementary Table 1) using a specific 
capture device covering intronic and exonic regions of 29 
known meningioma-driver genes (Supplementary Table 2) 
and able to detect main chromosomal gains and losses (chro-
mosome 1, 10, 18, and 22). We used Mutect2 and an in-
house specific pipeline to call low VAF somatic variants 
(Fig. 1b and Supplementary Methods). For each individual, 
meningeal DNA was compared to brain DNA as control.

We obtained a total of 6493 variants, and conservatively 
filtered out variants to obtain high-confidence variants (Sup-
plementary Methods). Among the 102 high-confidence vari-
ants, we kept only the 30 variants with functional impact 
(Supplementary Methods, Supplementary Table 3). Four 
occurred in meningioma major driver genes (one in NF2 
and three in TRAF7, Fig. 1c, d, Supplementary Table 3) in 
4 separate patients (80% of the individuals). Median VAF 
for these variants was 0.86%. All four were predicted dam-
aging and pathogenic by multiple algorithms (Fig. 1d and 
Supplementary Methods) and three of them were already 
described in meningiomas. Besides, all variants were 
uniquely found in one sample and none were seen in sev-
eral samples within the same individual, even for neighbor 
samples separated only by few millimeters. Importantly, no 
variant was detected in the main hotspots of other oncogenic 
genes (AKT1, SMO, PIK3CA, Supplementary Table 4 and 
Supplementary Methods). To validate our variants, we per-
formed droplet digital PCR (ddPCR) for three variants for 
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which assays were commercially available (NF2 p.Tyr101*, 
TRAF7 p.Lys615Glu and TRAF7 p. Asn520Ser) (Fig. 1e, 
Supplementary Fig. 2), which confirmed the presence of 
the three variants and the respective VAFs.

Somatic mutations associated with cancer can be either 
driver mutations (able to promote clonal expansion), or pas-
senger mutations that do not confer proliferative advantage. 
Here, we described the presence of passenger mutations 
in genes implicated in meningioma (ARID1A, CREBBP, 
KDM5C, or TP53, Fig. 1c), revealing the mutational profile 
of the normal meningeal layers. ARID1A, a gene involved in 
chromatin remodeling processes, was the top-mutant gene 
in our samples, and is mutated in anaplastic meningiomas 
[7]. Several studies in normal tissue (colon, skin, or esopha-
gus) already described frequent mutations in this gene before 
tumor formation [16]. It is unknown whether ARID1A muta-
tions in meningiomas are inherited from normal progenitors 
without playing a role in cancer progression, or if they could 
act as a first hit in aggressive meningioma clonal selection. 
No CNV event (e.g., loss of 22q) was detected in any of our 
samples (Supplementary Fig. 3).

All together, these results suggest that somatic mutations 
in driver or passenger genes associated with meningioma 
tumorigenesis are already present at low VAF in the normal 

meningeal layers of elderly individuals, without apparent 
meningeal pathology. The occurrence of the driver muta-
tions may constitute an early event in a pathogenic progres-
sion through meningioma formation. The high frequency of 
somatic mutations in elderly dura mater is in line with the 
previous reports showing a high rate of karyotype abnormal-
ity and somatic mutational signatures suggestive of defec-
tive DNA damage repair in dura mater-derived cell lines 
compared to skin-derived cell lines from the same individual 
[3]. Our major finding concerns the presence of pathogenic 
TRAF7 mutations in the anterior skull base dura or arach-
noid, mirroring the location of TRAF7-mutant meningiomas 
and the high expression of TRAF7 in neural crest-derived 
meninges during embryogenesis [12]. The occurrence of 
TRAF7 mutations in the normal meninges also questions its 
intrinsic pathogenic value, since meningiomas frequently 
harbor a second co-mutation (KLF4K409Q or one of the main 
oncogenes of the PI3K pathway, AKT1 and PIK3CA) [1, 5]. 
Our results are in line with the previous reports that suggest 
that TRAF7 (as well as NF2) mutation is typically an early 
event acquired first in case of co-mutations [8].

Interestingly, driver mutations were present both in 
the arachnoid and dura mater samples. As arachnoid cells 
were present in dura mater samples in small amounts 

Fig. 1  a Illustration of the meningeal sampling for each individual. 
b Illustration of the methodology of the study. c Barplot illustrating 
the main genes and the somatic variants detected by ultra-deep-tar-
geted sequencing. Variants are reported ordered by gene mutation fre-
quency, and colored depending on the consequence of the mutation. 
d Summary of the four mutations present in the normal meninges 

in main driver genes for meningioma (NF2 and TRAF7). VAFs are 
reported as obtained from exome sequencing (ES) and ddPCR valida-
tion. e. Two-dimensional ddPCR plot for the NF2 p.Y101* mutation 
in P1_AD5 sample. The wild-type and mutant droplets are displayed, 
respectively, on the x- and y-axis. The number of mutant and wild-
type droplets is displayed in the top left and bottom right, respectively
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(Supplementary Fig. 1f), it is not possible to determine 
which cell population harbored the oncogenic mutation. 
Additional studies are mandatory to determine the cell of 
origin of meningioma, that could be a quiescent meningeal 
stem cell physiologically present in both layers, able to pro-
liferate and form different histological subtypes from a sin-
gle cell of origin [15].

To conclude, our data are in favor of the spatially 
restricted local expansion of cellular clones that carry pas-
senger and/or driver mutations that remain quiescent until 
secondary additional mechanisms still to discover trigger 
the tumoral proliferation. These mechanisms could depend 
on environmental factors (such as hormonal exposure) and 
rely on genetic (such as co-mutations) or epigenetic (such 
as methylation modifications) phenomenon [15]. Our tar-
geted sequencing approach evaluated only genes known to 
be oncogenic in meningioma, and provides first evidence 
that oncogenic mutations exist in these genes. Future stud-
ies will address the total mutation load of normal meningeal 
samples and study potential variants in other genes. As a 
cross-sectional analysis in the elderly, this study does not 
address the question of mutations in young individuals and 
the evolution of the meningeal mutational burden with time. 
Detecting ultra-low mosaic clonal events remains technically 
challenging, and thus, additional mutations may also exist 
that bypassed our detection threshold [14]. Future studies 
addressing the accumulation of genetic variants or other 
molecular alterations in the normal meningeal layers will 
help to continue dissecting early mechanisms of meningioma 
oncogenesis.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00401- 023- 02635-4.
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